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Examples of Non-adiabatic effects



Non-adiabatic effects on the field modes

m Consider a field mode uy obeys the sODE

2
d ;;37) + (K2 +m () ) = 0. (1)

m If w?(n) = k? + m?(n) varies non-adiabtically, i..e,
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3wy Wi
40t 2w|“:’

< 1 is voilated, (2)

B a window of modes can experience exponential growth,
U (n) ~ e/ 119 (3)

B which can also produce excited states with 5, = 0 after the
non-adiabatic regime,

Ok gikn Dk (4)

Uk(n) ~ ﬁ V2K



Primordial modes in ultra slow-roll inflation

[H. Di and Y. Gong, arXiv: 1707.09578; I. Dalianis, A. Kehagias,
and G. Tringas, arXiv: 1805.09483; C.Fu, PWu, H. Yu, arXiv:
1907.05042...... ]
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Parametric resonance during reheating

[L. Kofman, A. Linde, and AA. Starobinsky, PRD56(1997)3258]
B Modes coupled to oscillating inflaton field

Xk + (k2 +g%0? + 2g°0* @ sin? (mt))xk -0 (6)
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Generation of Oscillons

[J. Liu, ZK. Guo, RG. Cai, and G.Shiu, PRL120(2018)031301; C. Fu, P. Wu, and H. Yu,
Phys. Rev. D 97, (2018); S. Antusch, F. Cefala, et. al., JHEP01(2018)083.]

B Inflaton field perturbation with self-resonance potential
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Primordial black holes by sound resonance

[YF. Cai, X. Tong, DG. Wang, and SF. Yan, PRL121(2018)081306]
B Modes with an oscillating sound speed

2
d (;’;g") + (B2 +m2) Jum) =0 (8)

Cs(7) = 1 — 2¢[1 — cos (2K.7)] (9)
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Quantum Bounce in Loop Quantum Cosmology

[Phys.Rev. D98 (2018) 103528]
B Perturbation modes near quantum bounce

d?v(n)
dn?

+ (k2 - %/ + U(n)>vk(n) -0  (10)

FIG. 3. JWKB criterion is violated near the time of bounce at ¢t = 0. The left panel shows the result for the hybrid approach
and the right panel shows the result for the dressed metric approach. Note that we used unit mp; = 1 and set ag = 1 in these
figures.



Schwinger pair productions by laser pulses

[C. K. Dumlu and G. V. Dunne, Phys. Rev. Lett. 104, 250402 (2010).]

B Schwinger effects: electron-positron pairs can be produced
from vacuum with electric field E ~ 10'®V/m. Such
phenomenon can be achieved by periodic laser pulses.

b+ (m?+ P2 + o — AD]) oy = 0 (1)

V(t) 210

1.5x107%

1.x107%

5.x107°

X 2 p/m




The sODEs in modern physics

B Schrodinger-like wave equations in quantum mechanics

2
T 1+ 20 (e V9 )uin = 0. (12)

B Field perturbations in black hole spacetimes, for example,
for Schwarzchild black hole,
d?R(r)
dr?
B Mukhanov-Sasski like equations for cosmological
perturbations in the early universe

& (n) 2
— (e = 2w =014

+ (w2 Vv, w))R(r) = 0. (13)



The JWKB approximation

JWKB method is of wide application with great success for solv-
ing the sODEs, which plays essential roles in the development
of many branches of theoretical physics

§y§ Y 2y )dy) = 0. (15)

B However, it is important to emphasize here that the validity
of the JWKB method has to be restricted to the region
where the JWKB condition is fulfilled:

‘ 39/2 Ql/

T0F 3| <L (16)




The JWKB approximate solutions

When the JWKB condition is fulfilled, the approximate solution
of

2
Hhey SSQ(Y) + Q% (y)pu(y) = 0. (17)

can be expressed as

JWKB L +i [ Q(y)dy 18
My (Y) - \/me ( )

B What is the solution looks like if the JWKB condition
is violated?



Violations of the JWKB approximation

39/2 Q”
‘rm T <t
B Turning points problem.
Q%(y) = 0.

B The second-order finite pole (y — 0, a = 2)
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B Extreme points. About extreme point, O/, ~ 0.
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An Example for the Second-Order Pole

Radial Schrodinger equation for hydrogen atom

d2y(r) R [Qm <E+ Zle2) L g+1)

dr2 iz r r2 } v =0 o)

The exact energy levels are given by

mZ%e* mZ2e?
2h2n2  2R2(ne +1/2 41+ 1/2)2

En = (20)

1930, Young and Uhlenbeck found the JWKB method gives
(Young and Uhlenbeck, Phys. Rev. 36, 1154 (1930). )

JWKB _ mZ%e*
4 2h2(ne 4+ 172+ /I(1 + 1))

Exact result can be obtained by replacing I(I + 1) — (I + ).

(21)




Langer modification for radial problem

In 1937, Langer suggested a replacement to the radial
Schrddinger equation (R. E. Langer, Phys. Rev. 51, 669 (1937)).

2
T+ | T - vy -

] o) =0, (22)
The Langer modification is defined as
(1+1) — (1+1/2)2 (23)

Then the JWKB method gives correct results for the radial
problem.

This is a standard procedure in quantum mechanics.



Three cases for turning points

turning points poles extreme point
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The uniform asymptotic approximation

B Treatments for one single turning point [Langer (1931, 1932, 1935,
... 1949); Olver, Philos. Trans. R. Soc. A 247, 307 (1954); Asymptotics and
Special Functions, (AKP Classics, Wellesley, MA 1997)]

B Applications to inflationary cosmology [Habib et. al.,
PRL89,281301(2002); PRD70,083507(2004); PRD71,043518(2005);
Martin, Ringeval, and Vennin, JCAP06 (2013) 021; Lorentz, Martin, and
Ringeval, PRD78,083513(2008);TZ, AW, Cleaver, Kirsten, Sheng, QW,
BFL, PRD90 (2014)063503; PRD90(2014)103517; APJL807(2015)L17;
JCAP10(2015)052; JCAP03(2016)046; PRD97 (2018)103502; PRD99
(2019) 103536; arXiv:1911.01580 ]

B Treatments for two turning points problem [Oiver, Phil. Trans. R.
Soc. A 278, 137 (1975).]

B Applications to inflationary cosmology [TZ, AW, Cleaver, Kirsten,
Sheng, and QW, PRD89(2014)043507; IJMPA29(2014)1450142;
PRD93(2016)123525, JCAP02 (2018)018; JCAPO9 (2019) 064; Phys.Dark
Univ. 26 (2019) 100373 ; arXiv:1907.13108]

B Treatments with extreme points [Tz and AW, arXiv:1902.09675
[quant-ph]] .



Standard Form of the Equation

d g;ﬁy) — [9(y) + a(y)] (y),

with
g(y) +aly) = —(y).
Note: functions g(y) and q(y) should be determined by the

analysis of the error bounds of the approximate solutions of the
above equation.



Error Control functions

B For poles

. 1 d? 1 q
70 = [ gy (jg) ~ i) @ @

B For single turning points

g 5
() = |1\//}\<1\72dv FWEggE (@9

B For two turning points
SI\))
() = / ’VQ_C§|1/2dV
£
a

503 3
Z(y) £ /Co [4(|V2 L C§|)5/2 " 4(|v2 — C§|)3/2

}dv.
(26)



Convergence of .# (y) for second-order pole

The convergence of the error control function .7 (y) aty — 0t,

F = /{M%di;<lgﬁ/4>_!gﬂ/z]dy’ 27

requires that one must choose

q(y) = "4y (28)

With this choice, it is easy to see that .777(£) and .7 (() are both
convergence near the second-order pole.



Convergence of .7 (y) for extreme point

We observe that .# (y) associated with two turning point,

7p"? — 6pp” q(y)
J(y) | Inly2—vi| —/—dy-
B2l 1, VIgw)]

Here g(y) = p(y)(y — y1)(y — y2) with p(y) being regular. When
y1 = y2(one double turning point), .7 (y) — +oc.

This divergence could be cured if one takes q(y) that satisfies

7 /2_6 "
/ av) g, 70" ZOPRTI v (29)

V1g(y)] 32|p|°/2

which depends on the properties of function —Q?(y).
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Exact energy levels for Hydrogen atom

Radial Schrodinger equation for hydrogen atom

d2y(r) R [Qm <E+ Zle2) L g+1)

dr2 iz r r2 } v =0 {s0)

The exact energy levels are given by

mZ%e* mZ2e?
2h2n2  2R2(ne +1/2 41+ 1/2)2

E, = (31)

1930, Young and Uhlenbeck found the JWKB method gives
(Young and Uhlenbeck, Phys. Rev. 36, 1154 (1930). )

JWKB _ mZ%e*
4 2h2(ne 4+ 172+ /I(1 + 1))

Exact result can be obtained by replacing I(I + 1) — (I + ).

(32)




Langer modification for radial problem

In 1937, Langer suggested a replacement to the radial
Schrddinger equation (R. E. Langer, Phys. Rev. 51, 669 (1937)).

2
ddzigr) T [2}% € vy r+2 1)

] Y(r) = 0. (33)
The Langer modification is defined as
I(1+1) — (1+1/2)? (34)

Then the JWKB method gives correct results for the radial
problem. This is a standard procedure in quantum mechanics.



Interpretation of Langer modification

The centrifugal potential term in radial equation leads to a
second-order pole at the origin

2m (141
Q2(r) = S5 (E=V() - ( = ) (35)
And the Langer modification can be expressed as
2
[(1+1) _ (1+1/2) 1 (36)

r2 r2 4r2

Here the last term is exactly the choice of q(r) in the uniform
asymptotic approximation for eliminating the divergence in the
error control functions.



Improved Quantization Condition

For bound states problem with two turning point, the JWKB
approximation gives the JWKB quantization rules

/: ,/%’;‘(E V) = (M 4 1/2)7 (37)

The uniform asymptotic approximation gives

/\/ (E-V)+q(r) = (n+1/2)7. (38)

Here q(y) is chosen for reducing the errors of the
approximation near extreme points, which depends on the
specific form of the potential V(r).



B Our improved quantization condition gives the exact
energy spectra for all these potentials.

TABLE I. Some exactly solvable potentials and the choices of

q(x).
Potentials V(xz) q(z)
2 . R
Hydrogen — S+ Tty b
Harmonic oscillator tmw’z? + % — 0z
Morse potential Voe 29T 4y e 0
Péschl—Teller potential cosh’g% @
1 B 4sin}?2 (ax)

Eckart potential Sinhg(zm) + tanh(ax)

(Tao Zhu and Anzhong Wang, arXiv:1902.09675 [quant-ph] )



Quasi—normal modes

For Schwarzchild black hole,

d?R(r)

s F <w2 - V(r,w))R(r) —0. (39)

The improved quantization condition read

vVl
. mdr— |(n+1/2)ﬂ' (40)

This new quantization condition leads to

w? ~ Vpm—am—i(n+1/2)v/—2g4

i(n+1/2) ( 5gm®  lgm
8v/—2g4 \ 99w  39gn

X |1+

(TZ, AW, WZ, KL, et. al, in preparation.)
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B Calculations of Primordial spectra



It is in general impossible to get the exact inflationary observ-
ables analytically in inflation models.

7

e (n) + <w|3(77) -

Some alternative approximations:

B Bessel function approximation [Schwarz et. al, PLB517(2001)243];

B Green'’s function method [Stewart and Gong, PLB510(2001)1;Wei, Cai,
and Wang, PLB603(2004)95];

B WKB approximation [Martin and Schwarz, PRD67,083512(2005); Casadio
et.al., PLB625(2005)1];

B Improved WKB approximation [Casadio et. al. PRD72,103516(2005)];

Phase integral method [Rojas and Villalba, PRD 75, 063518 (2007)];

B Uniform asymptotic approximation [Hibab et.al. PRL89,
281301(2002); PRD70,083507(2004); PRD89(2014)043507; JMPA29(2014)
1450142; PRD90(2014)063503;PRD9I0(2014)103517; APJL807(2015)L17;
JCAP10(2015)052; JCAP03(2016)046; PRD93(2016)123525; PRD97(2018)
103502; JCAP02(2018)018; PRD99 (2019)103536; JCAP09 (2019) 064;
Phys.Dark Univ. 26 (2019)100373 ; 1902.09675; 1907.13108; 1911.01580.]

> pik(n) =0

z




General formulas of power spectra for single turning point

2 iR 0
A% = 4k7r2z2<n>u<577§cs< exp< / [ de)
[ 2l )

where the error control function J7(£) reads as

HE) 5 ay’)  59”(y") g ﬁ
A _/y (1653(y’)+é(v’> 166%(y") " 4G2(y ) e

Table: Errors to be expected in the uniform approximation

Quantity 1st-order | 2nd-order | 3th-order
Power spectrum: A%(k) | < 15% <1.5% | <0.15%




Applications to slow-roll inflation

B k-inflation [PRD90(2014)103517]
B Inflation with Nonlinear dispersion relation[PRD90(2014)063503.]

B Inverse-volume and holonomy corrections in LQC
[JCAP10(2015)052; JCAP03(2016)046; APJL807(2015)L17]

B Inflation with Gauss-Bonent corrections [PRD97 (2018)103502]

B Power spectra in closed algebra approach in LQC [PRD99
(2019)103536]

m Effective field theory of inflation [arXiv:1907.13108]

B Polarized PGWs in ghost-free parity violating gravities [v.
Qiao, TZ, W. Zhao, AW, arXiv:1911 .01580]



General formulas of power spectra with extra two turning points

A*(k) ~ ;z/(k)i;zzz( ;(( exp <2)\/yo \/7dy>

X [1 + ‘%ﬂ(;;oo) + %2(;00) +0 (Ag)] , (42)

where <7 (k) denotes the modified factor due to the presence of
the two extra turning points y; and y,, which reads

A(K) = 1426 426™0/2)/1 4 o™

F(Q) +
A

X { Ccos 2B — (©) sin 28

2
= [7(Q) + #()) 0082%}. (43)

2)2



Applications to inflation

B Inflation with Nonlinear dispersion relation[iumPa29
(2014)1450142; PRD89 (2014) 043507; PRD90 (2014)027304]

B Extended effective field theory of inflation [JcAP 09 (2019)064 ]
B Schwinger effects during inflation [JcAP1802 (2018) 018 ]

B Inflation with sound speed changes [in preparation (2019)]

B Ultra-Slow-Roll inflation [in preparation (2019)]
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Three types of resonance

Consider a simple equation

2
dg_;;(y) + (A — 2pcos 2y) u(y) =0, (44)
the mode p(y) can be amplified by the parametric resonance
due to non-adiabatic excitations driven by 2p cos 2y.
The strength of the resonance depends on A, and p.

B Tachyonic resonance, which corresponds to Ax < 2p. It
can occur for most of the parametric space and momentum
modes;

B Broad resonance, which corresponds to p > 1. It can
occur for a wide range of the parametric space and
momentum modes;

B Narrow resonance, which corresponds to p < 1. It can
only occur in some narrow bands near A, ~ 12, 1=1,2,2
and each band has width about p'. Thus the most
important band is | = 1.



Mathieu Equation and turning points

The parametric resonance is described by the Mathieu equation

du?
G0 T (A —2p00s 2)uy = 0. (45)

In the Uniform asymptotic approximation, it is written into

du?
S0 = (9+a)u, (46)
g(x) = 2pcos2x — Ay, q(x) = 0. (47)

Obviously g(x) has turning points,

1 A
+ oy 4= Tk
X" = Xj & 5 arccos _ . (48)

[TZ, QW, AW, Phys.Dark Univ. 26 (2019)100373]



Nature of turning points (TPs)

. two real TPs, A < 2p,
xji =X (= 5 arccos 2—'5 = < one double TP, A = 2p,
two complex TPs, Ay > 2p

g(x)

j—th oscillation j+1-th oscillation

[TZ, QW. AW, Phys.Dark Univ. 26 (2019)100373]



Solutions around pairs of turning points

In each oscillation, the approximate solution is given by

G-\
Uk = ( J_g(x) > [aJW(Cg/Z V2G) + bW((5 /2, ﬂ@)} (49)

The relation between two oscillations can be connected via

aj+1\ _ (ksSINB, —cosB\ (g (50)
bit1/)  \cosB, k7 'sinB)\b)"
where k = /1 + €™ — e™/2 and
Re(XH_1 Cg
B = V- dx+ +2¢ =, (51)
Re(x") 2

i; /X: Va(x)dx
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Condition for parametric resonance

With the above solution, we obtain the condition for parametric
resonance

nr + arctan (e*”<3/2> < B <nm+ 7 — arctan (e*”<3/2> ,

AB = x—2arctan (e‘”%gﬂ) |

10

08[ Ak>2q Ak<2q
S 06 narrow broad tachyonic
; resonance resonanc resonance
Z 04
B U0

02

00

\ \
-10 -5 0 5

4



Amplification factor and particle productions

The amplification of field after N-oscillations

ucxn) | 2%* (a1 +biY_)(sin Ay + #Y. cOS AN) -1
Uk (Xo) VE Yy—Yo -
| (a1 +b1Yy)(sin Ay + kY _ cos AN)Z’\H
YoV, P

and the particle production rate is

1
2K

(kY4 + i) (a1 + by Y.)
Y. - Y

N _
1802 ZN-1

n (KYf + i)(31 =+ b1Y+)
Y —v,

N—1
Z+

[TZ, QW, AW, Phys.Dark Univ. 26 (2019)100373]
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Primordial modes in ultra slow-roll inflation

[H. Di and Y. Gong, arXiv: 1707.09578; I. Dalianis, A. Kehagias,
and G. Tringas, arXiv: 1805.09483; C.Fu, P.Wu, H. Yu, arXiv:
1907.05042 ...... ]

du(n) 5
2
T (k _ —)uk(n) =0 (53)
dr
8
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Turning points in ultra slow-roll inflation

2'/k,22)




Primordial spectra for ultra—slow-roll inflation

H2
o (K)=——— 56

A(K) = 14269 +2e™6/2\/1 4 6™ cos2B (57)

%
=
.

B for Kgman > Kuitra, 9(X) only has one single TP, <7 (k) = 1;

B for Kk ~ kyitra, 9(X) only has one single TP and two extra
coalescing TPs, < (k) ~ 1 + 2™ cos 2%B;

B for Kemp < Kyitra, 9(X) has three real TPs. If we evaluate H
and ¢; at ultra-slow-roll phase (at x¢), we have &7 (k) > 1
and ¢; < ™. If we evaluate at the slow-roll phase (at x),
we will have o7 (k) = 1 and ¢; ~ ™.
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Outlooks

B How to describe accurately the non-adiabatic
evolutions of quantum fields in the curved spacetime?

Perturbations modes during inflation with abrupt changes of
some parameters [fast roll/ultra slow-roll; sound speed
changes; abrupt inflation potentials];

Gravitational waves in extreme mass ratio system;

Quantum fields in various black hole spacetimes [Stability/
instability; Hawking radiation; greyfactor; quasi-normal
modes; ringdown gravitational waves];

Schwinger effects by periodic laser pulses



Thanks!
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