

ZHEJIANG UNIVERSITY

对撞机的新进展 @ LHC and Tevatron

罗民兴

浙江大学浙江近代物理中心

<ロト < 母 > < 臣 > < 臣 > 三 の < @ </p>

探测器的组成

浙江大学 浙江近代物理中心 罗民兴

探测器中的粒子

- 电子,光子在电磁量能器中产生EM Shower。(tracking系 统区分带电与不带电的粒子)
- τ 子衰变: $c\tau_{\tau^{\pm}} \sim 80 \ \mu m(\tau \sim 10^{-13} \text{ s})$: $\tau^+ \to \pi^+ \bar{\nu}_{\tau}$ isolated pion. τ^{\pm} is not lepton in collider but can be distinguished from jet.
- μ \mathcal{F} : $c\tau_{\mu^{\pm}} \sim 600 \text{ m}(\tau \sim 10^{-6} \text{ s})$: μ^{\pm} is stable in collider.
- B介子次稳定: $c\tau_{B^{\pm}} \sim 500 \ \mu m(\tau \sim 10^{-12} \text{ s})$: secondary vertex for *b*-tagging

大型强子对撞机是一个QCD machine!

Digging signal out of QCD: 1 out of 10^8

- high p_T object of $p_T > 120$ GeV: large mass difference
- large missing transverse energy: $E_T > 100$ GeV: DM and right kinematics
- isolated hard leptons (electron or muon) or photon: $e^{\pm}, \mu^{\pm}, \gamma$: isolation is the key
- jet with displaced vertex: *b*-tagging: *b* is from gluon splitting third generation new physics

However, what we see may not be what we think we have seen.

- jet/lepton energy measurement
- $\pi^0 \rightarrow \gamma \gamma$: boosted pion may look like photon
- D_s^{\pm} being faked as B^{\pm} 10%.
- π^+ being faked as μ^+ .
- μ^+ from *B* semi-leptonic decay.
- τ identification
- A lot of more faking

结论: LHC的主要结果

- A robust exclusion interval for the SM Higgs. Essentially only a narrow window below 600 GeV: 122-128 GeV.
- Some indication for m_H 125 GeV
- No evidence of new physics, although a big chunk of new territory has been explored
- Important results on B and D decays from LHCb (also CMS)

- 戸下 - 三下 - 三下

Outline

- Higgs
 - Cleanest: $\gamma\gamma$, 4ℓ
 - bb+V
 - WW*,τ
- Top Quark
- 共振态
- 低能超对称理论
 - E_T 暗物质直接测量
 - •同号两轻子 $X + \ell^{\pm}\ell^{\pm} + E_T$
 - 第三代squark $X + b + E_T$
 - Photino NLSP in GMSB $X + \gamma + \not{E}_T$
 - *R*-parity violation: Three-jet resonance $\tilde{g} \rightarrow qqq$
- B/D介子物理

・ロト ・ 同ト ・ ヨト ・ ヨト

Higgs的典型信号

- 最clean的道: Higgs的四轻子($gg \rightarrow h \rightarrow ZZ^* \rightarrow 4\ell$),双光 子($gg \rightarrow h \rightarrow \gamma\gamma$)。 背景清楚,高resolution
- 双轻子道 $gg \to h \to WW^* \to \ell \bar{\nu} \bar{\ell} \nu$
- Wbb, Zbb: Tevatron的最重要的道
- WBF产生h: $h \rightarrow \tau \tau$

Top Quark

Measuring Top Properties

- Top almost always decays to Wb
 - Decay modes characterized by W decays
- Two main modes for top properties analyses:
 - Lepton+Jets: one W decays to quarks, one to $e(\mu) + \nu$
 - Moderate backgrounds, reasonable branching ratio; fully constrained kinematically
 - Usually require a b-tag to reduce backgrounds
 - Dilepton: both W's decay to $e(\mu) + \nu$
 - Very low backgrounds, but small branching ratio; under-constrained kinematically

Top Cross Section

イロト イロト イヨト イヨト

Top Quark衰变的精细测量

 m_t breaks electroweak gauge symmetry. Large m_t couples to symmetry breaking sector ("Goldstone", longitudinal polarized W) strongly.

 $m_b/m_t \rightarrow 0$: "massless" *b* is left-handed polarized.

Longitudinal W polarization: $\epsilon_0 \sim k_\mu/m_W$

$$\begin{aligned} \epsilon_0^* \bar{u}_{bL} \gamma_\mu u_t \simeq \frac{m_t}{m_W} \bar{u}_{bL} u_t \\ f_0 &= \frac{\Gamma(t \to bW_0^+)}{\Gamma(t \to bW_0^+) + \Gamma(t \to bW_+^+) + \Gamma(t \to bW_-^+)} \simeq 70\% \\ r_- &\simeq 30\%, f_+ \simeq 0 \end{aligned}$$

Confirmed by D0 and CDF and also CMS...

Great! but what does it tell us? Only EWSB occurs but not how EWSB take place... ...

pQCD在Top Pair系统的精细检验:AFB

 $A_{FB}(M_{t\bar{t}} = 450 \text{ GeV}) = 0.475 \pm 0.112$ Hollik:0.128

 $(A_{FB}^{l}$ at D0 is 5σ away from MCFM prediction but MCFM does not include spin correlation.)

The Asymmetry at CDF in the Full Dataset

- Updates from CDF's 5.3 fb⁻¹ lepton+jets analysis:
 - Add new data stream and increase luminosity to 8.7 fb⁻¹
 - > 2498 events (double sample size)
 - Use NLO generator Powheg for signal modeling
 - Parton level shape corrections use regularized unfolding algorithm
 - Proper multi-binned measurement of rapidity and mass dependence
- Parton Level A_{FB}: 16.2 ± 4.7 % (NLO: 6.6%)

12

CDF Conf. Note 10807

D. Mietlicki Moriond 2012

Dijet Resonances

- · QCD predicts a smooth, steeply falling dijet mass spectrum
- Many extensions of the SM predict new massive objects producing resonant structures ("bumps") in the dijet mass spectrum

- The following specific models of *s*-channel resonances considered:
 - String resonances (S), $E_{\rm g}$ diquarks (D), excited quarks (q*), axigluons (A), colorons (C), heavy gauge bosons (W' and Z'), RS gravitons (G)
- The main background for this search is the SM jet production

Dijet Resonances (cont'd)

an

浙江大学 · 浙江近代物理中心 罗民兴

Pair-Produced Dijet Resonances

- Dijet resonance searches generally more sensitive to singly-produced new particles
- This search focuses on narrow colored resonances produced strongly in pairs and each decaying into a pair of jets
 - · Search performed in a paired dijet mass spectrum in events with at least 4 jets
 - · Paired dijet mass defined as the average of the two dijet masses
- · Search results compared with a specific coloron model

· As with the dijet resonances, the main background is the SM multijet production

Pair-Produced Dijet Resonances (cont'd)

4-Jet Data Background Fit

QCD Simulation

Coloron (400 & 800 GeV

2.2 fb

- Signal and background modeling:
 - Signal samples produced using MadGraph with colorons modeled as narrow dijet resonances
 - Signal shape modeled by a double Gaussian ٠
 - Background modeled by the same smooth function as ٠ in the dijet resonance search
- Dominant sources of systematic uncertainty:
 - Jet energy scale, jet energy resolution, integrated

SEARCH2012 - March 19, 2012 Hadronic Exotica Searches at CMS (Dinko Ferenček, Rutgers)

浙江大学 浙江近代物理中心

CMS Preliminary

per 40 GeV 10

Events

 10^{2}

超对称的典型信号

- 暗物质? jet+*E*_T (also in all other channels except *R*-parity violation.)
- 第三代squark: lots of b-jets
- Majorana Gluino: 同号双轻子
- Photino in GMSB: $\gamma + \not E_T$

4 ∃ ≥

SUSY in Jets+MET

This talk presents searches which were thought having SUSY in mind:

· High rate of gluino, squark production

This is translated into the topology:

- Final states with jets, invisible energy due to LSP $(\mbox{ME}_{\mbox{\tiny T}})$

These searches are sensitive to processes which:

- Are strongly produced
- Have a massive, weakly interactive, stable colorless particle

If a model does not predict hadronically rich events, with invisible energy

This is the wrong place to look at ;)

Leonardo Sala (ETHZ)

SUSY searches in Jets+MET at CMS - SEARCH2012, UMD

SM in Jets+MET

Standard Model processes can be divided in two broad categories:

"Reducible":

- QCD:
 - Huge cross section, potential jet fluctuations create fake ME_T
 - Generally, reduced to negligible amount with topological cuts
- W+Jets, Top:
 - They have genuine ME_T
 - But also a lepton \rightarrow lepton veto

"Irreducible":

- Z(vv)+Jets:
 - Same topology, real ME_T
 - Cannot be reduced (at least efficiently), must be estimated

Leonardo Sala (ETHZ)

SUSY searches in Jets+MET at CMS - SEARCH2012, UMD

MHT (1.1/fb): definition

Multibinned analysis based on:

- H_{T} : scalar sum of jets p_{T} >50 GeV, $|\eta|$ <2.5
- MH_{T} : vector sum of jets p_{T} >30 GeV, $|\eta|$ <5

Event Selection:

- $N^{jets}(pT>50 \text{ GeV}, |\eta|<2.5)>=3$
- + $\rm H_T\!\!>\!\!350~GeV,\,MH_T\!\!>\!\!200~GeV \rightarrow reduces~QCD$
- Δφ(jet_N,MH_T) > 0.5 (n=1,2) && Δφ(jet₃,MH_T) > 0.3 →protects against MH_τ due to jet mismeasurement
- Veto on isolated electrons/muons (loose cuts), pT>10 GeV, $\frac{3}{8}$ $|\eta|<2.5$ (2.4) for electrons (muons) \rightarrow reduces W+jets, Top

Search Regions:

- Medium H_τ/MH_τ: H_τ>500 GeV, MH_τ > 350 GeV
- *High H_T*: H_T > 800 GeV, MH_T > 200 GeV
- High MH_{τ} : H_T>800 GeV, MH_T > 500 GeV

Exclusion Limits

Msugra/CMSSM:

- tanβ=10
- A₀=0
- µ>0

SUSY Strong Production Searches @ ATLAS Christopher Young

Conclusions

- Three analyses have been presented.
- ▶ All use 4.7fb⁻¹ of 7 TeV data.
- No excess above the Standard Model expectation was observed.
- Limits were set in MSUGRA/CMSSM and some simplified models.
- Searches designed to be generic → should cover many other models.
- Other analyses are in the process of being updated to the full dataset.
- We look forward to 8 TeV running this year.
- Are there any questions?

Gluino Mediated Sbottom

200

- Analysis signature: b-tagged jets + E_T^{miss}
- Trigger: 1 high p_T jet + E_T^{miss}
- Selection:

first jet > 130 GeV; at least 2 more > 50 GeV $E_T^{miss} > 130 \text{ GeV}$ 1-2 jets must be *b*-tagged veto electrons & muons

 $E_{T^{miss}} / m_{eff} > 0.25$

ATLAS-CONF-2012-003

SEARCH Workshop 2012

Summary

- Broad program of 3rd generation squark searches underway on ATLAS
 - Gluino-mediated sbottom: *b*-jets + E_T^{miss}
 - Gluino-mediated stop: 1 lepton + 4 jets + E_T^{miss}, same-sign dilepton + E_T^{miss}, multijets + E_T^{miss}
 - Direct sbottom: 2 b-jets + E_T^{miss} (m_{CT})
 - Direct stop (GMSB): 2 leptons + jets + E_T^{miss}
- No significant excesses; limits set on stop and sbottom masses (m_b > 800 GeV for m_g < 920 GeV [MSSM], m_t > 450 GeV for m_g < 650 GeV [MSSM])
- Still analyzing 5 fb⁻¹ @ 7 TeV and looking forward to 8 TeV data in 2012!

S. Majewski

SEARCH Workshop 2012

同号双轻子

- Important background for all analyses with leptons
- Most of this background is from top-pair events
 - \checkmark Note, not all is from b->e/ μ , some can come from charm in W, or just light flavor
 - ✓ Muons are almost all from b, so says simulation !

- In SM only W and Z boson decays are of any interest
- WZ and ZZ above have extra lepton ==> extra Z rejected for SS analysis
- TTW and TTZ

SEARCH Workshop 03/18/12

✓ Note, these naturally have 2 b-quarks

20

Sunday March 18 2012

V. Krutelyov Sa

Same-sign dileptons and multileptons

SS dileptons: results (1)

SS dileptons: interpretation in cMSSM

浙江大学 浙江近代物理中心 罗民兴

23

γ+MET: MET distributions

· Observed data in agreement with background predictions

Limits calculated by combining exclusive bins of MET 1γ : 6 bins starting at MET of 100 GeV 2γ : 6 bins starting at MET of 50 GeV

Three-Jet Resonances

- New physics could be hiding in final states with more than 4 high- $p_{\scriptscriptstyle T}$ jets
- This search focuses on a pair production of massive colored resonances, each decaying into 3 jets, resulting in a 6-jet final state (pp → QQ → 3j 3j)

- One specific model of 3-jet resonances realized in RPV decays of supersymmetric gluinos to 3 quarks
 - Event selection criteria optimized in the context of this model but generic enough to provide a robust model-independent basis for searches for other models of new physics producing similar final states
- As in all cases up to now, the main background is the SM multijet production

Three-Jet Resonances (cont'd)

- Background modeling:
 - Shape of the triplet mass distribution largely unchanged between events with N_{jet}=4 (or N_{jet}=5) and N_{jet}≥6
 - N_{jet}≥6 triplet mass distribution described by an exponential function with the slope parameter P₁ constrained by the N_{jet}=4 triplet mass distribution
- Signal modeling:
 - Signal samples simulated using PYTHIA6
 - Gluinos modeled as narrow resonances and set to decay to 3 quarks through the λ_{uds} quark RPV coupling with BR(g~→qqq)=100%
- · Dominant sources of systematic uncertainty:
 - Jet energy scale, ISR/FSR, pile-up, choice of PDFs, integrated luminosity

Results:

 Gluino masses in the range 200 to 280 GeV (200 to 270 GeV expected) excluded at 95% CL

00

浙江大学 · 浙江近代物理中心 罗民兴

Is SUSY dead? Not at all.

- Gluino-bino coannihilation $\tilde{g} \to g \tilde{\chi}_1^0$
- Stop-bino coannihilation $\tilde{t} \to c \tilde{\chi}_1^0$
- Stau NLSP (favored by enhanced diphoton in MSSM of 125 GeV Higgs)

谢谢!

浙江大学 浙江近代物理中心 罗民兴