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1. String Perturbation Theory
String theory by path integral
The string action:

T

Slg, X| = —5/0120 V=99 0, X" 05X,

could be quantized by the (Wick rotated) path
integral:

7 = / DgDX e 59X




In order to do this let us first find what gauge fixing
conditions are permissible. For an arbitrary Riemann
surface, it is not always possible to take the conformal
gauge globally.

Under an arbitrary local coordinate transformation

c% — 6% =d%0),

the metric g.3(0) transform as follows:

. 0o Oa?
g&ﬁ(g) — gaﬁ(g) = 550 50 gfy(;(a).




The possibility of taking the conformal gauge is that
any metric g,3(c) can be changed to the conformal
gauge, giving rise to the following equation:

0o Oo?

05 H&3 gys(0) = e?7) Oa3-

By a simple counting of the freedoms, the number
of independent functions matches. However this is
not enough. We need to show that the required
transformation is nonsingular, i.e. the Jacobian for
passing from ¢,5 to (¢,5”) is non-zero. To show this
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we consider an infinitesimal variation of the metric:

0 Gap = 09 Jop + Valp + + V3 a,

where &, = ¢.5¢” and ¢ = 67 — o”. The nonsingular

nature of the transformation is proved if for any
symmetric 09,3 we can find 0p and ¢, such that the
above equation will hold. In other words, we must be
able to solve the equation

0P gap T VOzfﬁ + +0 das \/ 3 Eo = 59046 = Yag;




or

1

(P&)as = Vals+ 10 9ap Vs a = Jas = Yap — 59@67((55-

The question, whether the conformal gauge is always
permissible, is reduced now to the possibility of solving
these equations which we shall write symbolically as:

P&E=r.

Here we have denoted by P the differential operator
which takes vector fields into traceless tensors (notice
that the number of independent components is the
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same). There exist a conjugate operator which acts
in the opposite direction—transforming tensors into
vectors. It Is easy to see that this equation will
be solvable if and only if the conjugate operator P*
doesn’t have zero modes. On the other hand, the
solution is not unique if P has zero modes.

So our conclusion is that zero modes of the operator
P mean that the conformal gauge is not permissible,
and zero modes of P mean that the conformal gauge
is not unique (and one should further fix the remaining
gauge freedom).




The number of zero modes is give by index theorem.
We will not go into the details of these mathematics
and only recall the results. We have

No(P) — No(PT) =3x=6—6g,

where Ny denotes the number of zero modes, Y is

the Euler number of the Riemann surface and ¢ is
the genus. In particular, we have the following more
precise results:

No(P) = 6, Nyo(P") =0, for g =0 (sphere),




No(P) = 2, No(P") =2, for g =1 (torus),
No(P) = 0, No(P")=6g—6, for g¢>2.

So we found that on a sphere we can always take
a conformal gauge which is defined modulo SL(2,C)
transformations (with 6 (= Ny(P)) real parameters)
which requires further gauge fixing, like the fixing
of three out of four complex z;, + = 1,2,3,4 (the
location of the inserted vertices) in the case of four-
particle string amplitude at tree level. In the case of
Riemann surface with higher genus we have topological
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obstructions for the conformal gauge. The best thing
which can be done is the following choice of gauge

0
gozﬁ(o-) — g(()éﬁ)(o-a T1,T2y """ 77_69—6)7

where ggg is a metric which depends on 6g — 6 (real)

parameters and, e.g. which can be chosen to have
constant negative curvature. Now the integration over
all metrics (i.e. geometry) then reduces to integration
over gauge orbit and also a 6g — 6 dimensional
integration over {7,,i = 1,2,---,6g — 6}—the moduli
space of inequivalent metrics under coordinate and
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conformal transformations. Our next task is to derive
the explicit measure for such integration.

Before doing this, we mention an important
mathematical result. Roughly speaking, this moduli
space is a complex space. It is quite useful to use
complex coordinates for this moduli space and also
for the Riemann surface. In complex coordinates, the
metric tensor on a Riemann surface is given by the
components ¢.;, ¢g.. and ¢g::. We cover the whole
Riemann surface by several patches and on each patch
we can take the components ¢g.. and ¢.: to 0. Then
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we have:

5gzz — VZ€Z7
5955 — VE€Z7
59;;5 — 590 9.z + gzi(vzgz =+ VE&)-

Here </. and </: are covariant derivatives. Notice that
the only non-vanishing components of the Christoffel
symbol are

z _ ZZ z 2z
Fzz — g 292z and Pzz — 7027,
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we have

Vzgz — gziaz(gzzgz)a
szz — gzZ \ z gz — gzzazgza

and

V&S gzzﬁz(gzzfz) = Vzz-

From these equations we see that the zero modes
of the operator P are holomorphic or anti-holomorphic
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vectors. On the other hand, the operator P reduces
to

(P V)zz — vz V;;z — 922 \ z szz — g22 82 V;;za
(P V)zz — = Vz V= gzZ V2 Vi = 922 0, Vzs,

and its zero modes are holomorphic or anti-
holomorphic tensors. We will denote these tensors as
ccand ¢, i=1,2,---.3g—3. {¢. ,i=1,2,---,3g—3}

227

constitutes a basis of holomorphic 2-differentials.

From the above discussions we see that an arbitrary
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variation of 0g can be written in the following form:

3g—3

5922 — 5252 =+ Z 5Ti ¢2za
1=1

09z V&S Z 0T TOL,
002z = 0yG.z + 9.:(V7E + szz) = 000G,z

The path integral measure Dy is defined by specifying
an inner product in the tangent space of all metrics.
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A natural inner product is

Sqll2 = =
10g] 5

1

/ dQU\/gggvgﬁéégaﬁégw -

By using the decomposition of the variation of the
metric we have

69|

— /dQZgzz [(9225922)2

(922)259225922}

/ d°z [9::(6@)" + 677 /2 & V5 &5
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39—3
+ ) 0T g ¢l

1,7=1

_ / P2g.-(65)? / 02 g..0.87 D.E°
3g—3

+ ) 0T'oT(¢, &),

1,7=1

From this expression we get

Dg = DDEDE ™ |Det'0; | det(¢', ¢7),
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where prime in Det'0. denotes the omission of zero
modes. If there is no anomaly for the conformal
and coordinate transformations which is the case for
D = 26, the integration over ¢, ¢ and &° can be
factorized out of the path integral and we have the
partition function at genus g:

Z, = / 5957 / DX [Det'd.|? det (¢, ¢7) e~ Sl ().X]
M

g

Notice that the appearance of the factor det(¢', ¢’)
iIs associated with the decomposition of 0g... In other
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words, we have chosen a particular gauge slice. We
can also choose a different gauge slice, e.g.

where ' = ¢..pu” and p'*’'s are called Beltrami
differentials. We have

39—3 3g—3

0L+ ) oypl, =04 ) 0T ¢l
i=1 1=1
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Multiplying both sides with ¢.. ¢°* and integrating
over the whole Riemann surface we get

OT(¢, ¢') = Oy (¢, ).

This gives the following transformation rule for
integration over (holomorphic) 7 and y:

d*7 7 det (¢!, ¢’) = APy det(¢’, i)
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In terms of y we have:

( '\ |2
Zg _ / d6g6y/DX\Det’8Z]2 ’ det<¢ ’ :u]>‘ e—S[g(O)(y),X].
Mg det<¢z7 ¢‘7>

Following the standard Faddeev-Popov procedure
and introducing anti-commuting fields ¢* and ¢* for the
gauge parameters £ and £° of the general coordinate
transformations, 7, can be written as the following

21



form:

Zg - / d69_6y/D[CZ CzbzzbggX]
Mg
39—3
L 5055,
1=1

Amplitudes can be easily constructed. We have
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A (kayee k) = /M 4696, / D[ b, b: X]

g
3g—3

~ H ‘<Mi; bzzHQe_S[g(o)(y),X]—Sgh
i=1

~ H/dQUZ(detg(Ul))1/2 ‘/}Z(kl,(f@)
i=1

Vi(ko) is a vertex operator describing a specific
particle.
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2. Superstring Theory: The 3 Different Formalisms

e quantization only in light-cone gauge
e space-time super-symmetric string theory
e computation of tree amplitude is quite easy

e It has never been used for computing multi-particle
and higher-loop amplitudes (dependence on insertion
points)

24



e Spacetime supersymmetric only after GSO proj.

e Higher loops: summation over spin structure and
modular invariance.

e Applied to multi-particle, higher-loop (2-loop, see
below) and topological string theory amplitudes.
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e Lorentz covariant and manifestly spacetime
supersymmetric (no summation over spin structures).

e All integer dimensional free fields on (ordinary)
Riemann surface.

e Shortcoming: pure spinor constraints and very
complicated composite 0 fields.

e A non-minimal pure spinor formalism.
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3. The Pure Spinor Formalism

In Berkovits’ pure spinor formalism:

e Basic variables: X"(z,z), 0“(z) and p,(z) (conjugate
to 0(z)). (For NRS: X*(z, 2z) and 9" (2).)

e Also introducing bosonic pure spinor ghost variable
AY (and their conjugates w,,):

Ay 5)\5 =0

For NRS, the ghosts are 0(z), c(z) and 3(z2), v(2).

27



The BRST operator

Q- fvda

is used to impose the fermionic constraints:

1 1
dy, = po — 5(7“9)@ {8)(“ -+ 189%9} =0

To insure Lorentz covariance, w, only appears in:

1
_ e _ a \p
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Berkovits, hep-th/0406055

e vanishing of the m = 0 N-particle amplitudes NV < 3
e 1- and 2-loop 4-particle amplitudes

e vanishing of the multi-loop 4-particle leading
contribution (absence of the " term)

e a computable multi-loop 4-particle amplitude?
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Key points

e Picture changing operators:

— “picture-lowering” operator: Yo = C,0°0(C3\")
— “picture-raising” operator:

1
ZB — ian )\’ymnd 5(quNpq)7 ZJ — )\ada5(J)

e A construction of the “b-ghost fields™:

1Q,0(2)} = T(z)
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{Q.bs(z,w)} = T(2)Zp(w)

~

bp(z,w) =bp(z) + T (2) /w du By, ONP (u)d(BN (u))

The construction of the very complicated b3(z) field
is as follows:

bp = G*Zy+ H Zys— K Zo5,
_LO‘575 Za575 + bib)
(0) o ab 1 ab 1 ab
b,” = Bgp |—TN 4J@N +4N 0J
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1
+§NaCaNbc §(BN)

= (I' N+ JON + NOJ + NON)§(BN)

Schematically the other terms are:

S~
 —
|

G*Z,=G*d5(BN),

by = H* Z,3=H (II§(BN) + dd§'(BN))

b = K“(005(BN) +11d&'(BN) 4 ddd §"(BN)),
Y = LP(99ds' (BN) + I8 (BN)
+11dds" (BN) + dddds'® (BN))
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G* = IId + NOO + JOO + 076
H* = TIN +I1J + 011 + dd,
K" = Nd+ Jd+ 0d,
L% — NN+ NJ+JJ+ 9N +dJ.

The most important property of the b-field is that

every term has engineering dimension 4 or less,
except the term TNO(BN). {\6,1,d,w} have
engineering dimension {0,.1,2,2}. (N has 2 and
T has 4.)
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¢ Integration over 0“ and p, requires a 16 + 16g zero
modes to give a non-vanishing result.

3g—3

.A — /dle...d2ng_3<‘ H/CZQUP[LP(UP)EBP(UP,ZP)
P=1
10g
< |1 Zsp(2p)
P=3g—2

< Zotow [[Yeuton) P T [ datnten)
R=1 =1 T—1
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| 1
U = e’”“'X(890‘Aa(9)+HmAm(9)+daW“(9)+§Nm”]:mn(6))

e Counting of the d, zero modes:

— The massless vertex operator can give at most 1
zero modes of p,,.

— Each picture-raising operator Zp gives at most 1
zero modes of p,,.

— Each “b-ghost fields” can give at most 4 zero
modes of p,, but there are other restrictions.
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Picture changing operators contribute 8g + 3 d-field.
The engineering dimensions of 39 — 3 bz-fields is 12(¢g —
1). If there are also M ¢’ (BN), the total is:

12(g — 1) + 2]M.

These can be used to obtain

4M
8(g—1) A 3

d-fields. For M = 3, this is 8g — 4.

For M =4, thisis 8g — 3 + % So there is an extra

DN |—
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engineering dimension. This can be only the 6 field.

Only M = 3,4 contributes.

b = cy0(BN) —I—Zcz (BN),

co = Hdd+ N dae J dO8 + do?*6
(N +J+ 0) Il + 1 dd

N do8 + J dO + 9do8

(TN + JON + NOJ + NON),




(NI + JII + 81 + dd) dd

(N dd + J dd + 0dd)1I

(NN + JN + JJ + ON + 8.J)(dd0 + I11I),
(N + J + 0) dddd

+(NN + JN + JJ + 0N + 8J) 11 dd,
(NN + JN + JJ + ON + 8J) dddd.
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4. Known Results at Tree, 1-Loop and 2-Loops
The n (NS, ]/\fg”) particle amplitudes:

iA, (k) = / Hd%z@ (VS (21, kr, ) [V (2, oo, €)

n

X [CV(B_D] (237 k37 63) H [CV(BO)] (Zia kia Ei)
i=4
X (right-moving part)),

To compute the 4-particle we do need the right-
moving part to get the full amplitude.
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One-loop amplitudes: the massless 4-particle case

d?z;
l1—loop 1—loopK L. 7
A 94 ( L) EZ / ImT /H ImT

TG ey (= )
00:(0|7) P\ Tmr "

r<s

You may fix one z; to an arbitrary point. K(k; ¢;) is a
kinematic factor and s,t¢,u are Mandelstam variables:

= (b + k)2,
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The 2-loop 4-particle amplitude:

’L<j a/ij i—=1 y(ZZ)

X |8s(2129 + 2324) + t(2124 + 2223) + (2123 + 2224)|
av, — dzaidQCLdeCQLk7 T /d221d2Z2!Z1 — »;«’2|2
ajjairap| |y(21) (22)]
(X (21)X (%)) = G(zi,2) = —In|E(z;, ;)|

27TIH1QL] Im/ Wy Im/ wJ

7,
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A better but equivalent form derived by D’ Hoker and
Phong (hep-th/0501197):

KK ‘....IngQU‘Q
21244 (det Im Q)5

s /24 ’ys!2eXP( N Z ki - kj G(zi, 2)))

1<J
Vs = ‘|‘(k1 — kQ) ' (kg — k4) A(Zl, ZQ)A(Z?” 24) + ...

X (2122 + 2324) + t(2124 + 2023) + u(2123 + 2224)

Arr(e k) =

Az, w)

w1(2)wa(w) — wi(w)wsy(2)
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5. Modular Invar. and Higher Loop Amplitudes

Modular transformation:

wW; — (:)Z = wj(CQ -+ D)j_il,

Qi — Qij = ((AQ + B)(CQ + D))}

(N

The scalar Green function:

G(z,w) = —ln\E(z,w)]Q—l—%T%/ wz(%Q);%/ W
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1Is modular invariant.

Some other modular invariant combinations:

4 4

[t @)@ () [T 5 Ttz

Only det(w;(z;)) is a covariant object under modular
transformation. This is antisymmetric under z; < z;.
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