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Introduction

I Color decomposition
Gauge field amplitudes at tree-level have the color
decomposition form

M(1a1 , 2a2 , ...,NaN ) =
∑
σ∈SN

Tr(T aσ1 ...T aσN )A(σ1, ..., σN). (1)

I In string theory this formula can be obtained by adding
Chan-Paton factors to the ends of open strings.

I In field theory field theory, one can derive this formula from
Feynman diagrams(Fig. 1).

The color decomposition is useful in studying multi-gluon
amplitudes.



Figure: 1. Color decomposition from Feynman diagrams



I Cyclic symmetry, KK relation and BCJ relation
I Cyclic symmetry

A(1, 2, ...,N) = A(N, 1, ...,N − 1). (2)

I KK-BCJ relation for open string tree-amplitudes(String theory
proof: Bjerrum-Bohr,Damgaard and Vanhove’09;
Stieberger’09)

V(β;α|N) ≡ Ao(βs , ..., β1, α1, ..., αr ,N) + (−1)s−1

×
∑

σ∈P(O{α}∪O{β}),σ1=α1

P{βT ,α,N},{σ,N}Ao(σ,N) = 0. (3)

Here we define the momentum kernel

P{σ},{τ} = e
−2iπα′ ∑

i,j
ki ·kj [θ(σ−1(i)−σ−1(j))θ(τ−1(j)−τ−1(i))]

. (4)

I Real part⇒ KK relation(Kleiss, Kuijf’89)
I Imaginary part ⇒ BCJ relation(Bern,Carrasco,Johansson’08)
I α′ → 0 ⇒ KK and BCJ relations in field theory(field theory proofs:

Duca,Dixon,Maltoni’99; Feng, Huang, Jia’10; Chen, Du, Feng’11)

I The reduction of the number of independent amplitudes:
I Cyclic symmetry N! → (N − 1)!
I KK relation (N − 1)! → (N − 2)!
I BCJ relation (N − 2)! → (N − 3)!



Generating KK and BCJ relations by two primary relations

I From primary relations to U(1)-like decoupling identity
If s = 1, (3) becomes U(1)-like decoupling identity.

I Real part ⇒ fundamental KK relation

K(β1;α1, ..., αr |N) ≡ Ao(β1, α1, α2, ..., αr ,N)

+ cos[2πα′kβ1kα1 ]Ao(α1, β1, α2, ..., αr ,N)

+ ...

+ cos[2πα′(kβ1 · kα1 + kβ1 · kα2 + ...+ kβ1 · kαr )]

×Ao(α1, α2, ..., αr , β1,N)

= 0. (5)

I Imaginary part ⇒ fundamental BCJ relation

B(β1;α1, ..., αr |N) ≡ sin[2πα′kβ1kα1 ]Ao(α1, β1, α2, ..., αr ,N)

+ sin[2πα′(kβ1 · kα1 + kβ1 · kα2)]Ao(α1, α2, β1, ..., αr ,N)

+ ...+ sin[2πα′(kβ1 · kα1 + kβ1 · kα2 + ...+ kβ1 · kαr )]

×Ao(α1, α2, ..., αr , β1,N)

= 0. (6)



If we consider the fundamental BCJ relation and the cyclic
symmetry as the primary relations, the fundamental KK relation
can be generated

K(β1;α1, ..., αr |N) = − 1

sin(πα′sβ1α1)
B(β1;α2, ..., αr ,N|α1)

+ cot(πα′sβ1α1)B(β1;α1, ..., αr |N). (7)

If we consider the fundamental KK relation and the cyclic
symmetry as the primary relations, the fundamental BCJ relation
can be generated

B(β1;α1, ..., αr |N) =
1

sin(πα′sβ1α1)
K(β1;α2, ..., αr ,N|α1)

− cot(πα′sβ1α1)K(β1;α1, ..., αr |N). (8)



I From U(1)-like decoupling identity to generalized U(1)-like
decoupling identity
Generalized U(1)-like decoupling identity is

U(β;α|N) ≡
∑

σ∈P(O{β1,...,βs}∪O{α1,...,αr})

P{β,α,N},{σ,N}Ao(σ,N) = 0. (9)

It can be generated by U(1)-like decoupling identity. For
example, if there are two βs. To see this we consider a linear
combination of amplitude

U(γ1, ..., γt ;β1, ..., βs ;α1, ..., αr |N)

≡
∑

τ∈P(O{α}∪O{β})

P{γ,β,α,N},{γ,τ,N}U(γ1, ..., γt ; τ1, ..., τs+r |N).

(10)

It can also be expressed as

U(γ1, ..., γt ;β1, ..., βs ;α1, ..., αr |N)

=
∑

σ∈P(O{γ}∪O{β}∪O{α})

P{γ,β,α,N},{σ,N}A(σ,N)



and

U(γ1, ..., γt ;β1, ..., βs ;α1, ..., αr |N)

=
∑

τ∈P(O{γ}∪O{β})

P{γ,β,α,N},{τ,α,N}U(τ1, ..., τt+s ;α1, ..., αr |N).

Boundary condition is

U(∅;β;α|N) = U(β; ∅;α|N) = U(β;α|N). (11)

Using the properties of momentum kernel, we have

e−2iπα′kβ1 ·kβ2U(β1, β2;α1, ..., αr |N)− U(β2;β1;α1, ..., αr |N)

+ U(β2, β1;α1, ..., αr |N) = 0. (12)

and

e−2iπα′kβ2 ·kβ1U(β2, β1;α1, ..., αr |N)− U(β1;β2;α1, ..., αr |N)

+ U(β1, β2;α1, ..., αr |N) = 0. (13)



From the equations above and the boundary condition, we get

U(β1, β2;α1, ..., αr |N)

=
1

2i sin(2πα′kβ1 · kβ2)

[
e2iπα

′kβ1 ·kβ2U(β1;β2;α1, ..., αr |N)

−U(β2;β1;α1, ..., αr |N)

]
. (14)

Since we have

U(β1;β2;α1, ..., αr |N)

=
∑

τ∈P(O{α1,...,αr}∪{β2})

P{β1,β2,α1,...,αr ,N},{β1,τ1,...,τ1+r ,N}

×U(β1; τ1, ..., τr+1|N), (15)

The generalized U(1)-like decoupling identity with two βs are
expressed as linear combinations of U(1)-like decoupling identity.



I From generalized U(1)-like decoupling identity to KK-BCJ
relation
All the KK-BCJ relations can be expressed by linear
combinations of generalized U(1)-like decoupling identity. For
the case with only one β,

U(β1;α1, ..., αr |N) = V(β1;α1, ..., αr |N) = 0. (16)

We take the case with two βs as an example. V and U satisfy
the relation

V(β1, β2;α1, ..., αr |N)− V(β2;β1, α1, ..., αr |N)

= −e−2iπα′k1·k2U(β1, β2;α1, ..., αr |N), (17)

thus they can be solved from each other.



From this relation, we express the V with two βs by the Us with βs
no more than two

V(β1, β2;α1, ..., αr |N)

= U(β2;β1, α1, ..., αr |N)− e−2iπα′kβ1 ·kβ2U(β1, β2;α1, ..., αr |N).

(18)

Since the KK-BCJ relations are generated by generalized U(1)-like
decoupling identities, the generalized U(1)-like decoupling
identities are generated by U(1)-like decoupling identities and the
U(1)-like decoupling identities are generated by the primary
relations, all the KK-BCJ relations can be generated by the
primary relations.



I Field theory limits
The discussion can be extended to field theory by taking
α′ → 0. However, in field theory there are no kinematic
factors in U(1)-decoupling identity(fundamental KK relation),
we cannot use the U(1)-decoupling identity to generate the
fundamental BCJ relation. Therefore, only the fundamental
BCJ relation and cyclic symmetry can be considered as
primary relations. We take five-point relation with two βs as
an example.



The field theory limit of real part is given as

Kf (3, 4; 1, 2|5)

= −
1

2s43
Bf (4; 1, 2, 5|3) +

1

2s34
Bf (3; 4, 1, 2|5)

+
1

2s34

s31 + s41

s31
Bf (3; 1, 4, 2|5) +

1

2s34

s31 + s41 + s42

s31
Bf (3; 1, 2, 4|5)

−
1

2s34

s41 + s34 + s31

s41
Bf (4; 1, 3, 2|5)−

1

2s34

s41 + s34 + s31 + s32

s41
Bf (4; 1, 2, 3|5)

−
1

2s34

s41

s31
Bf (3; 4, 2, 5|1)−

1

2s34

1

2s34

s41 + s42

s31
Bf (3; 2, 4, 5|1)

+
1

2s34

s34 + s31

s41
Bf (4; 3, 2, 5|1) +

1

2s34

s34 + s31 + s32

s41
Bf (4; 2, 3, 5|1). (19)

The field theory limit of imaginary part is given as

Bf (3, 4; 1, 2|5)

= −
s41

s34
Bf (3; 1, 4, 2|5)−

s41 + s42

s34
Bf (3; 1, 2, 4|5)

+
s34 + s31

s34
Bf (4; 1, 3, 2|5) +

s34 + s31 + s32

s34
Bf (4; 1, 2, 3|5). (20)



A general monodromy relation

One can extend the discussions on monodromy to get a more
general relation.

W(γ1, ..., γt ;β1, ..., βs ;α1, ..., αr |N)

≡
∑

τ∈P(O{γ}∪O{βT })

P∗
{γ,βT ,α,N},{τ,α,N}Ao(τ, α,N)

+ (−1)s−1
∑

σ∈P(O{α}∪O{β})|σ1=α1

P{γ,βT ,α,N},{γ,σ,N}Ao(γ, σ,N),

(21)

This relation can be explained by the contour of worldsheet
integral(Fig. 3). The KK-BCJ relation(Fig. 2) is the special case
with no γ.



Figure: 2. Contour for KK-BCJ relation

Figure: 3. Contour for general monodromy relation



This general monodromy relation can also be generated by primary
relations. For example, for the case with only one β, by using the
properties of momentum kernel, we have

W(γ1, ..., γt ;β1;α2, ..., αr |N)

= e2iπα
′kγt ·kβ1W(γ1, ..., γt−1;β1; γt , α1, ..., αr |N). (22)

Thus W(γ1, ..., γt ;β1;α2, ..., αr |N) can be expressed by the W
with no γ

W(γ1, ..., γt ;β1;α2, ..., αr |N)

= e
2iπα′

t∑
i=1

kγi ·kβ1W(∅;β1; γ1, ..., γt , α1, ..., αr |N). (23)

In a similar way, All the general monodromy relation can be given
as linear combinations of KK-BCJ relations, thus they are
generated by the primary relations.



The field theory limit of general monodromy relation can be given by taking α′ → 0.
For example

W f (1, 2; 3, 4; 5|6)
= Ag (1, 2, 4, 3, 5, 6) + [1 + iπα′(s42 + s32)]Ag (1, 4, 3, 2, 5, 6)

+[1 + iπα′(s42)]Ag (1, 4, 2, 3, 5, 6) + [1 + iπα′(s41 + s31 + s42 + s32)]Ag (4, 3, 1, 2, 5, 6)

+[1 + iπα′(s41 + s42 + s32)]Ag (4, 1, 3, 2, 5, 6) + [1 + iπα′(s41 + s42)]Ag (4, 1, 2, 3, 5, 6)

−[1− iπα′(s45 + s34 + s35)]Ag (1, 2, 5, 3, 4, 6)

= 0. (24)

The real part gives

Ag (1, 2, 4, 3, 5, 6) + Ag (1, 4, 3, 2, 5, 6) + Ag (1, 4, 2, 3, 5, 6)

+Ag (4, 3, 1, 2, 5, 6) + Ag (4, 1, 3, 2, 5, 6) + Ag (4, 1, 2, 3, 5, 6)− Ag (1, 2, 5, 4, 3, 6)

= 0, (25)

The imaginary part gives

(s42 + s32)Ag (1, 4, 3, 2, 5, 6) + s42Ag (1, 4, 2, 3, 5, 6)

+(s41 + s31 + s42 + s32)Ag (4, 3, 1, 2, 5, 6) + (s41 + s42 + s32)Ag (4, 1, 3, 2, 5, 6)

+(s41 + s42)Ag (4, 1, 2, 3, 5, 6) + (s45 + s34 + s35)Ag (1, 2, 5, 3, 4, 6)

= 0. (26)



Minimal-basis expansion in string theory

The reduction of the independent amplitudes in string theory from
KK-basis to BCJ-basis is not apparent. However, one can use the
BCJ relations to solve this minimal-basis expansion out. the
general formula of minimal-basis expansion is

Ao(1, β1, ..., βs , 2, α1, ..., αN−s−3,N)

=
∑

σ∈P(O{α}∪{β})

∑
All divisionsO{β}→O{β1,...,βi1

}O{βi1+1,...,βi2
},...,O{βin−1+1,...,βin}

n−1∏
j=0

−S{βij+1
,...,β1,1,2,σ/{βij+1

,...,β1},N},{1,β1,...,βij
,2,σ/{β1,...,βij

},N}

sin[πα′s1β1,...,βij
]

Θj+1


×Ao(1, 2, σ,N). (27)

where Θj =
∏ij

k=ij−1+1 θ(σ
−1(βk+1)− σ−1(βk)) for ij > ii−1 + 1

and Θj = 1 for (ij = ij−1 + 1).



If the minimal-basis expansion is right for the cases with s ≤ 2, let
us consider the minimal-basis expansion with three βs.The BCJ
relation at level-3 is given as

Ao(1, β1, β2, β3, 2, α1, ..., αN−6,N)

= −
1

sin[πα′s1β1β2β3
]

×
[ ∑
σ∈P(O{β3}∪O{α})

S{β3,β2,β1,1,2,α,N},{1,β1,β2,2,σ,N}Ao(1, β1, β2, 2, σ,N)

+
∑

σ′∈P(O{β2,β3}∪O{α})
S{β3,β2,β1,1,2,α,N},{1,β1,2,σ′,N}Ao(1, β1, 2, σ

′,N)

+
∑

σ′′∈P(O{β1,β2,β3}∪O{α})
S{β3,β2,β1,1,2,α,N},{1,2,σ′′,N}Ao(1, 2, σ

′′,N)

]
.(28)



The minimal-basis expansions with one β is

Ao(1, β1, 2, α1, ..., αN−4,N)

= −
1

sin[2πα′k1 · kβ1
]

∑
σ∈P(O{β1}∪O{α})

S{β1,1,2,α1,...,αN−4,N},{1,2,σ,N}Ao(1, 2, σ,N),

(29)

and that with two βs is

Ao(1, β1, β2, 2, α1, ..., αN−5,N)

=
∑

σ∈P(O{α}∪{β1,β2})

[
S{β2,β1,1,2,α,N},{1,β1,2,σ/{β1},N}

sin(πα′s1β1β2
)

S{β1,1,2,σ/{β1},N},{1,2,σ,N}

sin(πα′s1β1
)

−
S{β2,β1,1,2,α,N},{1,2,σ,N}

sin(πα′s1β1β2
)

θ(σ−1(β2)− σ−1(β1))

]
Ao(1, 2, σ,N). (30)



Substituting these two expansions into the BCJ relation with three
βs, we can easily obtain the minimal-basis expansion with three βs

Ao (1, β1, β2, β3, 2, α1, ..., αN−6,N) =
∑

σ∈P(O{α}∪{β1,β2,β3})[
(−1)3

S{β3,β2,β1,1,2,α,N},{1,β1,β2,2,σ/{β1,β2},N}

sin[iπα′s1β1β2β3
]

S{β2,β1,1,2,σ/{β1,β2},N},{1,β1,2,σ/{β1},N}

sin(πα′s1β1β2
)

×
S{β1,1,2,σ/{β1},N},{1,2,σ,N}

sin(πα′s1β1
)

+
S{β3,β2,β1,1,2,α,N},{1,β1,β2,2,σ/{β1,β2},N}

sin[πα′s1β1β2β3
]

S{β2,β1,1,2,σ/{β1,β2},N},{1,2,σ,N}

sin(πα′s1β1β2
)

×θ(σ−1(β2) − σ
−1(β1))

+
S{β3,β2,β1,1,2,α,N},{1,β1,2,σ/{β1},N}

sin[πα′s1β1β2β3
]

θ(σ−1(β3) − σ
−1(β2))

S{β1,1,2,σ/{β1},N},{1,2,σ,N}

sin(πα′s1β1
)

−
S{β3,β2,β1,1,2,α,N},{1,2,σ,N}

sin[πα′s1β1β2β3
]

θ(σ−1(β3) − σ
−1(β2))θ(σ

−1(β2) − σ
−1(β1))

]
Ao (1, 2, σ,N).

(31)



Conclusion

I All the KK and BCJ relations can be generated by two
primary relations. The primary relations in string theory can
be chosen as cyclic symmetry as well as either one of
fundamental KK relation and fundamental BCJ relation. In
field theory, the U(1)-decoupling identity(fundamental KK
relation) cannot be chosen as primary relation.

I The general monodromy relation can also be generated by
primary relations.

I One can derive and prove the minimal-basis expansion
recursively.


