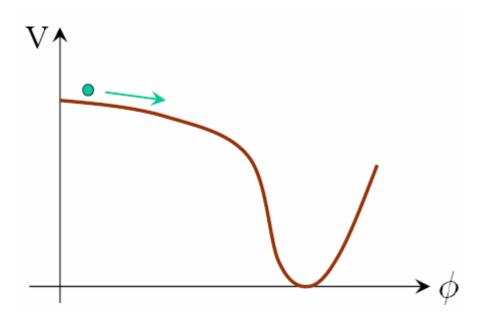

A brief introduction to brane inflation

Yi-Fu Cai Mar. 18, 2010 at USTC

Open Questions in early universe

1. How to realize inflation at early universe?


2. What is inflaton made of?

3. Does it fit to observations?

Adventure is out there!

Preliminary of Inflationary cosmology

Guth, PRD 23:347,1981; Linde, PLB 108:389,1982; Albrecht & Steinhardt, PRL 48:1220,1982

Slow-roll conditions:

$$\epsilon_V = \frac{M_{pl}^2}{2} \left(\frac{V'}{V}\right)^2 \quad <<1$$

$$\eta_V = M_{pl}^2 \frac{V''}{V} \quad <<1$$

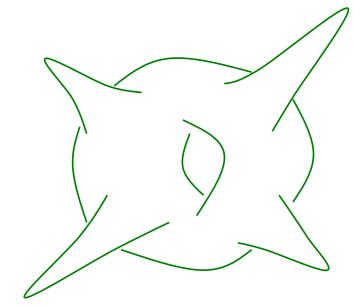
Low energy description of string theory

•Preliminary of Inflationary cosmology

Type I describes both open and closed, un-oriented strings with SO(32) gauge group with low energy effective theory being N=1 SUGRA.

Type II theories are of closed strings only (not counting the open string excitations which live on the D-branes themselves), with N = 2 SUGRA effective theories.

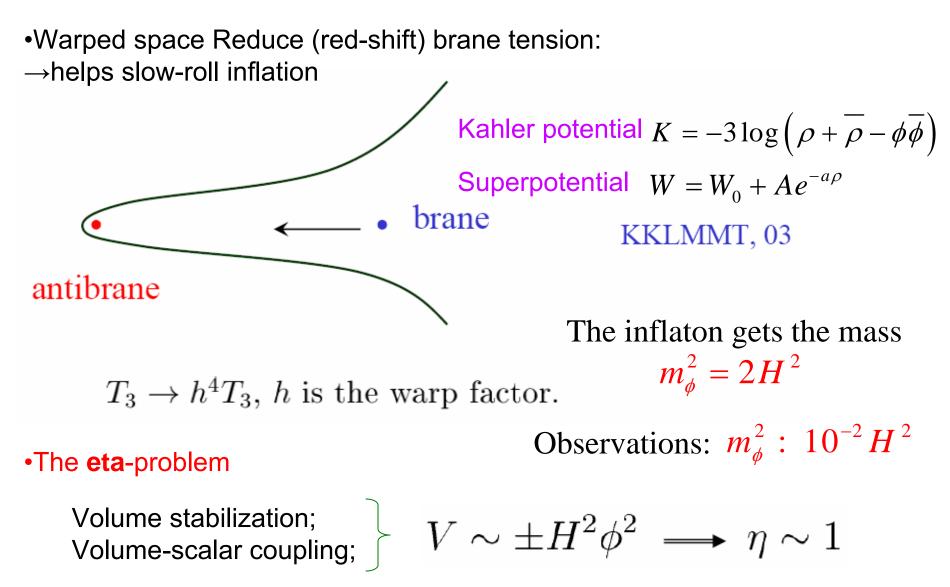
Type IIA theories contain Dp-branes with p even, while IIB contains odd-dimensional branes.

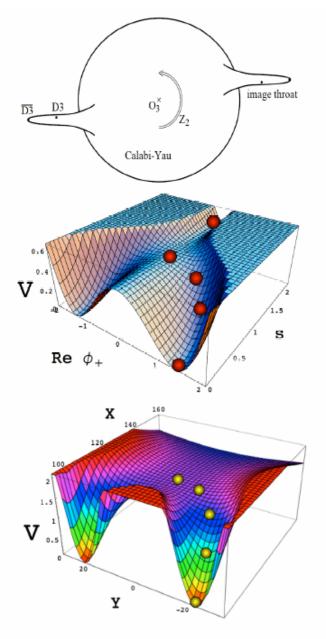

Low energy description of string theory

Preliminary of Inflationary cosmology

Old conception of string theories: No 4D de-Sitter solution with stabilized moduli. Contradict with inflation!

In 2003 KKLT mechanism was proposed to illustrate the possibility of 4D dS solution.


Warped compactification


(Gidding, Kachru, Polchinski, 01; Klebanov, Strassler, 00; Verlinde, 99; Randall, Sundrum, 99)

- 6D bulk
- Warped space generated by point-like (6D) sources

A first glance of KKLMMT brane inflation

Brane inflation in II-B string theory

KKLMMT brane-anti-brane inflation

D3/D7 brane inflation

Racetrack modular inflation

DBI inflation (non-minimal kinetic terms)

DBI inflation

- A mobile D3-brane with a relativistic speed
- The effective action

$$S = \int d^{4}\xi \sqrt{-g^{(4)}} \left[-T(\phi)\sqrt{1+\partial^{\mu}\phi\partial_{\mu}\phi}/T(\phi) + T(\phi) - V(\phi) \right]$$

 $T(\phi) = T_3^{1/2} h^4$ ϕ : radial position of the probe brane

• Energy density and Pressure

$$\rho = T(\phi)(\gamma - 1) + V(\phi) \qquad \gamma = \frac{1}{\sqrt{1 - \phi^2}/T(\phi)}$$
$$p = T(\phi)(1 - \gamma^{-1}) - V(\phi)$$

DBI inflation: Features

- A realization of k-inflation with a small sound speed motivated by string theory!
- No need for small mass:
 a potential solution to the η problem

 $f_{NL} \approx \frac{1}{3}(\gamma^2 - 1)$

• Large equilateral non-Gaussianity:

DBI inflation: Constraints

Baumann & Mcllister 2006; Lidsey & Huston 2007

- (UV) DBI inflation with too large non-Gaussianity seems inconsistent with WMAP data.

DBI inflation: Formulae

$$1 - n_s = \frac{r}{4}\sqrt{1 + 3f_{\rm NL}} - \frac{2\tilde{s}}{3f_{NL}} + \frac{\dot{T}}{TH} \qquad \tilde{\epsilon} \equiv \frac{2M_p^2}{\gamma} \left(\frac{H'}{H}\right)^2$$
$$\left(\frac{\Delta\phi}{M_p}\right)^2 \simeq \frac{r}{8}(\Delta\mathcal{N})^2 \qquad \qquad \tilde{\eta} \equiv \frac{2M_p^2H''}{\gamma H}$$
$$\frac{\pi^2}{16}r^2P_s\left(1 + \frac{1}{3f_{\rm NL}}\right) = \frac{T(\phi)}{M_p^4} \qquad \qquad \tilde{s} \equiv \frac{2M_p^2\gamma'H'}{\gamma^2 H}$$
$$P_s = \frac{1}{8\pi^2M_p^2}\frac{H^2}{c_s\tilde{\epsilon}} \quad P_t = \frac{2}{\pi^2}\frac{H^2}{M_p^2} \qquad n_s - 1 = 2\tilde{\eta} - 4\tilde{\epsilon} - 2\tilde{s}$$
$$n_t = -2\tilde{\epsilon} \qquad r = 16c_s\tilde{\epsilon} \qquad f_{\rm NL} = \frac{1}{3}\left(\frac{1}{c_s^2} - 1\right) \qquad c_s = \frac{1}{\gamma}$$

Inflationary landscape with multiple branes

≻Basic idea:

Slow-roll can be relaxed by introducing multiple degrees of freedom; Inflation is realized by a collection of branes in warped throats

KKLT version: Cline&Stoica, Phys. Rev. D72:126004, 2005.

DBI version: Cai & Xia, PLB 677:226,2009; Cai & Xue, PLB 680:395,2009

≻Features:

Brane positions as inflatons; Brane annihilation or collision as ending; Warped compactifications

>Motivations:

To solve η-problem in usual brane inflation; To develop cosmological perturbation theory; To find more potential testable predictions •Dynamics of the branes:

$$S = \int d^4x \sqrt{-g} \left[\sum_I P_I(X_I, \phi_I) \right]$$

which involves N scalar fields, with

$$P_I(X_I, \phi_I) = \frac{1}{f(\phi_I)} \Big[1 - \sqrt{1 - 2f(\phi_I)X_I} \Big] - V_I(\phi_I)$$

•Consider the case of IR type potential: $V_I = V_{0I} - \frac{1}{2}m_I^2\phi_I^2$ We have the solution:

$$\phi_I = -\frac{\sqrt{\lambda}}{t} \left(1 - \frac{9H^2}{2m_I^4 t^2} + \cdots \right)$$

and obtain a series of small sound speeds for these branes

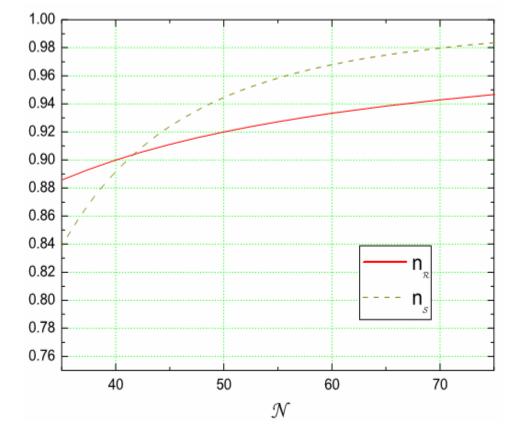
$$c_{sI} \equiv \sqrt{1 - 2f(\phi_I)X_I} \sim 0$$

•Primordial perturbations: (we consider double-brane inflation)

Curvature perturbations:

$$\mathcal{R} \simeq \frac{\mathcal{N}^2}{2\pi\sqrt{\lambda_I}} \left(1 + \frac{27H^4}{2m_1^2 m_2^2 \mathcal{N}^2} \right)$$

Entropy perturbations:


$$S \simeq \frac{27H^4(m_1^2 - m_2^2)}{4\pi\sqrt{\lambda_I}m_1^3m_2^3} + O\left(\mathcal{N}^{-2}\right)$$

Non-Gaussianity of local type:

$$f_{\rm NL}^{\rm local} \sim \frac{q}{\mathcal{N}_1}$$

Non-Gaussianity of equilateral type:

$$f_{\rm NL} \sim 1/c_{s2}^2$$

Benefits of multiple brane inflation:

•Explaining the current observations well;

•Relaxing the eta-problem in usual brane inflation;

•Plentiful phenomena in the early universe

Main predictions:

•A homogeneous, isotropic and flat universe;

•Nearly scale-invariant CMB spectrum;

- •Sizable local non-gaussianity & large equilateral one;
- Possible scale-invariant entropy perturbations;

•Existence of cosmic strings

Problems:

Reheating process is still unclear;

•The initial singularity is still not addressed Borde and Vilenkin, PRL 72:3305, 1994

Summary

- A brief review of brane inflation models
- Current difficulties in brane inflation
- Inflation can be obtained on multiple branes
- Detectable predictions in multi-brane inflation models

