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A classical black hole is a perfect absorber, not emitting anything. In
1974, Hawking discovered the emission of particles from black holes,
which confirms the thermodynamical nature of black holes and the

temperature T = /27 is real.



Proof of the first law

A general proof given by lyer and Wald (Phys. Rev. D 50, 846
1994)
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1994)

They derived the first law from a general diffeomorphism covariant
Lagrangian

L= L(gaba Rabcd; VaRbede; '(/}7 Vﬂb)

where 1) represents a matter field.

They showed that the entropy of black hole corresponds to a Noether
charge which is constructed from the Lagrangian.

The first law takes the form

K
=8-Q 1
> 05=9¢ HOT ()

We generalized this formula to Einstein-Maxwell and Einstein-Yang-Mills
theories(S.Gao, Phys. Rev. D 68, 044016 2003)



Physcial process version of the first law
[S.Gao and R.Wald, Phys.Rev.D, 64, 084020(2001)]

new horizon

AT, — AM,AJ



Let £2 = t? + Qu? be a Killing vector field normal to the horizon. Let
AT, denote the stress-energy tensor of the matter perturbation. Then
the changes in mass and angular momentum are given by

/ATabt"”kb = /dV/dZSATabtakb (2)
/ AT.p0%k / dv / d*SAT,pp7kP (3)

where k? is the tangent to the null generators of the horizon H with the
affine parameter V. On the horizon, we have the relation

AM

AJ

1
k? = —_¢2 4
—¢ (4)
Using the Raychaudhuri's equation

% = —8rAT.pk?kP (5)

we have

6

33



/dV/dQS—V_ —87r/ v/dZSATab(ta+QHsoa)k"

which just gives

KAA = 87(AM — QuAJ)



2. Motivation

In 1968, Bardeen found a regular black hole without central singularity.
ds? = —f(r)dt*> + f~(r)dr* 4+ r?dQ?, (6)
where
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In 1968, Bardeen found a regular black hole without central singularity.

ds? = —f(r)dt*> + f~(r)dr* 4+ r?dQ?, (6)
where
2Mr?
fry=1- GEvaTeE (7)

This solution provides an example of regular black hole, i.e., the black
hole possesses no singularity.

However, the matter source of this solution remained unknown for many
years. Aydn-Beato and Garcia(1998) successfully interpreted the source
of Bardeen black hole as a magnetic monopole, which can be derived
from a nonlinear electrodynamic action.

It has been noticed that the Bardeen solution does not satisfy the usual
first law.



In fact, a general proof for the first law of black hole mechanics in the
context of nonlinear electrodynamics has been given by Rasheed (1997).
By varying the Komar mass and the NED Lagrangian, he found the
following first law that applies to stationary black holes with NED matter

sources:

M = 8£5A+QH5J+¢H5Q+\|:H5P, (8)
™
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In fact, a general proof for the first law of black hole mechanics in the
context of nonlinear electrodynamics has been given by Rasheed (1997).
By varying the Komar mass and the NED Lagrangian, he found the
following first law that applies to stationary black holes with NED matter
sources:

M = 8£5A+QH5J+¢H5Q+\|:H5P, (8)
™

It is easy to check that the Bardeen black hole does not obey the first
law given by Rasheed.

The purpose of our work is to generalize Rasheed's treatment and find a
general first law for NED black holes.

9/33



3. Nonlinear Electrodynamics

The standard Einstein-Maxwell theory is described by the action

S= /\/Tg(R +F), F=FF® (9)
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3. Nonlinear Electrodynamics

The standard Einstein-Maxwell theory is described by the action

S= /\/Tg(R +F), F=FF® (9)

Action for nonlinear electrodynamiics coupled to gravity is
S = /d4xs/—g[R + h(F, 5], (10)

where (; represent some extra parameters,for instance, the cosmological
constant A. In Rasheed's treatment, h depends only on F.

To derive the equations of motion, (3; must be treated as constants.
However, to derive the first law, they will be treated as variables. This is
crucial in our derivation.
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By variation and discarding the boundary terms, we have
1
oL = (Rab — 5Reap — 87 Tab> 6g°" +4\/—gV.G*SA,,

where G2 is defined by
G® = —H'(F,B/)F®.

and

1 1
Ta = _GaCF —h F7 i)&a
b= be + 7 h(F. Bi)gab

is the stress-energy tensor of the nonlinear electromagnetic field.

0S = 0 yields the field equation

1
vaGab = 07 Rab — ERgab =8 T
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In stationary spacetimes, there exists an electric potential ® and a
magnetic potential W

E, = —-V,0,
H, = —-V,V.



4. First law of NED black holes

Horizon

Figure: The three dimensional hypersurface ¥ connecting the horizon and
infinity.
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4. First law of NED black holes

Horizon

Figure: The three dimensional hypersurface ¥ connecting the horizon and
infinity.

The Komar mass is defined by
1
M=—— abedVEL . 17
i [ eV (17)
and the electric charge is given by

1
Q=— / eabchCd . (18)
8m Js_.

s
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Applying Stocks’s theorem on X, Eq. (17) becomes

1
M=—— / €abcd VEED —
87'(' S

By standard calculation, the first integral in Eq. (19) yields [Wald]

1 KA
= veed = "2
8r A €abcd £ 4n

and the second integral yields

1
_87/ dc(eabcdvcgd) =
T Jx

Then using Einstein's equation, Eq. (19) can be written as

KA
M=—+2
477Jr

1
— / R.ps€PdV .
47T b

/ <Tab - ;Tgab> s?¢bav.

1
— | de(cabeaVET).
i | el vee)

(19)

(22)



M = L (x6A 1 Adk) + 25 / (Tab - 1Tg3b> s%"dV. (23)
4 ¥ 2
Comparing with
/ €bed€9(OR + 1% Rep) = —2A8k — 876M . 7ap = 0gas  (24)
>

we have

K 1

smo— gal / 2 (Tt Yeapeg® + / Toasoc%® . (25)
87T 2 ¥ >
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Lem = /—gh(F,Bi). (26)

6Lewm = —8m\/—g Tapdg®® — 2/—g G5 F.p + \/—gbh, (27)
where

_ 0h
oh= 5508 (28)

16 /33



Ley = /—gh(F,Bi).

6Lewm = —8m\/—g Tapdg®® — 2/—g G5 F.p + \/—gbh,
where
dh

oh= 8—@_6@-.

8 167

OB

5M = £5A+ 5/1 +(S/2 + Z < 1 / ahfdeabcd) 66,
us ; >

1
h = o= | G Fuesde?
47 b

1
5/2 = —f/Gab(sFabded€(3).
8 ¥
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Computing 6/

h

One can show that if

then

R GV Ps e .
47T b

_ i e c (3)
= ZVE(GC d)se

_ 1 de
= E‘/Zeabcdve(G d))

d
Sab = €abedW© s

dScab = 2€cabd Ve W[ed] .

(34)

(35)
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So

1
h=— daca
1= 5 g Sab (36)

where
Sab = €apcd P GCd . (37)

By Stokes's theorem and the boundary condition ® — 0 at infinity, we
have

1 1
h = — / €abcd PG = O Q, (38)
s

:8771'5313 8w

where ®; = ®|4 and in the last step, we have used the result that ¢ is
constant on the horizon. Hence

5h = pdQ + Qody . (39)



Computing 6 b

y? = Gade(*ch(SEb _ Hb(Sch) . (40)

_ 6abcd % chaEb

_ %Gabcdecdef Gef(SEb

= _%2!2!555?]@#5&
= —2G"¢5F,. . (41)
6abcd % Gbege(chd
—%Gbxdfbeij GUE0Feq
%3!555,?51?’16"1595@
3¢l GelsFy
3%(5%“’ + £G4 4+ ¢9G*)oFq
EGY0Feg +2¢°G*6F g, . (42)

19/33



Adding Eq. (41) and (42), we have
Y? =¢G99 Fy.

So Eq. (31) can be written as

5/2 = 7*/Yd5d6(3

- 5 acY
87T/€bd

1

- _7/631,&, 2)G¥SE, + —/eabcde kef Hi 6 F o

4W/eadeGde<5(V ¢)

1 d
- abc e ecb_
47r/€de(G 5)

8r
1

+ f/eabcdedkdka(”:ef.
8

The last term vanishes because Vi, Fer) = 0.

1
- / €abcd €™ (VW) 6 Fer

1
/ 2bed €™V (WO Fop)

(44)



So

1 1
6h = = [ €caVe(GU6P) + — [ €apca V(" W6F). (4
> 47T/):6de( )+87T/z€dek(€ f)(5)

By applying Egs. (34),(35) and Stokes's theorem, we obtain
1 ed 1 cdef
0h = —— [ €abedG6PH — —— [ €abca€™ WiFer
87(' S 167T S
Yy
= —Qéby+ — [ 6Fy
41 S

= —Qoédy + VHIP (46)

By substituting Egs. (39) and (46) into Eq. (29), we obtain the final
form of the first law

SM = “5A+OusQ + VsP + Y Kidf; (47)
87 -

where

1 oh
Ki=——o 9 € dabe 4
i Tor 285i§ €dab (48)




5. Smarr formula for NED black holes

5= / d*xv/~g[R + h(F)) . (49)
Consider the transformation
As = aA, (50)
In Einstein-Maxwell theory, the metric should change
Gab — 0 8ab (51)
to preserve the Lagrangian. Consequently,
vV—g —a*vV/=g, R—a?R, F—=a2F, h(F,3)— a2h(F,p;) (52)
and

M — aM, k — otk by — &y, 67 — a71E, (53)
A—=a’A Q—=aQ, Vy—Vy P—aP. (54)



We assume
Bi — aPp;. (55)

The value of b; depends on the specific form of h(F, ;) such that
h(F,ﬁ,) — C%_zh(F7ﬁ,'). Then

K — o' 7P K; (56)
Since the theory is invariant under the scale transformation, the first law

K
M="6A+0 W,6P K:58: .
b g OA+ ®HOQ + Who +Z 3B (57)

should hold after the transformation, i.e.,

§(aM) = 0‘87;“5(@%) +0ud(aQ) + Whd(aP) + > a' TP Kis(a” B;) . (58)

Variation with respect to all the quantities (including « )yields

A
T Arx

M

+PHQ+VuP+ ) biKiBi (59)




Application to Bardeen black holes

ds? = —f(r)dt*> + f~(r)dr* + r?dQ?,
where
2Mr?
f(r)=1- (r2 4 q?)3/2°
The horizon is located at f(r = r,) = 0, which gives the relation

(7 + )

M =
2r2 ’

1 Mry(—24? 2
surface gravity: k = 5f’(rh) = w



Ayén-Beato and Garcia first found the following Lagrangian that
generates the Bardeen solution

. 5/2
h(Fﬁ,-)—h(Rm,q)——uM( v2a )

@ \1+2qF
with
Fab = qsin6(db,dop — dp,dby) .
So
2
we find

P :/F9¢d0d¢ =q.

Thus, g is just the magnetic charge of the black hole.



15Mqr*

Ha = Wdra. (68)
So
(2q rz\/q +r2—|—r4\/q +r2 4+ g*\/q? +r2—r>
W(r) = 572 , (69)
2q(q*>+r?)

The first law (47) can be expressed as

M = %M + Wydq + Ky0q + KoM, (70)
with
Ko = s |+ 1) \J@? + 2 — (¢ + )] . (71)
9 2q(q? +rp)?
2?2+t -+ 1}
Ky — : (72)

(g2 +rp)?

26
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Since M — aM, g — «agq, i.e., b; =1, application of Eq. (59) yields the
Smarr formula

M = £A+WHq+qu+KMM. (73)



Application to Born-Infeld theory

The Lagrangian describing Bl theory is

h(F,b) = % <1,/1+;b2F2> ,

where b is a constant called the Bl vacuum polarization.
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Application to Born-Infeld theory

The Lagrangian describing Bl theory is

Mﬁby_;<1dl+;HFﬂ, (74)

where b is a constant called the Bl vacuum polarization.
According to Egs. (12) and (13), G and T, are given by

Fab
Gv = (75)

\/1+3p2F
B Foc + (/1 + 102F — 1= 152F ) g
Tab = . (76)

b2\ /1+ 1b2F




Born-Infeld solution is a spherically symmetric solution associated with
the Lagrangian (74):

~1
ds?2 — (1 _ 2mr(r)> dt? + <]_ _ 2rr;(r)) dr® + r2(d02 + sin? 9d¢)2), (77)

where the function m(r) satisfies

1
m(r)= o (Vr+p@-r), (78)
One can verify that Q is the electric charge and

M = lim m(r) (79)

r—o0

is the ADM mass.



By integration, we find

m(r) = /\/I—i/oodx(\/x4—|—b202—x2)

b2
M- Vb2 + r* + 2bZQ22F1(% 1.2 bzrgz) 80
where > F; is the hypergeometric function.
Since on the horizon
r
m(m) =2, (81)
the mass in Eq. (80) can be written as
W - AP 2R QA(L L 5 - E)
M=—+ . (82)

2 3b2r;,



Treating b as a constant, the first law is

N SA T 0n6Q.
s

oM = —
8

Note that Eq. (83) does not correspond to an integral form, i.e., the
Smarr formula.

(83)



Treating b as a constant, the first law is
M= L 5A 1 045Q. (83)
8

Note that Eq. (83) does not correspond to an integral form, i.e., the
Smarr formula.
The scale argument requires the variation of b. The coefficient

1 [~ 0h,
K = —— [ 4nSl24
6r/, ob T

_ 1 4 2 [122 2 2 115 b2Q2
- 3b3rh[2rh 2y B QLR g

Thus, by applying our formula (47), we finally have
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Treating b as a constant, the first law is
M = " 6A+ 046Q. (83)
8

Note that Eq. (83) does not correspond to an integral form, i.e., the
Smarr formula.
The scale argument requires the variation of b. The coefficient

1 < 0Oh ,

K = —— 4r—-r?d
6r/, ob T

_ 1 4 2 [122 2 2 115 b2Q2
- 3b3rh[2rh 2y B QLR g

Thus, by applying our formula (47), we finally have

SM = 8£5A + Ou6Q + Kdb. (85)
7r
b — ab preserves the action. Therefore
A
M="2 4 4Q+Kb. (86)
4

This is the desired Smarr formula for Bl black holes.
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6. Conclusions

We provide a rigorous proof for the first law and Smarr formula that
apply to a general nonlinear electrodynamics theory. Compared to
Rasheed's result, our first law has a wider application.

We applied our formula to the Bardeen solution and obtained the desired
first law. Moreover, this first law leads to a simple form of Smarr formula.

When applying to Born-Infeld theory and taking the parameter b as a
variable, our formula naturally gives rise to both the first law and the
Smarr formula.

Our work suggests that there are two kinds of variables in Lagrangians.
When deriving the equations of motion of the theory, only dynamical
fields should be varied and nondynamical variables are held fixed. When
deriving the first law and Smarr formula, all variables should be varied.
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