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1. String Perturbation Theory

String theory by path integral

The string action:

S[g,X] = −T
2

∫
d2σ

√−g gαβ ∂αXµ ∂βXµ.

could be quantized by the (Wick rotated) path

integral:

Z =

∫
DgDX e−S[g,X ].
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In order to do this let us first find what gauge fixing

conditions are permissible. For an arbitrary Riemann

surface, it is not always possible to take the conformal

gauge globally.

Under an arbitrary local coordinate transformation

σα → σ̃α = σ̃α(σ),

the metric gαβ(σ) transform as follows:

gαβ(σ) → g̃αβ(σ̃) =
∂σγ

∂σ̃α
∂σδ

∂σ̃β
gγδ(σ).
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The possibility of taking the conformal gauge is that

any metric gαβ(σ) can be changed to the conformal

gauge, giving rise to the following equation:

∂σγ

∂σ̃α
∂σδ

∂σ̃β
gγδ(σ) = eϕ(σ) δαβ.

By a simple counting of the freedoms, the number

of independent functions matches. However this is

not enough. We need to show that the required

transformation is nonsingular, i.e. the Jacobian for

passing from gαβ to (ϕ, σ̃α) is non-zero. To show this
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we consider an infinitesimal variation of the metric:

δ gαβ = δϕ gαβ + ▽αξβ + + ▽β ξα,

where ξα = gαβ ξ
β and ξβ = σ̃β − σβ. The nonsingular

nature of the transformation is proved if for any

symmetric δgαβ we can find δϕ and ξα such that the

above equation will hold. In other words, we must be

able to solve the equation

δϕ gαβ + ▽αξβ + +δ gαβ ▽β ξα = δgαβ ≡ γαβ,
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or

(P ξ)αβ = ▽αξβ + +δ gαβ ▽β ξα − gαβ = γαβ −
1

2
gαβγ

δ
δ .

The question, whether the conformal gauge is always

permissible, is reduced now to the possibility of solving

these equations which we shall write symbolically as:

P ξ = γ.

Here we have denoted by P the differential operator

which takes vector fields into traceless tensors (notice

that the number of independent components is the
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same). There exist a conjugate operator which acts

in the opposite direction—transforming tensors into

vectors. It is easy to see that this equation will

be solvable if and only if the conjugate operator P+

doesn’t have zero modes. On the other hand, the

solution is not unique if P has zero modes.

So our conclusion is that zero modes of the operator

P+ mean that the conformal gauge is not permissible,

and zero modes of P mean that the conformal gauge

is not unique (and one should further fix the remaining

gauge freedom).
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The number of zero modes is give by index theorem.

We will not go into the details of these mathematics

and only recall the results. We have

N0(P ) −N0(P
+) = 3χ = 6 − 6 g,

where N0 denotes the number of zero modes, χ is

the Euler number of the Riemann surface and g is

the genus. In particular, we have the following more

precise results:

N0(P ) = 6, N0(P
+) = 0, for g = 0 (sphere),
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N0(P ) = 2, N0(P
+) = 2, for g = 1 (torus),

N0(P ) = 0, N0(P
+) = 6g − 6, for g ≥ 2.

So we found that on a sphere we can always take

a conformal gauge which is defined modulo SL(2, C)

transformations (with 6 (= N0(P )) real parameters)

which requires further gauge fixing, like the fixing

of three out of four complex zi, i = 1, 2, 3, 4 (the

location of the inserted vertices) in the case of four-

particle string amplitude at tree level. In the case of

Riemann surface with higher genus we have topological
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obstructions for the conformal gauge. The best thing

which can be done is the following choice of gauge

gαβ(σ) = g
(0)
αβ(σ; τ1, τ2, · · · , τ6g−6),

where g
(0)
αβ is a metric which depends on 6g − 6 (real)

parameters and, e.g. which can be chosen to have

constant negative curvature. Now the integration over

all metrics (i.e. geometry) then reduces to integration

over gauge orbit and also a 6g − 6 dimensional

integration over {τi, i = 1, 2, · · · , 6g − 6}—the moduli

space of inequivalent metrics under coordinate and
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conformal transformations. Our next task is to derive

the explicit measure for such integration.

Before doing this, we mention an important

mathematical result. Roughly speaking, this moduli

space is a complex space. It is quite useful to use

complex coordinates for this moduli space and also

for the Riemann surface. In complex coordinates, the

metric tensor on a Riemann surface is given by the

components gzz̄, gzz and gz̄z̄. We cover the whole

Riemann surface by several patches and on each patch

we can take the components gzz and gz̄z̄ to 0. Then
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we have:

δgzz = ▽zξz,

δgz̄z̄ = ▽z̄ξz̄,

δgzz̄ = δϕ gzz̄ + gzz̄(▽zξz + ▽z̄ξz̄).

Here ▽z and ▽z̄ are covariant derivatives. Notice that

the only non-vanishing components of the Christoffel

symbol are

Γzzz = gzz̄ ∂zgzz̄ and Γz̄z̄z̄ = gzz̄ ∂z̄gzz̄,
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we have

▽zξz = gzz̄∂z(g
zz̄ξz),

▽zξz = gzz̄ ▽z̄ ξz = gzz̄∂z̄ξz,

and

▽zξz = gzz̄∂z(g
zz̄ξz) = γzz,

▽z̄ξz̄ = gzz̄∂z̄(g
zz̄ξz̄) = γz̄z̄.

From these equations we see that the zero modes

of the operator P are holomorphic or anti-holomorphic
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vectors. On the other hand, the operator P+ reduces

to

(P V )zz = −▽z Vzz = gzz̄ ▽z̄ Vzz = gzz̄ ∂z̄ Vzz,

(P V )z̄z̄ = −▽z̄ Vz̄z̄ = gzz̄ ▽z Vz̄z̄ = gzz̄ ∂z Vz̄z̄,

and its zero modes are holomorphic or anti-

holomorphic tensors. We will denote these tensors as

φizz and φ̄iz̄z̄, i = 1, 2, · · · , 3g−3. {φizz, i = 1, 2, · · · , 3g−3}
constitutes a basis of holomorphic 2-differentials.

From the above discussions we see that an arbitrary
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variation of δg can be written in the following form:

δgzz = δzξz +

3g−3∑

i=1

δτ i φizz,

δgz̄z̄ = ▽z̄ξz̄ +

3g−3∑

i=1

δτ̄ i τ̄ φ̄iz̄z̄,

δgzz̄ = δϕgzz̄ + gzz̄(▽zξz + ▽z̄ξz̄) ≡ δϕ̃gzz̄.

The path integral measure Dg is defined by specifying

an inner product in the tangent space of all metrics.
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A natural inner product is

||δg||2 =
1

2

∫
d2σ

√
ggαγgβδδgαβδgγδ.

By using the decomposition of the variation of the

metric we have

||δg||2 =

∫
d2zgzz̄

[
(gzz̄δgzz̄)

2 + (gzz̄)2δgzzδgz̄z̄
]

=

∫
d2z

[
gzz̄(δϕ̃)2 + gzz̄ ▽z ξz ▽z̄ ξz̄
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+

3g−3∑

i,j=1

δτ iδτ̄ jgzz̄φizzφ̄
j
z̄z̄




=

∫
d2zgzz̄(δϕ̃)2 +

∫
d2z gzz̄∂z̄ξ

z ∂zξ
z̄

+

3g−3∑

i,j=1

δτ iδτ̄ j〈φj, φi〉.

From this expression we get

Dg = Dϕ̃DξzDξz̄d6g−6τ |Det′∂z̄|2 det〈φi, φj〉,
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where prime in Det′∂z̄ denotes the omission of zero

modes. If there is no anomaly for the conformal

and coordinate transformations which is the case for

D = 26, the integration over ϕ̃, ξz and ξz̄ can be

factorized out of the path integral and we have the

partition function at genus g:

Zg =

∫

Mg

d6g−6τ

∫
DX|Det′∂z̄|2 det〈φi, φj〉 e−S[g(0)(τ),X ].

Notice that the appearance of the factor det〈φi, φj〉
is associated with the decomposition of δgzz. In other
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words, we have chosen a particular gauge slice. We

can also choose a different gauge slice, e.g.

δgzz = δzξ
′
z +

3g−3∑

i=1

δyi µizz,

where µizz = gzz̄µ
iz̄
z and µiz̄z ’s are called Beltrami

differentials. We have

δzξ
′
z +

3g−3∑

i=1

δyi µizz = δzξz +

3g−3∑

i=1

δτ i φizz.
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Multiplying both sides with φ̄jz̄z̄ g
zz̄ and integrating

over the whole Riemann surface we get

δτ i〈φj, φi〉 = δyi〈φj, µi〉.

This gives the following transformation rule for

integration over (holomorphic) τ and y:

d3g−3τ det〈φi, φj〉 = d3g−3y det〈φi, µj〉.
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In terms of y we have:

Zg =

∫

Mg

d6g−6y

∫
DX|Det′∂z̄|2

| det〈φi, µj〉|2
det〈φi, φj〉 e−S[g(0)(y),X ].

Following the standard Faddeev-Popov procedure

and introducing anti-commuting fields cz and cz̄ for the

gauge parameters ξz and ξz̄ of the general coordinate

transformations, Zg can be written as the following
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form:

Zg =

∫

Mg

d6g−6y

∫
D[cz cz̄bzzbz̄z̄X]

×
3g−3∏

i=1

|〈µi, bzz〉|2e−S[g(0)(y),X ]−Sgh.

Amplitudes can be easily constructed. We have
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Ag
j1,···,jn(k1, · · · , kn) =

∫

Mg

d6g−6y

∫
D[cz cz̄bzzbz̄z̄X]

×
3g−3∏

i=1

|〈µi, bzz〉|2e−S[g(0)(y),X ]−Sgh

×
n∏

i=1

∫
d2σi(detg(σi))

1/2 Vji(ki, σi)

Vj(k,σ) is a vertex operator describing a specific

particle.
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2. Superstring Theory: The 3 Different Formalisms

1) Green-Schwarz formalism:

• quantization only in light-cone gauge

• space-time super-symmetric string theory

• computation of tree amplitude is quite easy

• It has never been used for computing multi-particle

and higher-loop amplitudes (dependence on insertion

points)
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2) Ramond-Neveu-Schwarz (RNS) formalism

• Spacetime supersymmetric only after GSO proj.

• Higher loops: summation over spin structure and

modular invariance.

• Applied to multi-particle, higher-loop (2-loop, see

below) and topological string theory amplitudes.
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3) Berkovits’ pure spinor formalism

• Lorentz covariant and manifestly spacetime

supersymmetric (no summation over spin structures).

• All integer dimensional free fields on (ordinary)

Riemann surface.

• Shortcoming: pure spinor constraints and very

complicated composite b̃ fields.

• A non-minimal pure spinor formalism.
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3. The Pure Spinor Formalism

In Berkovits’ pure spinor formalism:

• Basic variables: Xµ(z, z̄), θα(z) and pα(z) (conjugate

to θ(z)). (For NRS: Xµ(z, z̄) and ψµ(z).)

• Also introducing bosonic pure spinor ghost variable

λα (and their conjugates wα):

λαγµαβλ
β = 0

For NRS, the ghosts are b(z), c(z) and β(z), γ(z).
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The BRST operator

Q =

∮
λαdα

is used to impose the fermionic constraints:

dα = pα −
1

2
(γµθ)α

[
∂Xµ +

1

4
∂θγµθ

]
= 0

To insure Lorentz covariance, wα only appears in:

J = wαλ
α, Nmn =

1

2
wα(γmn)

α
βλ

β
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Loop amplitudes (Berkovits, hep-th/0406055)

• vanishing of the m = 0 N-particle amplitudes N ≤ 3

• 1- and 2-loop 4-particle amplitudes

• vanishing of the multi-loop 4-particle leading

contribution (absence of the R4 term)

• a computable multi-loop 4-particle amplitude?
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Key points

• Picture changing operators:

– “picture-lowering” operator: YC = Cαθ
αδ(Cβλ

β)

– “picture-raising” operator:

ZB =
1

2
Bmn λγ

mnd δ(BpqNpq), ZJ = λαdαδ(J)

• A construction of the “b-ghost fields”:

{Q, b(z)} = T (z)
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{Q, b̃B(z, w)} = T (z)ZB(w)

b̃B(z, w) = bB(z) + T (z)

∫ w

z

duBpq∂N
pq(u)δ(BN(u))

The construction of the very complicated bB(z) field

is as follows:

bB = GαZα +Hαβ Zαβ −Kαβγ Zαβγ

−Lαβγδ Zαβγδ + b
(b)
4

b
(b)
4 = Bab

[
−T Nab − 1

4
J ∂Nab +

1

4
Nab ∂J
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+
1

2
Na

c∂N
bc

]
δ(BN)

= (T N + J∂N +N∂J +N∂N)δ(BN)

Schematically the other terms are:

b1 = GαZα = Gα d δ(BN),

b2 = Hαβ Zαβ = Hαβ (Πδ(BN) + dd δ′(BN))

b3 = Kαβγ(∂θδ(BN) + Πd δ′(BN) + ddd δ′′(BN)),

b
(a)
4 = Lαβγδ(∂θdδ′(BN) + ΠΠδ′(BN)

+Πddδ′′(BN) + ddddδ(3)(BN))
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Gα = Πd+N∂θ + J∂θ + ∂2θ

Hαβ = ΠN + ΠJ + ∂Π + dd,

Kαβγ = Nd+ Jd+ ∂d,

Lαβγδ = NN +NJ + JJ + ∂N + ∂J.

The most important property of the b-field is that

every term has engineering dimension 4 or less,

except the term TNδ(BN). {λ, θ,Π, d, w} have

engineering dimension {0, 1
2, 1,

3
2, 2}. (N has 2 and

T has 4.)
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• Integration over θα and pα requires a 16 + 16g zero

modes to give a non-vanishing result.

A =

∫
d2τ1...d

2τ3g−3〈 |
3g−3∏

P=1

∫
d2uPµP(uP )̃bBP

(uP , zP)

×
10g∏

P=3g−2

ZBP
(zP)

×
g∏

R=1

ZJ(vR)

11∏

I=1

YCI
(yI) |2

N∏

T=1

∫
d2tTUT(tT) 〉
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U = eik·X(∂θαAα(θ)+ΠmAm(θ)+dαW
α(θ)+

1

2
NmnFmn(θ))

• Counting of the dα zero modes:

– The massless vertex operator can give at most 1

zero modes of pα.

– Each picture-raising operator ZB gives at most 1

zero modes of pα.

– Each “b-ghost fields” can give at most 4 zero

modes of pα, but there are other restrictions.
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Picture changing operators contribute 8g+ 3 d-field.

The engineering dimensions of 3g−3 b̃B-fields is 12(g−
1). If there are also M δ′(BN), the total is:

12(g − 1) + 2M.

These can be used to obtain

8(g − 1) +
4M

3

d-fields. For M = 3, this is 8g − 4.

For M = 4, this is 8g − 3 + 1
3. So there is an extra 1

2
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engineering dimension. This can be only the θ field.

Only M = 3, 4 contributes.

b = c0δ(BN) +

3∑

i=1

ciδ
(i)(BN),

c0 = Π dd+N d∂θ + J d∂θ + d∂2θ

+(N + J + ∂)ΠΠ + Π dd

+N d∂θ + J d∂θ + ∂d∂θ

(TN + J∂N +N∂J +N∂N),
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c1 = (NΠ + JΠ + ∂Π + dd) dd

(N dd+ J dd+ ∂dd)Π

(NN + JN + JJ + ∂N + ∂J)(d∂θ + ΠΠ),

c2 = (N + J + ∂) dddd

+(NN + JN + JJ + ∂N + ∂J)Π dd,

c3 = (NN + JN + JJ + ∂N + ∂J) dddd.
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4. Known Results at Tree, 1-Loop and 2-Loops

The n (NS, ÑS) particle amplitudes:

iAn(ki, ǫi) =

∫ n∏

i=4

d2zi〈[cV(−1)
B ](z1, k1, ǫ1)[cV(0)

B ](z2, k2, ǫ2)

×[cV(−1)
B ](z3, k3, ǫ3)

n∏

i=4

[cV(0)
B ](zi, ki, ǫi)

×(right-moving part)〉,

To compute the 4-particle we do need the right-

moving part to get the full amplitude.
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One-loop amplitudes: the massless 4-particle case

A1−loop
4 = g1−loop

4 K(ki, ǫi)

∫

F

d2τ

(Imτ)2

∫ 4∏

i=1

d2zi
Imτ

×
∏

r<s

∣∣∣∣
Θ1(zrs|τ)
∂Θ1(0|τ)

exp

( −π
Imτ

(Imzrs)
2

)∣∣∣∣
α′kr·ks

You may fix one zi to an arbitrary point. K(ki, ǫi) is a

kinematic factor and s, t, u are Mandelstam variables:

s = −(k1 + k2)
2, · · ·.
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The 2-loop 4-particle amplitude:

AII ∼
∫

1

T 5

∏6
i=1 d2ai

dVpr|
∏

i<j aij|2
4∏

i=1

d2zi
|y(zi)|2

∏

i<j

e−ki·kj〈X(zi)X(zj)〉

×|s(z1z2 + z3z4) + t(z1z4 + z2z3) + u(z1z3 + z2z4)|2

dVpr =
d2aid

2ajd
2ak

|aijaikajk|2
, T =

∫
d2z1d

2z2|z1 − z2|2
|y(z1)y(z2)|2

,

〈X(zi)X(zj)〉 ≡ G(zi, zj) = − ln |E(zi, zj)|2

+2π(Im Ω)−1
IJ

(
Im

∫ zj

zi

ωI
)(

Im

∫ zj

zi

ωJ
)

41



A better but equivalent form derived by D’ Hoker and

Phong (hep-th/0501197):

AII(ǫi, ki) =
KK̄

212π4

∫ |
∏

I≤J dΩIJ|2
(det ImΩ)5

×
∫

Σ4
|YS|2exp

(
−

∑

i<j

ki · kjG(zi, zj)
)

YS = +(k1 − k2) · (k3 − k4) ∆(z1, z2)∆(z3, z4) + · · ·
∝ s(z1z2 + z3z4) + t(z1z4 + z2z3) + u(z1z3 + z2z4)

∆(z, w) ≡ ω1(z)ω2(w) − ω1(w)ω2(z)
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5. Modular Invar. and Higher Loop Amplitudes

Modular transformation:

ωi → ω̃i = ωj(CΩ +D)−1
ji ,

Ωij → Ω̃ij = ((AΩ +B)(CΩ +D))−1
ij ,

The scalar Green function:

G(z, w) = − ln |E(z, w)|2 + 2πℑ
∫ w

z

ωi(ℑΩ)−1
ij ℑ

∫ w

z

ωj
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is modular invariant.

Some other modular invariant combinations:

∫
µI(u, ū)ωj(u)〈∂X(u)

4∏

i=1

eiki·X(zi) 〉
4∏

i=1

ω(zi)

Only det(ωi(zj)) is a covariant object under modular

transformation. This is antisymmetric under zi ↔ zj.
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