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1. Introduction

Analogues between thermodynamics and black hole mechanics
Law Thermodynamics Black hole mechanics
Zeroth T is constant κ is constant
First dE = TdS + pdV + µdN dM = 1

8πκdA + ΩHdJ + ΦHdQ
Second δS ≥ 0 δA ≥ 0
Third Impossible to achieve T = 0 Impossible to achieve κ = 0

A classical black hole is a perfect absorber, not emitting anything. In
1974, Hawking discovered the emission of particles from black holes,
which confirms the thermodynamical nature of black holes and the
temperature T = κ/2π is real.
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Proof of the first law

A general proof given by Iyer and Wald (Phys. Rev. D 50, 846
1994)
They derived the first law from a general diffeomorphism covariant
Lagrangian

L = L(gab,Rabcd ,∇aRbcde ;ψ,∇aψ)

where ψ represents a matter field.

They showed that the entropy of black hole corresponds to a Noether
charge which is constructed from the Lagrangian.
The first law takes the form

κ

2π
δS = δE − ΩHδJ (1)

We generalized this formula to Einstein-Maxwell and Einstein-Yang-Mills
theories(S.Gao, Phys. Rev. D 68, 044016 2003)
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Physcial process version of the first law
[S.Gao and R.Wald, Phys.Rev.D, 64, 084020(2001)]
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Let ξa = ta + ΩHϕ
a be a Killing vector field normal to the horizon. Let

∆Tab denote the stress-energy tensor of the matter perturbation. Then
the changes in mass and angular momentum are given by

∆M =

∫
H

∆Tabt
akb =

∫
dV

∫
d2S∆Tabt

akb (2)

∆J = −
∫
H

∆Tabϕ
akb = −

∫
dV

∫
d2S∆Tabϕ

akb (3)

where ka is the tangent to the null generators of the horizon H with the
affine parameter V . On the horizon, we have the relation

ka =
1

κV
ξa (4)

Using the Raychaudhuri’s equation

dθ

dV
= −8π∆Tabk

akb (5)

we have
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κ

∫
dV

∫
d2S

dθ

dV
V = −8π

∫
V

∫
d2S∆Tab(ta + ΩHϕ

a)kb

which just gives

κ∆A = 8π(∆M − ΩH∆J)
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2. Motivation

In 1968, Bardeen found a regular black hole without central singularity.

ds2 = −f (r)dt2 + f −1(r)dr2 + r2dΩ2 , (6)

where

f (r) = 1− 2Mr2

(r2 + q2)3/2
. (7)

This solution provides an example of regular black hole, i.e., the black
hole possesses no singularity.
However, the matter source of this solution remained unknown for many
years. Ayón-Beato and Garćıa(1998) successfully interpreted the source
of Bardeen black hole as a magnetic monopole, which can be derived
from a nonlinear electrodynamic action.

It has been noticed that the Bardeen solution does not satisfy the usual
first law.
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In fact, a general proof for the first law of black hole mechanics in the
context of nonlinear electrodynamics has been given by Rasheed (1997).
By varying the Komar mass and the NED Lagrangian, he found the
following first law that applies to stationary black holes with NED matter
sources:

δM =
κ

8π
δA + ΩHδJ + ΦHδQ + ΨHδP , (8)

It is easy to check that the Bardeen black hole does not obey the first
law given by Rasheed.

The purpose of our work is to generalize Rasheed’s treatment and find a
general first law for NED black holes.
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3. Nonlinear Electrodynamics

The standard Einstein-Maxwell theory is described by the action

S =

∫ √
−g(R + F ) , F = FabF

ab (9)

Action for nonlinear electrodynamiics coupled to gravity is

S =

∫
d4x
√
−g [R + h(F , βi )] , (10)

where βi represent some extra parameters,for instance, the cosmological
constant Λ. In Rasheed’s treatment, h depends only on F .

To derive the equations of motion, βi must be treated as constants.
However, to derive the first law, they will be treated as variables. This is
crucial in our derivation.

10 / 33



3. Nonlinear Electrodynamics

The standard Einstein-Maxwell theory is described by the action

S =

∫ √
−g(R + F ) , F = FabF

ab (9)

Action for nonlinear electrodynamiics coupled to gravity is

S =

∫
d4x
√
−g [R + h(F , βi )] , (10)

where βi represent some extra parameters,for instance, the cosmological
constant Λ. In Rasheed’s treatment, h depends only on F .

To derive the equations of motion, βi must be treated as constants.
However, to derive the first law, they will be treated as variables. This is
crucial in our derivation.

10 / 33



3. Nonlinear Electrodynamics

The standard Einstein-Maxwell theory is described by the action

S =

∫ √
−g(R + F ) , F = FabF

ab (9)

Action for nonlinear electrodynamiics coupled to gravity is

S =

∫
d4x
√
−g [R + h(F , βi )] , (10)

where βi represent some extra parameters,for instance, the cosmological
constant Λ. In Rasheed’s treatment, h depends only on F .

To derive the equations of motion, βi must be treated as constants.
However, to derive the first law, they will be treated as variables. This is
crucial in our derivation.

10 / 33



By variation and discarding the boundary terms, we have

δL =

(
Rab −

1

2
Rgab − 8πTab

)
δg ab + 4

√
−g∇aG

abδAb , (11)

where G ab is defined by

G ab = −h′(F , βi )F ab . (12)

and

Tab =
1

4π

[
−Ga

cFbc +
1

4
h(F , βi )gab

]
(13)

is the stress-energy tensor of the nonlinear electromagnetic field.

δS = 0 yields the field equation

∇aG
ab = 0 , Rab −

1

2
Rgab = 8πTab (14)
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In stationary spacetimes, there exists an electric potential Φ and a
magnetic potential Ψ

Ea = −∇aΦ , (15)

Ha = −∇aΨ . (16)
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4. First law of NED black holes

Figure: The three dimensional hypersurface Σ connecting the horizon and
infinity.

The Komar mass is defined by

M = − 1

8π

∫
S∞

εabcd∇cξd . (17)

and the electric charge is given by

Q =
1

8π

∫
S∞

εabcdG
cd . (18)
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Applying Stocks’s theorem on Σ, Eq. (17) becomes

M = − 1

8π

∫
S

εabcd∇cξd − 1

8π

∫
Σ

dc(εabcd∇cξd) . (19)

By standard calculation, the first integral in Eq. (19) yields [Wald]

− 1

8π

∫
S

εabcd∇cξd =
κA

4π
, (20)

and the second integral yields

− 1

8π

∫
Σ

dc(εabcd∇cξd) =
1

4π

∫
Σ

Rabs
aξbdV . (21)

Then using Einstein’s equation, Eq. (19) can be written as

M =
κA

4π
+ 2

∫
Σ

(
Tab −

1

2
Tgab

)
saξbdV . (22)
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δM =
1

4π
(κδA + Aδκ) + 2δ

∫
Σ

(
Tab −

1

2
Tgab

)
saξbdV . (23)

Comparing with∫
Σ

εabcdξ
d(δR + γef Ref ) = −2Aδκ− 8πδM , γab = δgab (24)

we have

δM =
κ

8π
δA− 1

2

∫
Σ

γef (Tef )εabcdξ
d + δ

∫
Σ

Tcd s
cξdε(3) . (25)
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LEM =
√
−gh(F , βi ) . (26)

δLEM = −8π
√
−gTabδg

ab − 2
√
−gG abδFab +

√
−gδh , (27)

where

δh ≡ ∂h

∂βi
δβi . (28)

=⇒

δM =
κ

8π
δA + δI1 + δI2 +

∑
i

(
1

16π

∫
Σ

∂h

∂βi
ξdεabcd

)
δβi . (29)

I1 =
1

4π

∫
Σ

Gc
eFdes

cξdε(3) (30)

δI2 = − 1

8π

∫
Σ

G abδFabξ
d sdε

(3) . (31)
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Computing δI1

I1 =
1

4π

∫
Σ

Gc
e∇eΦscε(3) . (32)

=⇒

I1 =
1

4π

∫
Σ

∇e(Gc
eΦ)scε(3)

=
1

4π

∫
Σ

εabcd∇e(G deΦ) . (33)

One can show that if

Sab = εabcdw
cd , (34)

then

dScab = 2εcabd∇ew
[ed ] . (35)
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So

I1 =
1

8π

∫
Σ

dSabc , (36)

where

Sab = εabcdΦG cd . (37)

By Stokes’s theorem and the boundary condition Φ→ 0 at infinity, we
have

I1 =
1

8π

∫
S

Sab =
1

8π

∫
S

εabcdΦG cd = ΦHQ , (38)

where ΦH ≡ Φ|H and in the last step, we have used the result that Φ is
constant on the horizon. Hence

δI1 = ΦHδQ + QδΦH . (39)
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Computing δI2

Y a ≡ εabcd(∗GcdδEb − HbδFcd) . (40)

ta1 = εabcd ∗ GcdδEb

=
1

2
εabcdεcdef G

ef δEb

= −1

2
2!2!δ[a

e δ
b]
f G

ef δEb

= −2G abξeδFbe . (41)

ta2 = εabcd ∗ Gbeξ
eδFcd

= −1

2
εbacdεbeijG

ijξeδFcd

=
1

2
3!δ[a

e δ
c
i δ

d ]
j G ijξeδFcd

= 3ξ[aG cd ]δFcd

= 3
2

3!
(ξaG cd + ξcG da + ξdG ac)δFcd

= ξaG cdδFcd + 2ξeG adδFde . (42)
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Adding Eq. (41) and (42), we have

Y a = ξaG cdδFcd . (43)

So Eq. (31) can be written as

δI2 = − 1

8π

∫
Y d sdε

(3)

= − 1

8π

∫
εabcdY

d

= − 1

8π

∫
εabcdε

dkef (∗Gef δEb − HkδFef )

= − 1

8π

∫
εabcd(−2)G deδEe +

1

8π

∫
εabcdε

dkefHkδFef

= − 1

4π

∫
εabcdG

deδ(∇eΦ)− 1

8π

∫
εabcdε

dkef (∇kΨ)δFef

= − 1

4π

∫
εabcd∇e(G deδΦ)− 1

8π

∫
εabcdε

dkef∇k(ΨδFef )

+
1

8π

∫
εabcdε

dkef Ψ∇kδFef . (44)

The last term vanishes because ∇[kFef ] = 0.
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So

δI2 =
1

4π

∫
Σ

εabcd∇e(G edδΦ) +
1

8π

∫
Σ

εabcd∇k(εkdef ΨδFef ) . (45)

By applying Eqs. (34),(35) and Stokes’s theorem, we obtain

δI2 = − 1

8π

∫
S

εabcdG
edδΦH −

1

16π

∫
S

εabcdε
cdef ΨδFef

= −QδΦH +
ΨH

4π

∫
S

δFcd

= −QδΦH + ΨHδP (46)

By substituting Eqs. (39) and (46) into Eq. (29), we obtain the final
form of the first law

δM =
κ

8π
δA + ΦHδQ + ΨHδP +

∑
i

Kiδβi . (47)

where

Ki = − 1

16π

∫
Σ

∂h

∂βi
ξdεdabc (48)
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5. Smarr formula for NED black holes

S =

∫
d4x
√
−g [R + h(F )] , (49)

Consider the transformation

Aa → αAa (50)

In Einstein-Maxwell theory, the metric should change

gab → α2gab (51)

to preserve the Lagrangian. Consequently,

√
−g → α4√−g , R → α−2R, F → α−2F , h(F , βi )→ α−2h(F , βi ) (52)

and

M → αM, κ→ α−1κ ,ΦH → ΦH , ξ
a → α−1ξa , (53)

A→ α2A Q → αQ, ΨH → ΨH , P → αP . (54)
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We assume

βi → αbiβi . (55)

The value of bi depends on the specific form of h(F , βi ) such that
h(F , βi )→ α−2h(F , βi ). Then

Ki → α1−biKi (56)

Since the theory is invariant under the scale transformation, the first law

δM =
κ

8π
δA + ΦHδQ + ΨHδP +

∑
i

Kiδβi . (57)

should hold after the transformation, i.e.,

δ(αM) =
α−1κ

8π
δ(α2A) + ΦHδ(αQ) + ΨHδ(αP) +

∑
i

α1−biKiδ(αbiβi ) . (58)

Variation with respect to all the quantities (including α )yields

M =
κA

4π
+ ΦHQ + ΨHP +

∑
i

biKiβi (59)
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Application to Bardeen black holes

ds2 = −f (r)dt2 + f −1(r)dr2 + r2dΩ2 , (60)

where

f (r) = 1− 2Mr2

(r2 + q2)3/2
. (61)

The horizon is located at f (r = rh) = 0, which gives the relation

M =
(r2

h + q2)3/2

2r2
h

, (62)

surface gravity: κ =
1

2
f ′(rh) =

Mrh(−2q2 + r2
h )

(q2 + r2
h )5/2

. (63)
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Ayón-Beato and Garćıa first found the following Lagrangian that
generates the Bardeen solution

h(F , βi ) = h(F ,M, q) = −12M

q3

( √
2q2F

1 +
√

2q2F

)5/2

. (64)

with

Fab = q sin θ(dθadφb − dφadθb) . (65)

So

F =
q2

2r4
. (66)

we find

P =

∫
Fθφdθdφ = q . (67)

Thus, q is just the magnetic charge of the black hole.
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Ha =
15Mqr4

2 (q2 + r2)7/2
dra . (68)

So

Ψ(r) =
3M

(
2q2r2

√
q2 + r2 + r4

√
q2 + r2 + q4

√
q2 + r2 − r5

)
2q (q2 + r2)5/2

, (69)

The first law (47) can be expressed as

δM =
κ

8π
δA + ΨHδq + Kqδq + KMδM , (70)

with

Kq =
3M

2q(q2 + r2
h )3

[(
2q2r3

h + r5
h

)√
q2 + r2

h − (q2 + r2
h )3

]
, (71)

KM =
q4 + 2q2r2

h + r4
h − r3

h

√
q2 + r2

h

(q2 + r2
h )2

. (72)
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Since M → αM, q → αq, i.e., bi = 1, application of Eq. (59) yields the
Smarr formula

M =
κ

4π
A + ΨHq + Kqq + KMM . (73)
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Application to Born-Infeld theory

The Lagrangian describing BI theory is

h(F , b) =
4

b2

(
1−

√
1 +

1

2
b2F 2

)
, (74)

where b is a constant called the BI vacuum polarization.

According to Eqs. (12) and (13), G ab and Tab are given by

G ab =
F ab√

1 + 1
2b

2F
, (75)

Tab =
b2Fa

cFbc +
(√

1 + 1
2b

2F − 1− 1
2b

2F
)
gab

b2
√

1 + 1
2b

2F
. (76)
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Born-Infeld solution is a spherically symmetric solution associated with
the Lagrangian (74):

ds2 = −
(

1− 2m(r)

r

)
dt2 +

(
1− 2m(r)

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) , (77)

where the function m(r) satisfies

m′(r) =
1

b2

(√
r4 + b2Q2 − r2

)
, (78)

One can verify that Q is the electric charge and

M = lim
r→∞

m(r) (79)

is the ADM mass.
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By integration, we find

m(r) = M − 1

b2

∫ ∞
r

dx
(√

x4 + b2Q2 − x2
)

= M −
r4 − r2

√
b2Q2 + r4 + 2b2Q2

2F1( 1
4 ,

1
2 ,

5
4 ,−

b2Q2

r4 )

3b2r
,(80)

where 2F1 is the hypergeometric function.
Since on the horizon

m(rh) =
rh
2
, (81)

the mass in Eq. (80) can be written as

M =
rh
2

+
r4
h − r2

h

√
b2Q2 + r4

h + 2b2Q2
2F1( 1

4 ,
1
2 ,

5
4 ,−

b2Q2

r4
h

)

3b2rh
. (82)
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Treating b as a constant, the first law is

δM =
κ

8π
δA + ΦHδQ . (83)

Note that Eq. (83) does not correspond to an integral form, i.e., the
Smarr formula.

The scale argument requires the variation of b. The coefficient

K ≡ − 1

16π

∫ ∞
rh

4π
∂h

∂b
r2dr

= − 1

3b3rh

[
2r4

h − 2r2
h

√
b2Q2 + r4

h + b2Q2
2F1

(
1

4
,

1

2
,

5

4
,−b2Q2

r4
h

)]
.(84)

Thus, by applying our formula (47), we finally have

δM =
κ

8π
δA + ΦHδQ + Kδb . (85)

b → αb preserves the action. Therefore

M =
κA

4π
+ ΦHQ + Kb . (86)

This is the desired Smarr formula for BI black holes.
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6. Conclusions

We provide a rigorous proof for the first law and Smarr formula that
apply to a general nonlinear electrodynamics theory. Compared to
Rasheed’s result, our first law has a wider application.

We applied our formula to the Bardeen solution and obtained the desired
first law. Moreover, this first law leads to a simple form of Smarr formula.

When applying to Born-Infeld theory and taking the parameter b as a
variable, our formula naturally gives rise to both the first law and the
Smarr formula.

Our work suggests that there are two kinds of variables in Lagrangians.
When deriving the equations of motion of the theory, only dynamical
fields should be varied and nondynamical variables are held fixed. When
deriving the first law and Smarr formula, all variables should be varied.
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Thank You!
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