Phenomenology in Minimal Cascade Seesaw for Neutrino Mass

Yi Liao

Nankai Univ

R. Ding, Z.-L. Han, Y. Liao, H.-J. Liu, J.-Y. Liu, arXiv: 1403.2040

イロト イポト イヨト イヨト

Page 1

Nankai Univ

Yi Liao

Outline

- 1 Basics about neutrinos
- 2 Conventional seesaws
- 3 Going beyond conventional seesaws
- 4 Minimal cascade seesaw at LHC

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 Basics about neutrinos

- 2 Conventional seesaws
- 3 Going beyond conventional seesaws
- 4 Minimal cascade seesaw at LHC
- 5 Summary

Yi Liao

Seminar at USTC, Apr 24, 2014

What we experimentally know about v

Precision data

3 active, almost massless neutrinos interact as assigned in standard model (SM)

Oscillation data

neutrinos have nondegenerate masses $m_{1,2,3}$ leptons mix in CC weak interactions θ_{ij}

$$V = U \cdot \text{Diag}\{e^{j\rho}, e^{i\sigma}, 1\},$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -c_{12}s_{23}s_{13} - s_{12}c_{23}e^{-i\delta} & -s_{12}s_{23}s_{13} + c_{12}c_{23}e^{-i\delta} & s_{23}c_{13} \\ -c_{12}c_{23}s_{13} + s_{12}s_{23}e^{-i\delta} & -s_{12}c_{23}s_{13} - c_{12}s_{23}e^{-i\delta} & c_{23}c_{13} \end{pmatrix},$$

$$= \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}, ij = 12, 23, 13$$

What we experimentally know about v

Precision data

3 active, almost massless neutrinos interact as assigned in standard model (SM)

Oscillation data

neutrinos have nondegenerate masses $m_{1,2,3}$ leptons mix in CC weak interactions θ_{ij}

$$V = U \cdot \text{Diag}\{e^{i\rho}, e^{i\sigma}, 1\},$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -c_{12}s_{23}s_{13} - s_{12}c_{23}e^{-i\delta} & -s_{12}s_{23}s_{13} + c_{12}c_{23}e^{-i\delta} & s_{23}c_{13} \\ -c_{12}c_{23}s_{13} + s_{12}s_{23}e^{-i\delta} & -s_{12}c_{23}s_{13} - c_{12}s_{23}e^{-i\delta} & c_{23}c_{13} \end{pmatrix},$$

$$s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}, ij = 12, 23, 13$$

What we experimentally know about v

Global 3v oscillation analysis for NH Fogli *et al.*, 2012

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5}~{ m eV}^2$	7.54	[7.32,7.80]	[7.15,8.00]	[6.99,8.18]
$\Delta m^2/10^{-3}~{ m eV}^2$	2.43	[2.33, 2.49]	[2.27,2.55]	[2.19,2.62]
θ_{12}	33.6°	[32.6°, 34.8°]	[31.6°,35.8°]	[30.6°,36.8°]
θ_{23}	38.4°	[37.2°,40.0°]	[36.2°,42.0°]	[35.1°,53.0°]
θ_{13}	8.9°	[8.5°,9.4°]	[8.0°,9.8°]	[7.5°,10.2°]

 $\delta m^2 \equiv m_2^2 - m_1^2$ and $\Delta m^2 \equiv m_3^2 - (m_1^2 + m_2^2)/2$.

 Almost no knowledge on CP phases; neither on mass hierarchy: either m₁ < m₂ < m₃ – normal hierarchy (NH) or m₃ < m₁ < m₂ – inverted hierarchy (IH)

What we experimentally know about v

Global 3v oscillation analysis for NH Fogli *et al.*, 2012

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5}~{ m eV}^2$	7.54	[7.32,7.80]	[7.15,8.00]	[6.99,8.18]
$\Delta m^2/10^{-3}~{ m eV}^2$	2.43	[2.33, 2.49]	[2.27,2.55]	[2.19,2.62]
θ_{12}	33.6°	[32.6°, 34.8°]	[31.6°,35.8°]	[30.6°,36.8°]
θ_{23}	38.4°	[37.2°,40.0°]	[36.2°,42.0°]	[35.1°,53.0°]
θ_{13}	8.9°	[8.5°,9.4°]	[8.0°,9.8°]	[7.5°,10.2°]

 $\delta m^2 \equiv m_2^2 - m_1^2$ and $\Delta m^2 \equiv m_3^2 - (m_1^2 + m_2^2)/2$.

Almost no knowledge on CP phases; neither on mass hierarchy: either m₁ < m₂ < m₃ – normal hierarchy (NH) or m₃ < m₁ < m₂ – inverted hierarchy (IH)

What we experimentally know about v

Constraints on absolute neutrino mass

• nuclear β decays: $m_{\beta} \equiv \sqrt{\sum |V_{ei}|^2 m_i^2}$

 m_{eta} < 2.1 eV @ 95% C.L. Troitsk Collaboration 2011

- $\Rightarrow m_{eta} \sim 0.2 \text{ eV} (90\% \text{ C.L})$ katrin
- lepton-number violating $0\nu\beta\beta$ decays: $m_{\beta\beta} \equiv |\sum V_{ei}^2 m_i|$ $m_{\beta\beta} \lesssim 0.4 \text{ eV}$ W. Rodejohann 2012 $\Rightarrow m_{\beta\beta} \sim 0.02 \text{ eV}$
- cosmological and astrophysical considerations: $\Sigma \equiv \sum m_i$ $\Sigma < 0.44 \text{ eV}$ @ 95% C.L. 9-year WMAP 2012
 - $\Sigma{<}~0.23~{\rm eV}$ @ 95%~C.L. $\,$ Planck 2013
 - $\Rightarrow \Sigma \sim 0.05 \ eV$

ヘロト 人間 とくほ とくほ とう

Nankai Univ

What we experimentally know about v's relatives

- v and ℓ share CC weak interactions
- \Rightarrow gain info from lepton-flavor violating (LFV) transitions
- µ decays

 ${
m BR}(\mu o e\gamma) < 5.7 imes 10^{-13}$ @ 90% C.L. MEG 2013

 ${
m BR}(\mu
ightarrow 3e) < 1.0 imes 10^{-12}$ @ 90% C.L. SINDRUM 1988

• $\mu - e$ conversion in nuclei

$$\begin{split} BR(\mu^-\text{Ti} \to e^-\text{Ti}) &< 4.3 \times 10^{-12} @ 90\% \text{ C.L.} & \text{SINDRUM II 1993} \\ BR(\mu^-\text{Au} \to e^-\text{Au}) &< 7 \times 10^{-13} @ 90\% \text{ C.L.} & \text{SINDRUM II 2006} \\ &\Rightarrow 10^{-16} \sim 10^{-18} & \text{COMET, PRISM/PRIME, Mu2e, Project-X} \end{split}$$

LFV decays of τ and of *B* mesons less restrictive: BRs ~ 10⁻⁸ BaBar, Belle, CD

ヘロン 人間 とくほ とくほ とう

What we experimentally know about v's relatives

- v and ℓ share CC weak interactions
- \Rightarrow gain info from lepton-flavor violating (LFV) transitions
- μ decays

 ${
m BR}(\mu
ightarrow e \gamma) < 5.7 imes 10^{-13}$ @ 90% C.L. MEG 2013

 ${
m BR}(\mu
ightarrow 3e) < 1.0 imes 10^{-12}$ @ 90% C.L. SINDRUM 1988

- LFV decays of τ and of *B* mesons less restrictive: BRs ~ 10⁻⁸ BaBar, Belle, CD

ヘロト 人間 とくほ とくほ とう

What we experimentally know about v's relatives

- v and ℓ share CC weak interactions
- \Rightarrow gain info from lepton-flavor violating (LFV) transitions
- μ decays

 ${
m BR}(\mu o e\gamma) < 5.7 imes 10^{-13}$ @ 90% C.L. MEG 2013

 ${
m BR}(\mu
ightarrow 3e) < 1.0 imes 10^{-12}$ @ 90% C.L. SINDRUM 1988

- LFV decays of τ and of B mesons
 less restrictive: BRs ~ 10⁻⁸ BaBar, Belle, CDF

ヘロト 人間 とくほ とくほ とう

What we suppose v to be

SM

assumes only left-handed (LH) neutrinos v_L

- Only Majorana v mass could be possible
- But gauge symmetries do not allow it!
- \Rightarrow $m_{\nu} \neq$ 0 calls for phys beyond SM

Trivial extension

add right-handed (RH) v_R to form massive Dirac v as we do for ℓ must tolerate tiny Yukawa coupling of order or less than 10^{-11} *Why isn't it exactly zero at all?!*

We need an understanding of tiny m_V !

What we suppose v to be

We are *apt to believe* a tiny number like m_v is a remnant of some high-scale phys

We are not certain about what it is

but we can parameterize our ignorance systematically -

regard SM as a low-energy EFT

 \Rightarrow m_v may arise from an effective higher-dim interaction Weinberg 1980

$$\mathcal{L}_{int} = \frac{\lambda}{\Lambda} \mathscr{O}_{5} + \text{h.c.}, \quad \mathscr{O}_{5} = \left(\overline{F_{L}}^{C} \varepsilon H\right) \left(H^{T} \varepsilon F_{L}\right), \quad H = \left(\frac{H^{+}}{H^{0}}\right), \quad F_{L} = \left(\frac{v_{L}}{\ell_{L}}\right)$$
$$\Rightarrow \quad \frac{\lambda}{\Lambda} \frac{v^{2}}{2} \overline{v_{L}}^{C} v_{L} + \text{h.c.}, \quad \text{via } \langle H^{0} \rangle = \frac{v}{\sqrt{2}} \qquad \text{Majorana mass}$$

Very roughly, for $v \sim 250 \text{ GeV}$, $\lambda \sim 1$, $m_v \sim 0.1 \text{ eV}$ requires

$$\Lambda \sim 10^{15} \; \text{GeV}$$

Main questions to address

What's the origin of such a tiny mass? Seesaw models? Of Majorana nature as most seesaws assume? Possible to test? At colliders?

Dilemma:

 m_v tends to demand extremely large Λ , while accessibility to new phys responsible for m_v relies on a not-too-high Λ

What to do with this tension? Even higher-dim interactions?

Outline

1 Basics about neutrinos

- 2 Conventional seesaws
- 3 Going beyond conventional seesaws
- 4 Minimal cascade seesaw at LHC

5 Summary

Yi Liao

Seminar at USTC, Apr 24, 2014

Yi Liao

Weinberg operator and its tree level realizations

Weinberg operator \mathcal{O}_5 for m_v is unique Weinberg 1980 Group theor. analysis shows that it has 3 and only 3 apparently different realizations of \mathcal{O}_5 at tree level Ma 1998

They hint at 3 different origins from an underlying theory

3 types of conventional seesaws

Type I seesaw

New particles: n_s sterile neutrinos N_R ; lepton # violated by 2 units

$$\dots + \overline{N_R} i \partial N_R - \left[\overline{F_L} Y_N \tilde{H} N_R + \frac{1}{2} \overline{N_R}^C M_R N_R + \text{h.c.}\right]$$

Mass matrix for n_s + 3 neutral particles:

$$M_{v} = \begin{pmatrix} 0 & M_{D} \\ M_{D} & M_{R} \end{pmatrix}, \quad M_{D} = Y_{N}v/\sqrt{2}$$

Seesaw limit: $|M_D| \ll |M_R|$; generally 3 light and n_s heavy:

 $M_{\text{light}} \simeq -M_D M_R^{-1} M_D^T, \ M_{\text{heavy}} \simeq M_R$

 $n_{s} \ge 2$ to gain at least 2 massive light v's

Heavy neutrinos interact with SM particles only through Yukawa coupling Y_N and mixing with light neutrinos

 \Rightarrow very hard to test a *genuine type I* seesaw!

Yi Liao

Summary

Nankai Univ

Collider test of effective type I seesaw

- Most works study effective type I seesaw; assuming
 - essentially one sterile neutrino at work

• masses, mixing and couplings as free parameters, not restricted by theoretical relations as in genuine type I seesaw, but by various data: precision electroweak data, LFV processes, $0\nu\beta\beta$ decay, etc.

- Main signal: $pp \rightarrow W^{\pm} \rightarrow \ell^{\pm}N \rightarrow \ell^{\pm}\ell^{\pm}jj$ like-sign dilepton events
- Works differ mainly in background analysis.

Type II seesaw

New particles: scalar triplet \triangle of Y = +2 doubly-charged, singly-charged, and neutral

$$\begin{aligned} \mathscr{L} & \supset \quad \frac{1}{2} \mathrm{Tr}(D^{\mu} \Delta)^{\dagger}(D_{\mu} \Delta) - \left[f_{ij} \overline{F_{Li}^{C}}(i\sigma_{2}) \Delta F_{Lj} + \mathrm{h.c.} \right] \\ V & \supset \quad -m_{H}^{2} H^{\dagger} H + m_{\Delta}^{2} \mathrm{Tr}(\Delta^{\dagger} \Delta) + \left[\mu(H^{\dagger} \Delta \tilde{H}) + \mathrm{h.c.} \right] \\ & + \frac{1}{2} \lambda_{1} (H^{\dagger} H)^{2} + \lambda_{4} (H^{\dagger} H) \mathrm{Tr}(\Delta^{\dagger} \Delta) + \lambda_{6} (H^{\dagger} \Delta \Delta^{\dagger} H) \end{aligned}$$

vev's and Majorana v mass:

enjoy electroweak interactions

 \Rightarrow rich phenomenology expected, details depending on v_{Δ} .

イロト イポト イヨト イヨト

Nankai Univ

Type III seesaw

New particles: fermion triplet of Y = 0:

$$\begin{split} \boldsymbol{\Sigma}_{R} &= \begin{pmatrix} \boldsymbol{\Sigma}_{R}^{0}/\sqrt{2} & \boldsymbol{\Sigma}_{R}^{+} \\ \boldsymbol{\Sigma}_{R}^{-} & -\boldsymbol{\Sigma}_{R}^{0}/\sqrt{2} \end{pmatrix} \\ \boldsymbol{\mathscr{L}} \supset \mathrm{Tr}\overline{\boldsymbol{\Sigma}_{R}}i\boldsymbol{D}\boldsymbol{\Sigma}_{R} - \begin{bmatrix} \frac{1}{2}\mathrm{Tr}\left(\overline{\boldsymbol{\Sigma}_{R}}\boldsymbol{M}_{\boldsymbol{\Sigma}}\boldsymbol{\Sigma}_{R}^{C}\right) + \overline{\boldsymbol{F}_{L}}\boldsymbol{Y}_{\boldsymbol{\Sigma}}\tilde{\boldsymbol{H}}\boldsymbol{\Sigma}_{R} + \text{h.c.} \end{bmatrix} \end{split}$$

Mass matrix of neutral particles:

$$M_{\rm v} = \begin{pmatrix} 0 & M_D \\ M_D & M_\Sigma \end{pmatrix}, \quad {\rm where} \ M_D = Y_\Sigma v/\sqrt{2}$$

can be diagonalized as in type I seesaw

Differences to type I:

electroweak interactions; charged heavy-light mixing

Relatively less extensively studied

イロト イポト イヨト イヨト

Nankai Univ

Outline

1 Basics about neutrinos

- 2 Conventional seesaws
- 3 Going beyond conventional seesaws
- 4 Minimal cascade seesaw at LHC

5 Summary

Why going beyond conventional seesaws

Tension between tiny m_v and accessibility of new phys (large mass of new particles or/and small couplings)

can be relaxed in two basic approaches

• *m_v* induced radiatively:

one loop (Zee '80),

two loops (Zee '85, Babu '88),

three loops (Krauss et al '03), ...

Usually amounts to higher-dim operators with additional small factors

Global symmetries or new quantum numbers usually required to forbid lower-loop contri.

Why going beyond conventional seesaws

• m_v induced at tree level from higher-dim operators

Fields live in higher-dim reps so that seesaw operates in several steps to avoid lower-dim operators

Global symmetries not necessary

Unique operator at each dim $\mathcal{O}_{5+2n} = \mathcal{O}_5(H^{\dagger}H)^n$ Liao 2010

I focus below on the second approach.

New fields in higher-dim reps: higher seesaws at tree

Too many, arbitrary possibilities. Use as our criteria: Liao 2010

- For a given set of fields, lowest-dim operator \mathcal{O}_{5+2n} dominates m_v
- For a given \mathcal{O}_{5+2n} , use as few new fields as possible.
- No symmetry other than SM gauge symmetry imposed.

Consequences:

- Can be classified according to whether SM H can Yukawa couple to Σ

New fields in higher-dim reps: (H, Σ) coupled $\Rightarrow \rho_7$

Unique option: one fermion $\Sigma = (1,2)$ plus one scalar $\Phi = (3/2,3)$ This is the model proposed in Babu et al 2009 \mathcal{O}_7 from

LHC pheno briefly analysed: pair-production of multiply charged $\Phi^{\pm\pm\pm}$, $\Phi^{\pm\pm} \rightarrow$ multiple ℓ^{\pm} , W^{\pm} testability yet to be studied

Yi Liao

New fields in higher-dim reps: (H, Σ) not coupled $\Rightarrow \mathcal{O}_{5+4n}$

Cascade seesaw

Liao 2010

one fermion $\Sigma = (n+1,0)$ with integral $n \ge 1$

A sequence of scalars $\Phi^{(m+\frac{1}{2})} = (m+1/2,1)$ with m = 1, 2, ..., n

Consequences:

- Only $\Phi^{(n+\frac{1}{2})}$ can Yukawa couple to (Σ, F_L)
- Only $\Phi^{(\frac{3}{2})}$ can directly develop a naturally small vev,

while others develop smaller and smaller vev's by a *cascading process*:

Outline

1 Basics about neutrinos

- 2 Conventional seesaws
- 3 Going beyond conventional seesaws
- 4 Minimal cascade seesaw at LHC

5 Summary

Yi Liao

Seminar at USTC, Apr 24, 2014

Summary of minimal cascade seesaw

one scalar Φ with (*I*, Y) = (3/2, 1), $\Phi = (\Phi_{+2}, \Phi_{+1}, \Phi_0, \Phi_{-1})$ one fermion Σ with (*I*, Y) = (2,0), $\Sigma = (\Sigma_{+2}, \Sigma_{+1}, \Sigma_0, \Sigma_{-1}, \Sigma_{-2})$ relevant SM fields, $\phi = (\phi_+, \phi_0)$, $F_L = (n_L, f_L)$, f_R

$$V = -\mu_{\phi}^{2} \phi^{\dagger} \phi + \lambda_{\phi} (\phi^{\dagger} \phi)^{2} + \mu_{\Phi}^{2} \Phi^{\dagger} \Phi -\lambda_{1} (\Phi \tilde{\Phi})_{0} (\phi \tilde{\phi})_{0} - \lambda_{2} ((\Phi \tilde{\Phi})_{1} (\phi \tilde{\phi})_{1})_{0} \qquad \tilde{\Phi} = (\Phi_{-1}^{*}, -\Phi_{0}^{*}, \Phi_{+1}^{*}, -\Phi_{+2}^{*}) +\lambda_{3} ((\Phi \Phi)_{1} (\tilde{\Phi} \tilde{\Phi})_{1})_{0} + \lambda_{4} ((\Phi \Phi)_{3} (\tilde{\Phi} \tilde{\Phi})_{3})_{0} \qquad \tilde{\phi} = (\phi_{0}^{*}, -\phi_{+}^{*}) - [\kappa_{1} (\Phi \tilde{\phi} \phi \tilde{\phi})_{0} + \text{h.c.}] - [\kappa_{2} ((\Phi \Phi)_{1} (\tilde{\phi} \tilde{\phi})_{1})_{0} + \text{h.c.}] - [\kappa_{3} ((\Phi \Phi)_{1} (\tilde{\Phi} \tilde{\phi})_{1})_{0} + \text{h.c.}]$$

Approximation: $\kappa_1 \approx \kappa_3 \approx \kappa$, $\kappa_2 \approx \kappa^2$ with κ being real and small:

$$v_{\phi} \approx \sqrt{rac{\mu_{\phi}^2}{2\lambda_{\phi}}}, \ v_{\Phi} pprox rac{\kappa v_{\phi}}{2\sqrt{3}r_{\Phi}}; \ r_{\Phi} = rac{\mu_{\Phi}^2}{v_{\phi}^2} + rac{\lambda_1}{2\sqrt{2}} + rac{\lambda_2}{2\sqrt{30}}$$

Essential parameters: v_{Φ} , M_{Φ}

Yi Liao

Seminar at USTC, Apr 24, 2014

Summary of minimal cascade seesaw

Yukawa couplings:

$$-\mathscr{L}_{\Phi}^{\mathsf{Yuk}} = 2\sqrt{5} \left[x_i (\overline{F_{Li}^C} \Phi \Sigma)_0 + z_i (\tilde{\Sigma} \Phi F_{Li})_0 + \text{h.c.} \right] -\mathscr{L}_{\phi}^{\mathsf{Yuk}} = (y_{\phi})_{ij} \overline{F_{Li}} \phi f_{Rj} + \text{h.c.} \quad \tilde{\Sigma} = (\overline{\Sigma_{-2}}, -\overline{\Sigma_{-1}}, \overline{\Sigma_0}, -\overline{\Sigma_{+1}}, \overline{\Sigma_{+2}})$$

including a bare mass for Σ :

$$-\mathscr{L}_{m} = \frac{1}{2} \overline{N_{L}} M_{N} N_{R} + \overline{E_{L}} M_{E} E_{R} + \overline{D_{L}} M_{D} D_{R} + h.c.,$$

$$M_{N} = \begin{pmatrix} 0_{3} & (x+z)^{*} v_{\Phi} & i(x-z)^{*} v_{\Phi} \\ (x+z)^{\dagger} v_{\Phi} & M_{\Sigma} & 0 \\ i(x-z)^{\dagger} v_{\Phi} & 0 & M_{\Sigma} \end{pmatrix},$$

$$M_{E} = \begin{pmatrix} y_{\phi} v_{\phi} & \sqrt{3/2} (x+z)^{*} v_{\Phi} & i\sqrt{3/2} (x-z)^{*} v_{\Phi} \\ 0 & M_{\Sigma} & 0 \\ 0 & 0 & M_{\Sigma} \end{pmatrix}, \quad M_{D} = M_{\Sigma} \mathbf{1}_{2}$$

Yi Liao

Summary of minimal cascade seesaw

in the basis of

$$N_L = \begin{pmatrix} n_L \\ \Sigma_{1L}^0 \\ \Sigma_{2L}^0 \end{pmatrix}, \ N_R = N_L^C, \ E = \begin{pmatrix} f \\ \Sigma_1^- \\ \Sigma_2^- \end{pmatrix}, \ D = \begin{pmatrix} \Sigma_1^{--} \\ \Sigma_2^{--} \end{pmatrix},$$

where the subscripts 1, 2 denote two new fermions of equal charge. The fermion masses are diagonalized in an elegant way. Essential parameters:

 M_{Σ} , $U_{\text{PMNS}} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$, $m_{v_{1,2,3}}$, and $3 \times 2 \text{ matrix } Z = (\mathbf{z}_1, \mathbf{z}_2)$ with

NH:
$$m_{v_1} = 0, \ m_{v_2} = \lambda_-, \ m_{v_3} = \lambda_+, \ \mathbf{z}_1 = \mathbf{c}_-\mathbf{x}_2 + \mathbf{c}_+\mathbf{x}_3, \ \mathbf{z}_2 = \mathbf{d}_-\mathbf{x}_2 + \mathbf{d}_+\mathbf{x}_3$$

IH:
$$m_{v_3} = 0, \ m_{v_1} = \lambda_-, \ m_{v_2} = \lambda_+, \ \mathbf{z}_1 = c_-\mathbf{x}_1 + c_+\mathbf{x}_2, \ \mathbf{z}_2 = d_-\mathbf{x}_1 + d_+\mathbf{x}_2$$

both
$$c_{-} = i\lambda_{-}^{\frac{1}{2}}\frac{2t}{1+t^{2}}, \ d_{-} = i\lambda_{-}^{\frac{1}{2}}\frac{1-t^{2}}{1+t^{2}}; \ c_{+} = i\lambda_{+}^{\frac{1}{2}}\frac{1-t^{2}}{1+t^{2}}, \ d_{+} = -i\lambda_{+}^{\frac{1}{2}}\frac{2t}{1+t^{2}}$$

Yi Liao

Seminar at USTC, Apr 24, 2014

Constraints on minimal cascade seesaw

lepton flavor violating (LFV) transitions, including

$$\ell_i \to \ell_j \gamma \\ \ell_i \to \ell_i \ell_k \overline{\ell}_i$$

 $\mu - e$ conversion in nuclei

dominant contributions from Yukawa couplings

most significant: $\mu \rightarrow e\gamma$

Fo instance,

at $M_\Phi=200~{\rm GeV},~M_\Sigma=300~{\rm GeV},$ best-fit oscillation parameters $\Rightarrow~v_\Phi\geq 10^{-4}~{\rm GeV}$

- to be respected in LHC analysis

Minimal cascade seesaw at LHC

Working strategy:

 \bullet implement model in <code>FeynRules1.7</code> with output <code>UFO</code> model file fed into

• Madgraph5 to generate parton level events, which then pass through

• Pythia6 to include initial- and final-state radiation, fragmentation, and hadronization

 $\tt PGS$ for detector simulation and <code>MadAnalysis5</code> for analysis

PDF: CTEQ6L1

Simplifying assumption:

degenerate Φ s, degenerate Σ s, which decay directly into SM particles

Benchmark point for parameters:

 $M_{\Phi} = M_{\Sigma} = 300 \text{ GeV}, \ t = 1 + i, \ v_{\Phi} = 10^{-4} \text{ or } 10^{-2} \text{ GeV}$

< 同 > < 回 > < 回 >

Production of new particles at LHC

$$\begin{array}{rcl} \rho p & \rightarrow & \gamma^*/Z^* \rightarrow \Phi_{+2}^* \Phi_{+2}/\Phi_{+1}^* \Phi_{+1}/\Phi_{-1}^* \Phi_{-1}/A_0 H_0, \\ & \rightarrow & \gamma^*/Z^* \rightarrow \Sigma^{++} \Sigma^{--}/\Sigma^+ \Sigma^-, \mbox{ pair production} \\ & \rightarrow & W^* \rightarrow \Phi_{+1}^* \Phi_{+2}/A_0 \Phi_{+1}/A_0 \Phi_{-1}^*/H_0 \Phi_{+1}/H_0 \Phi_{-1}^* + {\rm c.c.}, \\ & \rightarrow & W^* \rightarrow \Sigma^{++} \Sigma^{-}/\Sigma^+ \Sigma^0 + {\rm c.c.} \mbox{ associated production} \end{array}$$

Yi Liao

Production of new particles at LHC

Seminar at USTC, Apr 24, 2014

Page 34

Decay branching ratios of Φ_{+2}

Figure: Left: $M_{\Phi} = 300 \text{ GeV}$; right: $v_{\Phi} = 10^{-4} \text{ GeV}$.

$$\frac{\Gamma(\Phi_{+2} \to \ell_i^+ \ell_j^+)}{\Gamma(\Phi_{+2} \to W^+ W^+)} \sim \left(\frac{m_v}{M_{\Phi}}\right)^2 \left(\frac{v_{\phi}}{v_{\Phi}}\right)^4$$
Nankai Univ

Yi Liao

Decay branching ratios of $\Phi_{\pm 1}$ [right: $v_{\Phi} = 10^{-2} \text{ GeV}$]

Yi Liao

Decay branching ratios of H_0 , A_0 [right: $v_{\Phi} = 10^{-2} \text{ GeV}$]

Yi Liao

Decay branching ratios of $\Sigma^{0,-}$

Seminar at USTC, Apr 24, 2014

Yi Liao

Page 38

(日)

LHC signatures of new particles

Limits from CMS and ATLAS on type II and III seesaws *not directly applicable* due to different production and decay properties and special assumptions.

Final states classified according to multiplicity of charged leptons; 7 channels considered.

Scalar signal channels sensitive to v_{Φ} ; choose $v_{\Phi} = 10^{-4}$, 10^{-2} GeV.

SM backgrounds estimated by Madgraph5; only irreducible ones included.

Signal channels considered at LHC

final states	Φ production process in <i>pp</i> collision
$2\ell^{\pm}2\ell^{\mp}$	$\Phi_{+2}\Phi_{+2}^*/A_0H_0 \rightarrow 2\ell^\pm 2\ell^\mp$
4 <i>j</i> 2ℓ [±] + <mark>∉</mark> ₇	$\Phi_{+2}\Phi_{+2}^* ightarrow W^{\pm}W^{\pm}W^{\mp}W^{\mp} ightarrow jjjj\ell^{\pm}\ell^{\pm}\nu\nu,$
	$\Phi_{+2}\Phi_{+1}^*(\Phi_{+2}^*\Phi_{+1}) \rightarrow W^{\pm}W^{\pm} + \frac{hW^{\mp}}{\bar{t}b(t\bar{b})} \rightarrow jjb\bar{b}\ell^{\pm}\ell^{\pm}\nu\nu$
4 <i>j</i> 2ℓ [±]	$\Phi_{+2} \Phi_{+2}^* o \ell^\pm \ell^\pm W^\mp W^\mp o jjjj \ell^\pm \ell^\pm$,
	$\Phi_{+2}\Phi_{+1}^*(\Phi_{+2}^*\Phi_{+1}) \rightarrow \ell^{\pm}\ell^{\pm} + hW^{\mp}/\overline{t}b(t\overline{b}) \rightarrow jjb\overline{b}\ell^{\pm}\ell^{\pm}$
final states	Σ production process in <i>pp</i> collision
$2\ell^{\pm}2\ell^{\mp}2j$	$\Sigma^{\pm}\Sigma^{\mp}/\Sigma^{0}\Sigma^{\pm}/\Sigma^{\pm}\Sigma^{\mp\mp} \rightarrow hZ(ZZ)\ell^{\pm}\ell^{\mp}/W^{\pm}\ell^{\mp}Z\ell^{\pm}/Z\ell^{\pm}W^{\mp}\ell^{\mp}$
	$ ightarrow$ jj2 ℓ^{\pm} 2 ℓ^{\mp}
$3\ell^\pm\ell^\mp 2j$	$\Sigma^{\pm}\Sigma^{0} ightarrow W^{\mp} \ell^{\pm} Z \ell^{\pm} ightarrow jj 3 \ell^{\pm} \ell^{\mp}$
$3\ell^{\pm}2\ell^{\mp}+E_{T}$	$\Sigma^{\pm}\Sigma^{0}/\Sigma^{\pm\pm}\Sigma^{\mp} \rightarrow Z\ell^{\pm}W^{\pm}\ell^{\mp}(Z\ell^{\pm}Z\nu)/W^{\pm}\ell^{\pm}Z\ell^{\mp} \rightarrow 3\ell^{\pm}2\ell^{\mp}\nu$
$3\ell^{\pm}3\ell^{\mp}$	$\Sigma^{\pm}\Sigma^{\mp} ightarrow \ell^{\pm}Z\ell^{\mp}Z ightarrow 3\ell^{\pm}3\ell^{\mp}$

Seminar at USTC, Apr 24, 2014

Yi Liao

< □ > < □ > < □ > < □ > < □ > < □ >

Predicted number of signals in Φ production: no cuts

Predicted number of signals in Φ production: no cuts

Predicted number of signals in Φ production: no cuts

Yi Liao

Predicted number of signals in Σ production: no cuts

Example 1: Φ reconstruction in $4j2\ell^{\pm}$ channel

 $v_{\Phi} = 10^{-4}~{
m GeV}$ (two decay modes of Φ_{+2} comparable), $M_{\Phi} = 300~{
m GeV}$

$$\begin{split} \Phi_{+2} \Phi_{+2}^* &\to \ell^{\pm} \ell^{\pm} W^{\mp} W^{\mp} \to \ell^{\pm} \ell^{\pm} j j j j, \\ \Phi_{+2} \Phi_{+1}^* (\Phi_{+2}^* \Phi_{+1}) \to \ell^{\pm} \ell^{\pm} + h W^{\mp} / \bar{t} b (t \bar{b}) \to \ell^{\pm} \ell^{\pm} j j b \bar{b} \end{split}$$

Basic cuts:

$$p_T(\ell) > 15 \text{ GeV}, |\eta(\ell)| < 2.5,$$

 $p_T(j) > 20 \text{ GeV}, |\eta(j)| < 2.5,$
 $\Delta R_{\ell\ell} > 0.4, \Delta R_{j\ell} > 0.4, \Delta R_{jj} > 0.4.$

Specific cuts on bkg $t\bar{t}W$:

 $p_T(\ell) > 50 \text{ GeV}, \ p_T(j) > 100 \text{ GeV}, \ E_T < 30 \text{ GeV} \text{ (cutting } v)$

Reconstruction of resonances:

$$250 \text{ GeV} < M_{jjjj} < 350 \text{ GeV}$$

280 GeV < $M_{\ell\ell}$ < 320 GeV

Yi Liao

Example 1: Φ reconstruction in $4j2\ell^{\pm}$ channel

> 100 events for IH case and \sim 20 events for NH

Yi Liao

Example 2: Σ reconstruction in $3\ell^{\pm}\ell^{\mp}2j$ channel

$$\Sigma^{\pm}\Sigma^{0} \rightarrow \ell^{\pm} \mathbb{Z} \ell^{\pm} W^{\mp} \rightarrow \ell^{\pm} \ell^{+} \ell^{-} \ell^{\pm} q \bar{q}'$$

basic cuts sufficient

 \sim 100 events for IH case and \sim 9 events for NH $_{\rm CD}$, and $_{\rm B}$, and $_{\rm B}$

 Yi Liao
 Nankai Univ

 Seminar at USTC, Apr 24, 2014
 Page 47

Outline

1 Basics about neutrinos

- 2 Conventional seesaws
- 3 Going beyond conventional seesaws
- 4 Minimal cascade seesaw at LHC

Yi Liao

Summary

- Great progress in measurements on neutrino parameters, including the oscillation data, cosmological observations, and other low-energy experiments, is very helpful for us to do realistic collider phenomenology.
- Conventional seesaw models have been fully studied in the literature except for type III. Type I has been done for *effective case*.
- There are a variety of models beyond conventional seesaws, some of which have been studied and some are being considered. A challenging task is how to distinguish them at colliders.
- We made a comprehensive analysis on minimal cascade seesaw. With low energy constraints respected, it is possible to detect new particles in a few channels, like $4j2\ell^{\pm}$ for scalars and $2\ell^{\pm}2\ell^{\mp}2j$, $3\ell^{\pm}\ell^{\mp}2j$ and $3\ell^{\pm}2\ell^{\mp} + E_T$ channels for fermions.

Yi Liao

Summary

- Great progress in measurements on neutrino parameters, including the oscillation data, cosmological observations, and other low-energy experiments, is very helpful for us to do realistic collider phenomenology.
- Conventional seesaw models have been fully studied in the literature except for type III. Type I has been done for *effective case*.
- There are a variety of models beyond conventional seesaws, some of which have been studied and some are being considered. A challenging task is how to distinguish them at colliders.
- We made a comprehensive analysis on minimal cascade seesaw. With low energy constraints respected, it is possible to detect new particles in a few channels, like $4j2\ell^{\pm}$ for scalars and $2\ell^{\pm}2\ell^{\mp}2j$, $3\ell^{\pm}\ell^{\mp}2j$ and $3\ell^{\pm}2\ell^{\mp} + E_T$ channels for fermions.

Yi Liao

Summary

- Great progress in measurements on neutrino parameters, including the oscillation data, cosmological observations, and other low-energy experiments, is very helpful for us to do realistic collider phenomenology.
- Conventional seesaw models have been fully studied in the literature except for type III. Type I has been done for *effective case*.
- There are a variety of models beyond conventional seesaws, some of which have been studied and some are being considered. A challenging task is how to distinguish them at colliders.
- We made a comprehensive analysis on minimal cascade seesaw. With low energy constraints respected, it is possible to detect new particles in a few channels, like $4j2\ell^{\pm}$ for scalars and $2\ell^{\pm}2\ell^{\mp}2j$, $3\ell^{\pm}\ell^{\mp}2j$ and $3\ell^{\pm}2\ell^{\mp} + E_T$ channels for fermions.

Yi Liao

Summary

- Great progress in measurements on neutrino parameters, including the oscillation data, cosmological observations, and other low-energy experiments, is very helpful for us to do realistic collider phenomenology.
- Conventional seesaw models have been fully studied in the literature except for type III. Type I has been done for *effective case*.
- There are a variety of models beyond conventional seesaws, some of which have been studied and some are being considered. A challenging task is how to distinguish them at colliders.
- We made a comprehensive analysis on minimal cascade seesaw. With low energy constraints respected, it is possible to detect new particles in a few channels, like $4j2\ell^{\pm}$ for scalars and $2\ell^{\pm}2\ell^{\mp}2j$, $3\ell^{\pm}\ell^{\mp}2j$ and $3\ell^{\pm}2\ell^{\mp}+E_T$ channels for fermions.