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Non-adiabatic effects on the field modes

Consider a field mode uk obeys the sODE

d2uk(η)
dη2

+
(
k2 +m2(η)

)
uk(η) = 0. (1)

If ω2
k(η) = k

2 +m2(η) varies non-adiabtically, i..e,∣∣∣∣3ω′2
k

4ω4
−

ω′′
k

2ω3
k

∣∣∣∣≪ 1 is voilated, (2)

a window of modes can experience exponential growth,

uk(η) ∼ e∓
∫
|ω|dη (3)

which can also produce excited states with βk ̸= 0 after the
non-adiabatic regime,

uk(η) ∼
αk√
2k
e−ikη +

βk√
2k
eikη (4)



Primordial modes in ultra slow-roll inflation

[H. Di and Y. Gong, arXiv: 1707.09578; I. Dalianis, A. Kehagias,
and G. Tringas, arXiv: 1805.09483; C.Fu, P.Wu, H. Yu, arXiv:
1907.05042...... ]

d2uk(η)
dη2

+
(
k2 − z

′′

z

)
uk(η) = 0 (5)



Parametric resonance during reheating

[L. Kofman, A. Linde, and AA. Starobinsky, PRD56(1997)3258]
Modes coupled to oscillating inflaton field

χ̈k +
(
k2 + g2σ2 + 2g2σ2Φ sin2 (mt)

)
χk = 0 (6)



Generation of Oscillons

[J. Liu, ZK. Guo, RG. Cai, and G.Shiu, PRL120(2018)031301; C. Fu, P. Wu, and H. Yu,

Phys. Rev. D 97, (2018); S. Antusch, F. Cefala, et. al., JHEP01(2018)083.]

Inflaton field perturbation with self-resonance potential

δϕ̈k + 3Hδϕ̇k +
(
k2

a2
+ V′′(ϕ)

)
δϕk = 0 (7)



Primordial black holes by sound resonance

[YF. Cai, X. Tong, DG. Wang, and SF. Yan, PRL121(2018)081306]
Modes with an oscillating sound speed

d2vk(η)
dη2

+
(
c2sk

2 +m2(η)
)
vk(η) = 0 (8)

cs(τ) = 1− 2ξ[1− cos (2k∗τ)] (9)



Quantum Bounce in Loop Quantum Cosmology

[Phys.Rev. D98 (2018) 103528]

Perturbation modes near quantum bounce

d2vk(η)
dη2

+
(
k2 − a

′′

a
+ Ũ(η)

)
vk(η) = 0 (10)



Schwinger pair productions by laser pulses

[C. K. Dumlu and G. V. Dunne, Phys. Rev. Lett. 104, 250402 (2010).]

Schwinger effects: electron-positron pairs can be produced
from vacuum with electric field E ∼ 1018V/m. Such
phenomenon can be achieved by periodic laser pulses.

ϕ̈k +
(
m2 + p2⊥ + [p− A(t)]2

)
ϕk = 0 (11)



The sODEs in modern physics

Schrödinger-like wave equations in quantum mechanics

d2ψ(x)
dx2

+
2m
ℏ2
(
E− V(x)

)
ψ(x) = 0. (12)

Field perturbations in black hole spacetimes, for example,
for Schwarzchild black hole,

d2R(r)
dr2

+
(
ω2 − V(r, ω)

)
R(r) = 0. (13)

Mukhanov-Sasski like equations for cosmological
perturbations in the early universe

d2µ(s,t)k (η)

dη2
+

(
ω2
k(η)−

z′′s,t
zs,t

)
µ
(s,t)
k (η) = 0. (14)

..............



The JWKB approximation

JWKB method is of wide application with great success for solv-
ing the sODEs, which plays essential roles in the development
of many branches of theoretical physics

d2µk(y)
dy2

+Ω2(y)µk(y) = 0. (15)

However, it is important to emphasize here that the validity
of the JWKB method has to be restricted to the region
where the JWKB condition is fulfilled:∣∣∣∣3Ω′2

4Ω4
− Ω′′

2Ω3

∣∣∣∣≪ 1. (16)



The JWKB approximate solutions

When the JWKB condition is fulfilled, the approximate solution
of

d2µk(y)
dy2

+Ω2(y)µk(y) = 0. (17)

can be expressed as

µJWKBk (y) ≃ 1√
2Ω(y)

e±i
∫
Ω(y)dy (18)

What is the solution looks like if the JWKB condition
is violated?



Violations of the JWKB approximation

∣∣∣∣3Ω′2

4Ω4
− Ω′′

2Ω3

∣∣∣∣≪ 1.

Turning points problem.

Ω2(y) = 0.

The second-order finite pole (y→ 0, α = 2)

Ω2(y) ∼ c
yα

−→
∣∣∣∣3Ω′2

4Ω4
− Ω′′

2Ω3

∣∣∣∣ ∼ α2 + 4α

16c
yα−2.

Extreme points. About extreme point, Ω′
m ∼ 0.∣∣∣∣ Ω′′

m

2Ω3
m

∣∣∣∣ > 1.



An Example for the Second-Order Pole

Radial Schrödinger equation for hydrogen atom

d2ψ(r)
dr2

+

[
2m
ℏ2

(
E+
Ze2

r

)
− l(l+ 1)

r2

]
ψ(r) = 0. (19)

The exact energy levels are given by

En = −mZ
2e4

2ℏ2n2
= − mZ2e4

2ℏ2(nr + 1/2 + l+ 1/2)2
(20)

1930, Young and Uhlenbeck found the JWKB method gives
(Young and Uhlenbeck, Phys. Rev. 36, 1154 (1930). )

EJWKBn = − mZ2e4

2ℏ2(nr + 1/2 +
√
l(l+ 1))2

. (21)

Exact result can be obtained by replacing l(l+ 1) → (l+ 1
2)

2.



Langer modification for radial problem

In 1937, Langer suggested a replacement to the radial
Schrödinger equation (R. E. Langer, Phys. Rev. 51, 669 (1937)).

d2ψ(r)
dr2

+

[
2m
ℏ2

(E− V(r))− l(l+ 1)

r2

]
ψ(r) = 0. (22)

The Langer modification is defined as

l(l+ 1) −→ (l+ 1/2)2 (23)

Then the JWKB method gives correct results for the radial
problem.

This is a standard procedure in quantum mechanics.



Three cases for turning points

turning points poles extreme point

0

(a)

(b)

(c)

y
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The uniform asymptotic approximation

Treatments for one single turning point [Langer (1931, 1932, 1935,
. . . 1949); Olver, Philos. Trans. R. Soc. A 247, 307 (1954); Asymptotics and
Special Functions, (AKP Classics, Wellesley, MA 1997)]

Applications to inflationary cosmology [Habib et. al.,
PRL89,281301(2002); PRD70,083507(2004); PRD71,043518(2005);
Martin, Ringeval, and Vennin, JCAP06 (2013) 021; Lorentz, Martin, and
Ringeval, PRD78,083513(2008);TZ, AW, Cleaver, Kirsten, Sheng, QW,
BFL, PRD90 (2014)063503; PRD90(2014)103517; APJL807(2015)L17;
JCAP10(2015)052; JCAP03(2016)046; PRD97 (2018)103502; PRD99
(2019) 103536; arXiv:1911.01580 ]

Treatments for two turning points problem [Olver, Phil. Trans. R.
Soc. A 278, 137 (1975).]

Applications to inflationary cosmology [TZ, AW, Cleaver, Kirsten,
Sheng, and QW, PRD89(2014)043507; IJMPA29(2014)1450142;
PRD93(2016)123525, JCAP02 (2018)018; JCAP09 (2019) 064; Phys.Dark
Univ. 26 (2019) 100373 ; arXiv:1907.13108]

Treatments with extreme points [TZ and AW, arXiv:1902.09675

[quant-ph]] .



Standard Form of the Equation

d2µk(y)
dy2

=
[
g(y) + q(y)

]
µk(y),

with

g(y) + q(y) ≡ −Ω2(y).

Note: functions g(y) and q(y) should be determined by the
analysis of the error bounds of the approximate solutions of the
above equation.



Error Control functions

For poles

F (y) =

∫ [
1

|g|1/4
d2

dy2

(
1

|g|1/4

)
− q

|g|1/2

]
dy, (24)

For single turning points

H (ξ) =

∫ ξ ψ(v)
|v|1/2

dv = F (y)± 5

24(±ξ)3/2
(25)

For two turning points

I (ζ) =

∫ ξ ψ(v)
|v2 − ζ20 |1/2

dv

= F (y)±
∫ ξ

ζ0

[ 5ζ20
4(|v2 − ζ20 |)5/2

+
3

4(|v2 − ζ20 |)3/2
]
dv.

(26)



Convergence of F (y) for second-order pole
The convergence of the error control function F (y) at y→ 0+,

F (y) =

∫ [
1

|g|1/4
d2

dy2

(
1

|g|1/4

)
− q

|g|1/2

]
dy, (27)

requires that one must choose

q(y) = − 1
4y2

. (28)

With this choice, it is easy to see that H (ξ) and I (ζ) are both
convergence near the second-order pole.



Convergence of I (y) for extreme point
We observe that I (y) associated with two turning point,

I (y) ∼ 7p′2 − 6pp′′

32|p|5/2

∣∣∣∣∣
y1,2

ln |y2 − y1| −
∫

q(y)√
|g(y)|

dy.

Here g(y) = p(y)(y− y1)(y− y2) with p(y) being regular. When
y1 = y2(one double turning point), I (y) → ±∞.

This divergence could be cured if one takes q(y) that satisfies∫
q(y)√
|g(y)|

dy ∼ 7p
′2 − 6pp′′

32|p|5/2

∣∣∣∣∣
y1,2

ln |y2 − y1|, (29)

which depends on the properties of function −Ω2(y).
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Exact energy levels for Hydrogen atom

Radial Schrödinger equation for hydrogen atom

d2ψ(r)
dr2

+

[
2m
ℏ2

(
E+
Ze2

r

)
− l(l+ 1)

r2

]
ψ(r) = 0. (30)

The exact energy levels are given by

En = −mZ
2e4

2ℏ2n2
= − mZ2e4

2ℏ2(nr + 1/2 + l+ 1/2)2
(31)

1930, Young and Uhlenbeck found the JWKB method gives
(Young and Uhlenbeck, Phys. Rev. 36, 1154 (1930). )

EJWKBn = − mZ2e4

2ℏ2(nr + 1/2 +
√
l(l+ 1))2

. (32)

Exact result can be obtained by replacing l(l+ 1) → (l+ 1
2)

2.



Langer modification for radial problem

In 1937, Langer suggested a replacement to the radial
Schrödinger equation (R. E. Langer, Phys. Rev. 51, 669 (1937)).

d2ψ(r)
dr2

+

[
2m
ℏ2

(E− V(r))− l(l+ 1)

r2

]
ψ(r) = 0. (33)

The Langer modification is defined as

l(l+ 1) −→ (l+ 1/2)2 (34)

Then the JWKB method gives correct results for the radial
problem. This is a standard procedure in quantum mechanics.



Interpretation of Langer modification

The centrifugal potential term in radial equation leads to a
second-order pole at the origin

Ω2(r) =
2m
ℏ2

(E− V(r))− l(l+ 1)

r2
(35)

And the Langer modification can be expressed as

l(l+ 1)

r2
=

(l+ 1/2)2

r2
− 1

4r2
(36)

Here the last term is exactly the choice of q(r) in the uniform
asymptotic approximation for eliminating the divergence in the
error control functions.



Improved Quantization Condition

For bound states problem with two turning point, the JWKB
approximation gives the JWKB quantization rules∫ r2

r1

√
2m
ℏ2

(E− V) = (nr + 1/2)π (37)

The uniform asymptotic approximation gives∫ r̃2
r̃1

√
2m
ℏ2

(E− V) + q(r) = (nr + 1/2)π. (38)

Here q(y) is chosen for reducing the errors of the
approximation near extreme points, which depends on the
specific form of the potential V(r).



Our improved quantization condition gives the exact
energy spectra for all these potentials.

(Tao Zhu and Anzhong Wang, arXiv:1902.09675 [quant-ph] )



Quasi-normal modes

For Schwarzchild black hole,

d2R(r)
dr2

+
(
ω2 − V(r, ω)

)
R(r) = 0. (39)

The improved quantization condition read∫ r2
r1

√
g(r)

1− 2M/r
dr = i(n+ 1/2)π (40)

This new quantization condition leads to

ω2 ≃ Vm − qm − i(n+ 1/2)
√
−2g′′m

×

[
1 +
i(n+ 1/2)

8
√

−2g′′m

(
−5

9

g′′′2m
g′′2m

+
1

3

g′′′′m
g′′m

)]
+ · · · · · · (41)

(TZ, AW, WZ, KL, et. al, in preparation.)
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It is in general impossible to get the exact inflationary observ-
ables analytically in inflation models.

µ′′k(η) +

(
ω2
k(η)−

z′′

z

)
µk(η) = 0

Some alternative approximations:
Bessel function approximation [Schwarz et. al, PLB517(2001)243];
Green’s function method [Stewart and Gong, PLB510(2001)1;Wei, Cai,

and Wang, PLB603(2004)95];
WKB approximation [Martin and Schwarz, PRD67,083512(2005); Casadio

et.al., PLB625(2005)1];
Improved WKB approximation [Casadio et. al. PRD72,103516(2005)];
Phase integral method [Rojas and Villalba, PRD 75, 063518 (2007)];
Uniform asymptotic approximation [Hibab et.al. PRL89,

281301(2002); PRD70,083507(2004); PRD89(2014)043507; IJMPA29(2014)

1450142; PRD90(2014)063503;PRD90(2014)103517; APJL807(2015)L17;

JCAP10(2015)052; JCAP03(2016)046; PRD93(2016)123525; PRD97(2018)

103502; JCAP02(2018)018; PRD99 (2019)103536; JCAP09 (2019) 064;

Phys.Dark Univ. 26 (2019)100373 ; 1902.09675; 1907.13108; 1911.01580.]



General formulas of power spectra for single turning point

∆2(k) =
k2

4π2
−kη

z2(η)ν(η)cs(η)
exp

(
2

∫ ȳ0
y

√
g(ŷ)dŷ

)
×
[
1 +

H (+∞)

λ
+

H 2(+∞)

2λ2
+ . . .

]
where the error control function H (ξ) reads as

H (ξ)

λ
=

∫ y0
y

(
5

16ξ̂3(y′)
+
q(y′)
ĝ(y′)

− 5ĝ′2(y′)
16ĝ3(y′)

+
ĝ′′(y′)
4ĝ2(y′)

)√
ĝ(y′)dy′

Table: Errors to be expected in the uniform approximation

Quantity 1st-order 2nd-order 3th-order
Power spectrum: ∆2(k) ≲ 15% ≲ 1.5% ≲ 0.15%



Applications to slow-roll inflation

k-inflation [PRD90(2014)103517]
Inflation with Nonlinear dispersion relation[PRD90(2014)063503.]
Inverse-volume and holonomy corrections in LQC
[JCAP10(2015)052; JCAP03(2016)046; APJL807(2015)L17]
Inflation with Gauss-Bonent corrections [PRD97 (2018)103502]
Power spectra in closed algebra approach in LQC [PRD99
(2019)103536]
Effective field theory of inflation [arXiv:1907.13108]
Polarized PGWs in ghost-free parity violating gravities [J.
Qiao, TZ, W. Zhao, AW, arXiv:1911.01580]
· · · · · ·



General formulas of power spectra with extra two turning points

∆2(k) ≃ A (k)
k2

4π2
−kη

z2(η)ν(η)
exp

(
2λ

∫ y0
y

√
ĝ(y′)dy′

)
×
[
1 +

H (+∞)

2λ
+

H 2(+∞)

8λ2
+O

(
1

λ3

)]
, (42)

where A (k) denotes the modified factor due to the presence of
the two extra turning points y1 and y2, which reads

A (k) = 1 + 2eπλζ
2
0 + 2eπλζ

2
0/2

√
1 + eπλζ

2
0

×

{
cos 2B− I (ζ) + H (ξ)

λ
sin 2B

−
[
I (ζ) + H (ξ)

]2
2λ2

cos 2B

}
. (43)



Applications to inflation

Inflation with Nonlinear dispersion relation[IJMPA29

(2014)1450142; PRD89 (2014) 043507; PRD90 (2014)027304]
Extended effective field theory of inflation [JCAP 09 (2019)064 ]
Schwinger effects during inflation [JCAP1802 (2018) 018 ]
Inflation with sound speed changes [in preparation (2019)]
Ultra-Slow-Roll inflation [in preparation (2019)]
· · · · · ·
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Three types of resonance

Consider a simple equation

d2µk(y)
dy2

+ (Ak − 2pcos 2y)µ(y) = 0, (44)

the mode µk(y) can be amplified by the parametric resonance
due to non-adiabatic excitations driven by 2pcos 2y.
The strength of the resonance depends on Ak and p.

Tachyonic resonance, which corresponds to Ak < 2p. It
can occur for most of the parametric space and momentum
modes;
Broad resonance, which corresponds to p≫ 1. It can
occur for a wide range of the parametric space and
momentum modes;
Narrow resonance, which corresponds to p≪ 1. It can
only occur in some narrow bands near Ak ≃ l2, l = 1, 2, 2
and each band has width about pl. Thus the most
important band is l = 1.



Mathieu Equation and turning points

The parametric resonance is described by the Mathieu equation

du2k
dx2

+ (Ak − 2pcos 2x)uk = 0. (45)

In the Uniform asymptotic approximation, it is written into

du2k
dx2

= (g+ q)uk, (46)

g(x) = 2pcos 2x− Ak, q(x) = 0. (47)

Obviously g(x) has turning points,

x±j = xj ±
1

2
arccos

Ak
2p
. (48)

[TZ, QW, AW, Phys.Dark Univ. 26 (2019)100373]



Nature of turning points (TPs)

x±j = xj ±
1

2
arccos

Ak
2p

=


two real TPs, Ak < 2p,

one double TP, Ak = 2p,

two complex TPs, Ak > 2p

j-th oscillation j+1-th oscillation

x j x j+1x j
- x j

+
x j+1

- x j+1
+

x

g(x)

[TZ, QW, AW, Phys.Dark Univ. 26 (2019)100373]



Solutions around pairs of turning points

In each oscillation, the approximate solution is given by

uk =

(
ζ2j − ζ20

−g(x)

)1/4 [
ajW(ζ20/2,

√
2ζj) + bjW(ζ20/2,

√
2ζj)
]
(49)

The relation between two oscillations can be connected via(
aj+1

bj+1

)
=

(
κ sinB, − cosB
cosB, κ−1 sinB

)(
aj
bj

)
. (50)

where κ =
√

1 + eπζ
2
0 − eπζ20/2 and

B ≡
∫ Re(x−j+1)

Re(x+j )

√
−g(x)dx+ π

2
+ 2ϕ

(
ζ20
2

)
. (51)

ζ20 ≡ ± 2

π

∣∣∣∣∣
∫ x+j
x−j

√
g(x)dx

∣∣∣∣∣ (52)



Analytical and Numerical Solutions

Ak = 1, q = 0.005
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Condition for parametric resonance

With the above solution, we obtain the condition for parametric
resonance

nπ + arctan
(
e−πζ20/2

)
< B < nπ + π − arctan

(
e−πζ20/2

)
,

∆B = π − 2 arctan
(
e−πζ20/2

)
.

Ak<2q
Ak > 2 q

tachyonic

resonance

   broad 

resonanc

  narrow

resonance

-�� -� � �

���

���

���

���

���

���

ζ�
�

�
��
��

Δ
�
/π



Amplification factor and particle productions

The amplification of field after N-oscillations∣∣∣∣uk(xN)uk(x0)

∣∣∣∣ ∼ 23/4√
κ

∣∣∣∣∣(a1 + b1Y−)(sin∆N + κY+ cos∆N)
Y+ − Y−

ZN−1
−

+
(a1 + b1Y+)(sin∆N + κY− cos∆N)

Y− − Y+
ZN−1
+

∣∣∣∣∣,
and the particle production rate is

|β(N)k |2 =
1

2κ

∣∣∣∣∣(κY+ + i)(a1 + b1Y−)
Y+ − Y−

ZN−1
−

+
(κY− + i)(a1 + b1Y+)

Y− − Y+
ZN−1
+

∣∣∣∣∣
2

.

[TZ, QW, AW, Phys.Dark Univ. 26 (2019)100373]
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Primordial modes in ultra slow-roll inflation

[H. Di and Y. Gong, arXiv: 1707.09578; I. Dalianis, A. Kehagias,
and G. Tringas, arXiv: 1805.09483; C.Fu, P.Wu, H. Yu, arXiv:
1907.05042 ...... ]

d2uk(η)
dη2

+
(
k2 − z

′′

z

)
uk(η) = 0 (53)



Turning points in ultra slow-roll inflation

d2µ(x)
dx2

+

(
k2

k2∗
− z

′′

k2∗z

)
µk = 0 (54)

g(x) = −
(
k
k∗

− z
′′

k2∗z

)
+

1

4x2
, x = −k∗τ. (55)

kcmb

kultra

ksmall

� �� �� �� �� �� ��

�

��
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Primordial spectra for ultra-slow-roll inflation

P2
R(k) ≃ A (k)

H2

8π2M2
Plϵ1

, (56)

A (k) = 1 + 2eπλζ
2
0 + 2eπλζ

2
0/2

√
1 + eπλζ

2
0 cos 2B (57)

for ksmall ≫ kultra, g(x) only has one single TP, A (k) = 1;

for k ∼ kultra, g(x) only has one single TP and two extra
coalescing TPs, A (k) ≃ 1 + 2eπζ

2
0 cos 2B;

for kcmb ≪ kultra, g(x) has three real TPs. If we evaluate H
and ϵ1 at ultra-slow-roll phase (at x0), we have A (k) ≫ 1
and ϵ1 ≪ ϵcmb1 . If we evaluate at the slow-roll phase (at x2),
we will have A (k) = 1 and ϵ1 ≃ ϵcmb1 .
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Outlooks

How to describe accurately the non-adiabatic
evolutions of quantum fields in the curved spacetime?

Perturbations modes during inflation with abrupt changes of
some parameters [fast roll/ultra slow-roll; sound speed
changes; abrupt inflation potentials];

Gravitational waves in extreme mass ratio system;

Quantum fields in various black hole spacetimes [Stability/
instability; Hawking radiation; greyfactor; quasi-normal
modes; ringdown gravitational waves];
Schwinger effects by periodic laser pulses
· · · · · · · · ·



Thanks!
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