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Introdution: Standard Model



Introduction

Standard Model:

1. lepton: e, µ, τ , involved in electroweak interaction
neutrino νe, νµ, ντ , involved in weak interaction

2. Quark: u, d, c, s, t, b, involved in both electroweak and strong
interaction.

3. Gauge boson: photon γ mediate electromagnetic interaction,
U(1) gauge interaction
Z0 and W± mediate weak interaction, SU(2) gauge
symmetry, Spontaneously broken.
gluon g mediate color interaction (strong interaction), SU(3)
gauge interaction

4. Higgs H boson: scalar, no electric charge, weak interaction.
Important in spontaneous sysmmetry breaking of SU(2) and
mass generation.



Introduction

QCD: Color SU(3) gauge field theory. Gluon mediates the color
interaction.

◮ Describe the strong interaction between quarks and gluon.
Quark ∼ 3-dimensional fundamental representation of SU(3).
Gluon ∼ 8-dimensional adjoint representation.

◮ Color confinement and asymptotic freedom: Quarks and
gluons can not propagate freely, they are always combined
into color singlet, Hadron. The interaction is stronger when
quarks are pulled away from each other.

◮ Spontaneous and explicit breaking of chiral symmetry:
peudo-goldstone boson (π and K)

◮ Hadron: A meson is composed of a quark and an anti-quark
(valence quarks), with zero baryon number, such as
π±, π0 ∼ ud̄, uū, dd̄, dū, K± ∼ us̄ . . . .
A baryon is composed of 3 quarks and has baryon number 1,
proton p ∼ uud.



Introdution

◮ Our understanding of the micro world are approached by the
collision of particles:

◮ Deep inelastic scattering confirms the quark model: high
energy lepton probing inner structure of the proton

◮ W and Z boson were discovered by SPS (Super Proton
Synchrotron) at CERN: proton anti-proton collision

◮ LEP: electron and positron collision, precise test of standard
model

◮ Top quark was discovered at Tevatron: Proton antiproton
collision.

◮ . . .



Introduction

◮ LHC: Proton-Proton and heavy-ion collision,
the energy of each proton in the two beams has already
reached ∼ 3.5Tev, the final purpose is

√
s ∼ 14Tev,

v ∼ 0.99999999c, 9.7km/hour slower than c
◮ ALICE: collide lead ion, Study quark-gluon plasma.
◮ ATLAS, CMS: general-purpose detectors, search for Higgs,

physics beyond standard model: SUSY, extra-dimension, dark
matter, origin of mass ...

◮ LHCb: B-physics, CP violation. Why matter not anti-matter.
◮ LHCf: simulate Cosmic rays.
◮ TOTEM: precise measurement of the proton-proton interaction

cross section, in-depth study of the proton structure



Introduction

Proton:

◮ Probe Q2 > (2Gev)2: 3 valence quarks uud, gluons, sea
quarks (all kinds of quarks). These are called partons.

◮ Each parton carries a proportion of the longitudinal
momentum of Proton pi = xiP , a bit transverse momentum,
some angular momentum.

◮ Parton distribution function (pdf): fi(x, Q2) → fi(x) for
Q2 → ∞
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A typical QCD process in proton-proton scattering

◮ Choose two partons from the two incoming protons: pdf

◮ High energy hard scattering

◮ Parton shower: radiation of some soft partons from the hard
scattering final states.

◮ Hardronization and decay: the partons from parton shower
recombine to form hadrons—jets: a cone of hadrons, coming
from a parton after the hard process in leading order. Some
unstable hadrons may decay.
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Diagram from (Stefan Weinzierl, PoS ACAT:005,2007,
arxiv:0707.3342)

pdf's hard s
attering parton shower hadronization and de
ay
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Introduction

◮ Observable relating the experiments and the theory in high
energy physics: cross section

NO. of events =
σNANB

A

NA, NB number of particles in the incoming two beams. A
the area of the beam. σ is cross section.



Introduction

◮ To calculate the cross section, we need first calculate the
amplitude.
Differential cross section (Hard part):

dσ =
1

2s

(

N
∏

i=1

d3pi

(2π)3
1

2Ei

)

× (2π)4δ4(pA + pB −
∑

pi)

× |M(pA, pB → {pi}|2 ,

M: scattering amplitude.
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Multi-leg amplitudes are needed because:

◮ LHC processes always have multi-jets final states—
multi-parton hard process.

◮ In order to test the theory with the experiments precisely, we
need multi-leg amplitudes.

◮ Some new physics particles also produce multi-jet final states.
To confirm it is a new physics phenomenon we needs to first
understand the SM background of this process, which always
involves QCD multi-leg amplitudes.



Feynman rules

◮ Calculating amplitudes in Quantum Field Theory: Feynman
diagrams and Feynman rules
QCD: Nonabelian gauge field theory.
For pure Yang-Mills, Feynman Rules for self-interaction:

aµ

b
ν

c
ρ

k
q p = gfabc

(

ηµν(k − p)ρ + ηνρ(p − q)µ + ηρµ(q − k)ν
)

µ a νb

ρcdσ

=







−ig2[ fabefecd(ηµρηνλ − ηµληνρ)
+ fadefebc(ηµνηρλ − ηµρηνλ)
+ facefebd(ηµνηρλ − ηµληνρ)]



Difficulties

Difficulties in calculating the amplitudes in Yang-Mills (Y-M)
theory and QCD. For multi-gluon amplitudes

◮ Too many diagrams
external gluons 4 5 6 7 8 9 10

diagrams 4 25 220 2485 34300 559405 10525900

◮ Too many terms in each diagram: comes from the complexity
of vertices

◮ Too many kinetic variables: ki · kj



A 5-gluon tree-level amplitude

A typical brute force calculation of five-gluon tree level amplitude:
(from Z. Bern hep-ph/9304249)



Color ordering

◮ The structure constants in the vertices of pure Yang-Mills
theory:

fabc = 2Tr(T aT bT b − T cT bT a)

◮ The full amplitude can be decomposed:

A[(ph, a)1, . . . , (p
h, a)n] =

gn−2
∑

σ∈Sn/Zn

Tr[T aσ(1) · · ·T aσ(n) ] A[(ph)σ(1), . . . , (p
h)σ(n)]

A is called partial amplitude. Feynman rules can be
formulated directly in color ordered version.

◮ Reversal.

A(1, . . . , n) = (−1)nA(n, . . . , 1)

◮ Dual Ward identity.

A(1, 2, 3, . . . , n) + A(2, 1, 3, . . . , n) + A(2, 3, 1, . . . , n)+

· · · + A(2, 3, . . . , 1, n) = 0



Spinor momentum

◮ It is convenient to express a Lorentz 4-vector as a bispinor

paȧ = pµ σµ
aȧ

where σµ are the components of the Pauli 4-vector

σµ →
([

1 0
0 1

]

,

[

0 1
1 0

]

,

[

0 −i
i 0

]

,

[

1 0
0 −1

])

◮ 2p · q = paȧq
aȧ and p2 = det paȧ. If p2 = 0, we can factorise

the bispinor thus:
paȧ = λaλ̃ȧ,

often abbreviated p = λλ̃. λ and λ̃ transform in the (1
2 , 0) and

(0, 1
2) representations, respectively.

◮ For real momenta, λa = (λȧ)
∗; for complex momenta or

under the (−,−, +, +) metric, the two are independent.



Spinor helicity

◮ We can also express the polarisation vectors in this formalism.
For a gluon with momentum p = λλ̃, we have positive and
negative helicity polarisations given by

ǫ+aȧ =
µaλ̃ȧ

〈µ λ〉 and ǫ−aȧ =
λaµ̃ȧ

[λ µ]
.

◮ µµ̃ is a reference momentum not parallel to p. This
freedom amounts to a gauge choice.

◮ Clearly, p · ǫ± = 0.



Five point amplitude

Example: Five point amplitude: We need only A(−− + + +)
amplitudes. The others can be related to these two amplitudes.

A(−− + + +) = i
〈1 2〉4

〈1 2〉〈2 3〉 . . . 〈5 1〉 ∼ A(+ + −−−)∗

A(− + − + +) can be obtained from A(−− + + +) by dual ward
identity.

A(− + − + +) = i
〈1 3〉4

〈1 2〉〈2 3〉 . . . 〈5 1〉
A(+ + + + +) = A(− + + + +) = 0



Some simple n-point partial amplitudes

For general n point partial amplitudes:

◮

A(1+, . . . , n+) = A(1−, 2+, . . . , n+) = 0

◮ Pure Y-M MHV (Maximal Helicity Violating) amplitude,
proposed by Parke and Taylor [Phys. Lett. B 157 81 (1985)],
proved by Berends and Giele [Nucl. Phys. B 306 759 (1988)].
: Simple & Beautiful

A(1+ · · · i− · · · j− · · ·n+) = i
〈i j〉4

〈1 2〉〈2 3〉 · · · 〈n − 1 n〉



CSW rules
CSW rules (F. Cachazo, P. Svrcek, E. Witten, JHEP
0409:006,2004):

◮ Analytically continue the MHV amplitude to off-shell. For
off-shell momenta, we define

λa = Paȧη
ȧ.

η is an arbitrary spinor. Use this λ to construct off-shell MHV
vertices.

◮ Construct tree level non-MHV amplitudes using MHV vertices
connected with scalar propagator, 1

P 2 .
◮ Adding one MHV vertex increases one “−” helicity external

leg. n− − 1 vertices for diagrams with n− “−” helicity legs.

+

+

−

−
+

+

−

+
+

−

−

−



CSW rules

◮ Advantage: Reduce the number of diagrams and the number
of terms for each diagram.
The number of diagrams grows at most as n2 for large n.
A typical example: A(−−− + · · ·+), n external legs:
2(n − 3) diagrams

n +

1 −

+ −
4 +

3 −

2 −

i ++i 1 +

− +

2 −
1 −

+n

3 −

4 +

i + i + 1 +



CSW rules

◮ Only useful in tree level amplitude and can also be used in one
loop supersymmetric amplitude.

◮ For one loop non-supersymmetric amplitude, there are some
missing pieces.



BCFW recursion relation

An(1, 2, . . . , (n − 1)−, n+) =
n−3
∑

i=1

∑

h=+,−

(

Ai+2(n̂, 1, 2, . . . i,−P̂h
n,i)

× 1

P 2
n,i

An−i(+P̂−h
n,i , i + 1, . . . , n − 2, ˆn − 1)

)

,

where

Pn,i = pn + p1 + . . . + pi,

P̂n,i = Pn,i +
P 2

n,i

〈n − 1|Pn,i|n〉
λn−1λ̃n,

p̂n−1 = pn−1 −
P 2

n,i

〈n − 1|Pn,i|n〉
λn−1λ̃n,

p̂n = pn +
P 2

n,i

〈n − 1|Pn,i|n〉
λn−1λ̃n.

All the amplitudes involved in the recursion relation are onshell.



BCFW recursion relation

In diagram, the recursion relation can be represented as:

n

n−1

+

_

1
2

n−2

i

i+1

+

_

n−3

i=1

n−3

i=1

n

n−1

+

_

+

_

1
2

n−2

i

i+1

+
n

1

n−1

n−2

_

+

An example: A(−−− + ++), only two diagrams are non zero

4 4 4

3 3 3
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MHV Lagrangian: Introduction
CSW rules was first proposed inspired by the considerations in
twistor string theory. To derive them from field theory side

◮ There were some indirect proof of CSW rules. Using the
BCFW recursion relation.

◮ MHV-lagrangian approach to derive CSW rules:
◮ Paul Mansfield: Propose a framework to deduce MHV

lagrangian from Pure Yang-Mills under canonical
transformation of the fields (JHEP0603:037,2006). Each MHV
vertex comes from one term in the lagrangian

L−+[B, B̄]+L−−+[B, B̄]+L−−++[B, B̄]+L−−+++[B, B̄] · · ·
The vertices from the lagrangian are MHV amplitudes
continued to off-shell.

◮ The canonical transformation can be explicitly solved. The
missing pieces of the CSW rules is from the Completion
vertices. (Tim and James,JHEP0608:003,2006, JHEP
0705:011,2007.)

◮ The MHV lagrangian can be extended to include fermions and
to SQCD (JHEP 0808:103,2008, JHEP 0812:028,2008.) .



Massless Light-cone Y-M Lagrangian

LCYM: Starting from massless Y-M Lagrangian in terms of Ǎ, Â,
Ã, Ā.

◮ Choose a gauge: µ · A = Â = 0, reference momentum
µµ = (1, 0, 0, 1) The lagrangian is quadratic in Ǎ.

◮ LCYM Lagrangian: Integrate out nondynamical fields: Ǎ. The
fields left are A Ā.

LLCY M = L−+
Y M + L++−

Y M + L−−+
Y M + L−−++

Y M



Canonical Transformation for light-cone

Y-M

◮ From
L−+

Y M = tr(∂̌A∂̂Ā − ∂A∂̄Ā)

Canonical Fields (up to constant coeff.):

(A, ∂̂Ā)

◮ Canonical Transformation: (A, ∂̂Ā) → (B, ∂̂B̄) , s.t.

L−+
Y M [A, Ā] + L++−

Y M [A, Ā] = L−+
Y M [B, B̄]



Canonical Transformation for light-cone

Y-M

◮ MHV and charge conservation (preserve − helicity fields)
requirements:

A0 ∼
∑

n

∫

Υ01···nB1 · · ·Bn,

∂̂Ā0 ∼
∑

m,n

∫

Ξm
01···nB1 · · · ∂̂B̄m · · ·Bn

n

B
...
...
B

A n ∂̂B̄m

B...

...

B

∂̂Ā

◮ If we can solve these coefficients and then we can substitute
these into the LCYM and we obtain MHV Lagrangian

L−+[B, B̄]+L−−+[B, B̄]+L−−++[B, B̄]+L−−+++[B, B̄] · · ·



Solving the equation for A

From equation:

L−+
Y M [A, Ā] + L++−

Y M [A, Ā] = L−+
Y M [B, B̄]

Change to momentum space, we obtain an integral equation:

ω1A1 − i

∫

23
ζ3[A2, A3] (2π)3δ3(p1 − p2 − p3) =

∫

p

ωpBb
p

δA1

δBb
p

,

where ωi = pip̄i/p̂i and ζi,j = (p̄i + · · · + p̄j)/(p̂i + · · · + p̂j).
◮ Expand A in B

A1 = B1 +

∞
∑

n=3

∫

2···n

Υ12···n B2̄ · · ·Bn̄,

◮ Substitute this into the integral equation, we have a recursion
relation for Υ:

Υ(1 · · ·n) =
i

ω1 + · · · + ωn

n−1
∑

j=2

(ζj+1,n − ζ2,j)

×Υ(−, 2, · · · , j)Υ(−, j + 1, · · · , n),



Solving the equation for A

A n

B
...
B

= 1
P

n

0 Ωi

∑

r+s=n

r

B....
B

s

B
..
..
B

This can be solved:

Υ(1 · · ·n) = −gn−2 1̂√
2̂ n̂〈2 3〉〈3 4〉 · · · 〈n−1, n〉

, n ≥ 3,



Solving the equation for Ā

We expand ∂̂Ā

1̂Ā1̄ =
∞
∑

m=2

m
∑

s=2

∫

2···m
ŝ Ξs−1

1̄2···m
B2̄ · · · B̄s̄ · · ·Bm̄,

From
∫

d3~x ∂̌Ba(x0, ~x)∂̂B̄a(x0, ~x) =

∫

d3~x ∂̌Aa(x0, ~x)∂̂Āa(x0, ~x)

We obtain a recursion relation for Ξ

Ξl(1 · · ·n) = −
n+1−l
∑

r=2

r+l−1
∑

m=max(r,3)

Υ(−, n−r+3, · · · , m−r+1)×

Ξl+r−m(−, m−r+2, · · · , n−r+2),



Solving the equation for Ā

∂̂B̄

B

B

..

..
= −∑′

B

B

..

..

.

∂̂B̄

B

B

..

..

At least two left legs on the white blob. Solution:

Ξs−1(1 · · ·n) = − ŝ

1̂
Υ(1 · · ·n), (s = 2, · · · , n and n ≥ 2).



CSW rules from MHV Lagrangian

◮ We have obtained the canonical transformation for A and ∂̂Ā

◮ Substituting these into the LCYM and collecting the similar
helicity terms, we would obtain MHV lagrangian:

L−+[B, B̄]+L−−+[B, B̄]+L−−++[B, B̄]+L−−+++[B, B̄] · · ·

the vertices for B fields are the off-shell continuation of the
MHV amplitudes. This is proved in paper arXiv:0908.0020,
Fu.

◮ The propagators of B are only the scalar propagators.

L−+
Y M = tr(∂̌B∂̂B̄ − ∂B∂̄B̄)

〈B(p)B̄(−p)〉 =
i

p2

This is CSW rule.



Summary and Discussion

◮ We gave some introduction to the Standard Model and
physics on LHC. We need to calculate multi-leg amplitude
from the theory side to match with the experiment.

◮ We review some techniques used in tree-level calculation of
QCD amplitudes: Color ordering, Spinor method, CSW rules,
BCFW recursion relation.

◮ We briefly sketched the proof of the CSW rule from MHV
Lagrangian in Yang-Mills theory. This can also be extended to
full QCD.

◮ Tree-level amplitude is the first step. In fact, now the
bottleneck is in the one-loop calculation.

◮ How to extend the CSW rules to highly simplify the one-loop
nonsupersymmetric amplitude calculation is still not available.

THANK YOU!
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