Gauge/Gravity duality and Nuclear Symmetry energy

Sang-Jin Sin (Hanyang Univ.)

2011.07.08@USTC

Greeks called indivisible Building block of the universe Atom

- Two most basic questions in physics are
 - 1. What is the Atom?
 - 2. What Forces glue them together to make the visible world?

Modern Theory of Atom Dalton's story was not the end...

Force=exchange of glue particles

Two levels of strong force. (QCD,meson) Gravity is very special and not included here

QCD: today's theme For High E: g<<1: Asymptotic freedom

$$\beta_1(\alpha) = \frac{\alpha^2}{\pi} \left(-\frac{11N}{6} + \frac{n_f}{3} \right)$$

$$\alpha_s(k^2) \stackrel{\text{def}}{=} \frac{g_s^2(k^2)}{4\pi} \approx \frac{1}{\beta_0 \ln(k^2/\Lambda^2)},$$

5

•For Low E: QCD is still difficult interaction strong, fluctuation large

High E v.s Low E of Strong int.

For strong int. Not clear even what is particle

Asymptotic freedom and confinement

General Idea for strong int.

 Reformulate theory in terms of new degree of freedom whose interactions are weak.

Duality

An idea from string theory

 Replace strong nuclear force by classical gravity(geometry).

What is the string theory?

Old String theory

Regge trajectory → spectrum of string

Difficulty of old string theory

- Hard to explain the quark's free behavior.
- abandoned and re-incardnated as a quantum gravity, which is a BIG deal!
- Why? qm gravity is difficult! puzzle

Specialty of Quantum gravity

- Force = grad (potential Energy)
- Einstein: gravity is not a force but a curvature.

Curvature = k (Energy (mass))

 Quantum fluctuation of any field generate infinite Energy → infinite gravity essential difficulty

Origin of the vacuum energy

• Uncertainty principle. $\Delta p \sim \frac{h}{\Lambda r}$

 in a particle theory, any large energy is possible (Delta x→0)

Finiteness of String theory

• stringy uncertainty principle

$$\Delta x \sim \frac{\hbar}{\Delta p} + \alpha' \Delta p \geq \sqrt{\alpha'} = l_{\text{string}}$$

energy of the string per unit length is constant \rightarrow E up means length up

Minimal length

 \rightarrow UV divergence disappear

Open – closed duality

• Two are dual to each other through D-brane:

0

D-branes

- Closed string soliton
- That this object has dual description by dynamics of open string ending on it, is the major discovery of 90'. (Polchinski)
- vibration of D brane

geometry.

The low energy dynamics SU(N) SYM=string theory at warped

D-brane & gravity

• Stack of D-brane

→ space time warp due to the tension. →(AdS).

Eschers's "Angels and devils"

AdS/CFT duality

-String in AdS5 is dual to SYM in 4d.

 $-5d v.s 4d \rightarrow Holographic corr.$

-For <u>large</u> coupling, , AdS/CFT \rightarrow gravity/gauge dualtiy $\lambda = g_s N_c$

Consequence of duality

- Gluon dynamics is replaced by ads gravity.
- For large N_c, gravity is weakly coupled.
- Correlation function in 4d can be calculated by the classical dynamics at the ads bulk.

AdS/CFT at finite T

II. String theory in RHIC/LHC collider

Relativistic Heavy Ion Collider (Brookhaven N.L)

- Au-Au collision
- E~200 GeV/nucleon
- Seek quark-gluon plasma(QGP)

Detectors star phenix

Some Puzzles (my contributions)

- Elliptic flow (hep-th/0610113).
- Perfect fluid : (0806.4460 , 0901.0610)
- Jet quenching (hep-th/0607123)
- Early thermalization (hep-th/0511199)

 \rightarrow QGP is strongly interacting

Liquid than Ga\$

Jet-Quenching

• Energy Loss Problem.

Elliptic flow V_2

Early observation at RHIC: v₂ as large as predicted by **perfect fluid dynamics**!

Perfect fluid

Exp: $\eta / s < 0.1 \times \hbar / k_B$ While perturbative evaluation ~1/g^4

ads/cft:
$$\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}$$
 Universal value

Transport Coeff.

X.Ge, Y.Matsuo, F.Shu, SJS, Takuya Tsukioka, arXiv:0806.4460 Y. Matsuo, SJS. S. Takeuchi, T. Tsukioka, C. Yoo (APCTP), archiv:0901.0610

- Linear response theory: causal Green function → T.C
- Ads/cft can calculate <JJ>, <TT> easily.

III. String theory and Nuclear Symmetry Energy.

• There will be a heavy ion collider constructed in Korea in 5 year with ~billion dollar.

KoR(are)I(sotope)A

• Valley of stability: Pauli v.s Coulomb

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Liquid Drop Model Bethe-Weizsäcker formula (1935):

$$m = Zm_p + Nm_n - \frac{E_B}{c^2}$$

x=1

2.0

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \delta(A,Z)$$

 $E(\rho, \tilde{\alpha}) \simeq E(\rho, 0) + S_2(\rho)\tilde{\alpha}^2 \qquad \tilde{\alpha} \equiv (N - Z)/A$

It determines the curvature of valley of Stability.

Es and Pauli principle

Asymmetry term $Es(N-Z)^2$ is the consequence of Pauli principle. \rightarrow Pauli term

Es(N-Z)^2 :

- If $Es \rightarrow 0$, pure neutron star is possible.
- If $Es \rightarrow infinity: N=P$

Importance of Es

- Structure of Neutron Star the mass and width of neutron-star crusts.
- Properties of Exotic Nuclei
- Nucleo-Synthesis during the supernova explosion.

non-interacting fermi gas

$$E_k = \frac{3}{5} (N_p \epsilon_{Fp} + N_n \epsilon_{Fn})$$

$$E_k = \frac{3}{5}\epsilon_F (N_p + N_n)^{2/3} + \frac{1}{3}\epsilon_F \frac{(N_n - N_p)^2}{(N_p + N_n)} + O((N_n - N_p)^4) = \frac{3}{5}\epsilon_F A^{2/3} + \frac{1}{3}\epsilon_F \frac{(A - 2Z)^2}{A} + O((A - 2Z)^2) + O((A -$$

$$E_{sym} = rac{\epsilon_F}{3} \sim
ho^{2/3}$$
 Non-relativistic $\sim
ho^{1/3}$ Relativistic

Contribution of Pot.

$$E_{sym} = E_{sym}(kin) + E_{sym}(pot) \equiv \frac{\epsilon_F}{3} + C_{sym}(\rho)$$

stronger density dependence, $E_{sym}(\rho) = a \cdot \left(\frac{\rho}{\rho_0}\right)^{2/3} + b \cdot \frac{2\left(\rho/\rho_0\right)^2}{1 + \left(\rho/\rho_0\right)},$

weaker density dependence

$$E_{sym}(\rho) = a \cdot \left(\frac{\rho}{\rho_0}\right)^{2/3} + 240.9\rho - 819.1\rho^2,$$

What is known for E_s ?

 Little is known for high density. not Exp. nor theoretical.

Even for the low density

- The separation of free part and potential part may not be valid.
- So both low as well as high density regime is to be trusted.

Why difficult?

 Strongly interacting. No good calculational tool in this regime.
 Density effect: Even lattice qcd does not help much.

Repeat: String theory idea is

Replace Nuclear force by classical gravity

Gluon dynamics \rightarrow Geometry.

Confinement or deconfinement depends on geometry.

Flavor dynamics by classical fields in warped geometry.

Result

arXiv:1011.0868→ to appear in JHEP by Y.Kim, Y.Seo, I. Shin, SJS

How to detect Es?

• Asymmetry in N-P is ~ that in π - π +

 π-/π+ yields are sensitive to the stiffness of the symmetry energy near threshold energy.

Experiment \rightarrow stiff

Z.-Q. Feng, G.-M. Jin / Physics Letters B 683 (2010) 140-144

 $^{40}Ca+^{40}Ca,~^{96}Ru+~^{96}Ru,~^{96}Zr+^{96}Zr$ and $^{197}Au+^{197}Au$, and also plotted the ratios of N/Z and (N/Z)² as a function of N/Z at incident energy 0.4A GeV and 1.5A GeV, respectively.

Pauli principle in hQCD.

- DBI action[Q1,Q2]=f(Q)+S2(Q1-Q2)^2+ ...
 Positivity of S2 is equivalent to the Pauli principle in hqcd
- Parallel to "Driving force of Z=N is Pauli principle"
- Dual of fermion number is the local U(1) in 5d.
- Coulomb repulsion of the dual E&M is responsible for the Es.

Why
$$S_2 \sim \rho^{1/2}$$
.

• analytic expression for symmetry energy.

$$S_2 = \frac{2\tau_6}{N_B} \int d\rho \frac{\sqrt{1+\dot{y}^2} \tilde{Q}^2 \omega_+^{10/3} \rho^4}{(\tilde{Q}^2 + 4\omega_+^{8/3} \rho^4)^{3/2}},$$

- For the flat embedding approximation. $S_2 = \left(\Gamma(\frac{5}{4})\right)^2 \sqrt{\frac{\lambda\rho_0}{2M_{KK}}} \sqrt{\frac{\rho}{\rho_0}}.$
- Have confidence on

Dispersion relation for non-fermi-Liquid

$$E_{sym} \sim \rho^{2/3}$$
 comes from $E = p^2$
 $E_{sym} \sim \rho^{1/3}$ from $E = p$

$$E_{sym} \sim \rho^{1/2} \to E = p^{3/2}$$

Why interesting?

- The anomaly in dispersion relation is closely related to the fermi surface structure.
- For strongly interacting system, fermi surface is fuzzy and its implication is a big and interesting issue.
- Entire Thermodynamics as well as hydrodynamics of the strongly interacting Non-fermi liquid system will be a hot issue.

Conclusion

- String theory is useful as well as interesting.
- Symmetry Energy can be calculated using the holographic principle.
- Physics of fermi surface for strongly interacting system will be Interesting issue.
- It can make the KoRIA more interesting project.