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Introduction

Gauge field amplitudes at tree-level have the color
decomposition form

M(1%,2%, . NV = S Tr(To1. . Ton)A(oy, ... on)- (1)

gE€Sy

> In string theory this formula can be obtained by adding
Chan-Paton factors to the ends of open strings.
» In field theory field theory, one can derive this formula from
Feynman diagrams(Fig. 1).
The color decomposition is useful in studying multi-gluon
amplitudes.
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Figure 1: Diagrammatic equations for simplifying SU (N} color algebra. Curly lines ( “gluon
propagators” ) represent adjoint indices, oriented solid lines (“quark propagators”) represent
fundamental indices, and “quark-gluon vertices” represent the generator matrices (T“}lf.

Figure: 1. Color decomposition from Feynman diagrams



» Cyclic symmetry
A1,2,..,N) = AN, 1,..., N — 1). )

» KK-BCJ relation for open string tree-amplitudes(String theory
proof: Bjerrum-Bohr,Damgaard and Vanhove'09;
Stieberger'09)

V(B; a|N) = Ao(Bs, ey 1, A1, ooy atry N) 4 (—=1)571

X > P67 0N} {o,NyAo(o N) = 0. (3)
0 €P(0{a}U0{B}),01=01

Here we define the momentum kernel

—2ima’ 3 kiki[0(o L) —o 1O ) —T ()]
Poyiry =€ " : *)

> Real part= KK relation(Kleiss, Kuijf'89)

> Imaginary part = BCJ relation(Bern,Carrasco,Johansson’08)

» o/ — 0 = KK and BCJ relations in field theory(field theory proofs:

Duca,Dixon,Maltoni’99; Feng, Huang, Jia'10; Chen, Du, Feng'11)

» The reduction of the number of independent amplitudes:

» Cyclic symmetry N! — (N — 1)!

> KK relation (N — 1)! — (N —2)!

» BCJ relation (N —2)! — (N — 3)!



Generating KK and BCJ relations by two primary relations
» From primary relations to U(1)-like decoupling identity
If s =1, (3) becomes U(1)-like decoupling identity.
» Real part = fundamental KK relation
K(Bri o, ..y ar[N) = Ao (B, a1, o, ...y v, N)
+  cos[2ma’ kg, kayJAo(a1, B1, a2, .oy atry N)

+  cos[2ma’(kp, - kay + kg, * kay + - + kg, + ka, )]
><Ao(alv a2, ..., O, 61, N)
= 0. (5)

» Imaginary part = fundamental BCJ relation

B(B1; a1y ...y [N) = sin[2ma’ kg, ko, | Ao, B1, 2, ..., ary N)
+ sin[2ma/(kg, - kay + kg, - kay)]Ao(a1, a2, B1, .oy i, N)
+ .+ sin27d (kg - kay + kg, - Koy oo+ kg, - Ko, )]
xAo(a1, g, ..., ar, B1, N)
= 0. (6)



If we consider the fundamental BCJ relation and the cyclic
symmetry as the primary relations, the fundamental KK relation
can be generated

1
; r - ; g ceey by N
K(B1; a1, ..., ar[N) Sln(TFO/Sglal)B(ﬂl @2, ..., ar, Nlaz)
+ cot(ma’sgy 0, ) B(B1; a1, ..., o | N). (7)

If we consider the fundamental KK relation and the cyclic
symmetry as the primary relations, the fundamental BCJ relation
can be generated

1
sin(ma’sg, a,)
— cot(ma’sg a0, ) K(B1; a1, ..., ar[N). (8)

B(f1; a1y .y ar|N) = K(B1; a2, ..., ar, N|ag)



Generalized U(1)-like decoupling identity is
UialN) = Z Pi8,a,N} {o,n}Ao(0, N) = 0.
a€P(O{B1,....8s }UO{a,...,ar })

It can be generated by U(1)-like decoupling identity. For
example, if there are two (8s. To see this we consider a linear
combination of amplitude

U1y ey Ve By ooy Bss 1y ooy | N)

= Z P8, Ny Ly NI (VL 5 Ve T1s ooy Tspr | V).
TEP(O{a}UO{8})

(10)
It can also be expressed as
UYLy ooy Ve By ooy Bss 01y oy [ IN)

= Z Piy.8.a.N} {o,N}A(0; N)
ceP(O{~}UO{B}UO{a})



and

U1y ey Ve By ooy Bss 1y ooy | N)

= Z 73{%57047,\/}7{7@’,\,}1/{(7'1, ooy Tedss A1y ooy 0| IN).
TeP(O{y}U0{8})

Boundary condition is
UWD; B; alN) =U(B; 0; | N) = U(B; | N). (11)
Using the properties of momentum kernel, we have

e 2 ko Kl (By, Bo; a1, ...y ar|N) — U(B2; Br; aay oy ctr | N)
+ u(627/81;0417 704r|N) =0. (12)

and

e 2ime Koy ko 1f(By, Br; o1, ...y ar|N) — U(B1; B2; any oy tr | N)
+ U(P1,P2; 0, ..., |N) = 0. (13)



From the equations above and the boundary condition, we get

U(p1, B2i aa, ..., | N)
1
2isin(2ma’ kg, - kg,)

eziﬂ-o‘/kﬁl'kﬁzz/{(ﬁl; B2; ai, ..., ar|N)

—U(52;51;a1,~-704r“\/) . (14)
Since we have
U(B1; Po; aa,y ..., | N)
= Z PiB1,82,01,cos0tr N} LBy eoesiar N}
TEP(O{aa,...,ar }U{B2})
XU(B1; 71, -0y Trea| N), (15)

The generalized U(1)-like decoupling identity with two (s are
expressed as linear combinations of U(1)-like decoupling identity.



All the KK-BCJ relations can be expressed by linear
combinations of generalized U(1)-like decoupling identity. For
the case with only one £,

U(P1; a1y .y ar|N) = V(B1; a1, ...y o [N) = 0. (16)

We take the case with two s as an example. V and U satisfy
the relation

V(ﬂla 52; ag, ..., ar|N) - V(BZ Bla ag, ..., ar|N)
= —e2imkiky(g) By, ..., ar|N), (17)

thus they can be solved from each other.



From this relation, we express the ¥ with two (s by the Us with (s
no more than two

V(B1, Bo; a1, ..., ar | N)
= U(B2; 1,01, ..., ar|N) — e—2fﬂa/kﬁl.k52u(ﬁl’52; a1, ..., o[ N).
(18)

Since the KK-BCJ relations are generated by generalized U(1)-like
decoupling identities, the generalized U(1)-like decoupling
identities are generated by U(1)-like decoupling identities and the
U(1)-like decoupling identities are generated by the primary
relations, all the KK-BCJ relations can be generated by the
primary relations.



The discussion can be extended to field theory by taking

o/ — 0. However, in field theory there are no kinematic
factors in U(1)-decoupling identity(fundamental KK relation),
we cannot use the U(1)-decoupling identity to generate the
fundamental BCJ relation. Therefore, only the fundamental
BCJ relation and cyclic symmetry can be considered as
primary relations. We take five-point relation with two (s as
an example.



The field theory limit of real part is given as

Kf(3,4;1,2/5)
1 1
= —-—B(41,2,53)+ -—B(3;4,1,2/5)
2543 2534
1 1
me(:;; 1,4,2/5) + 1 st st
2534 s31 2s34 531
1 541 + s34 + 531 + S32

Bf(3;1,2,4/5)

1
L S A S ar g 3 005) — LTI T BT S gy 5 gy
2534 S41 2534 S41
1 1 1
— L SLpf(34,2,51) - == ST (35 4 51)
2534 531 2s34 2534 831
1 1
7534+75313f(4;37275|1)+7m31’(4;273,5‘1). (19)
2s34  sa1 2s34 Sa1

The field theory limit of imaginary part is given as

Bf(3,4;1,2|5)
= _Mpf(3;,1,4,2/5) - MB'C(3; 1,2,4]5)
534 s
+ 3B g (4:1,3,005) 4 TS24 5 355). (20)

S34 534



A general monodromy relation

One can extend the discussions on monodromy to get a more
general relation.

WL, 78 By s Bsi A, ooy e [N)

- Z PE’%BT,&,N},{T,Q,N}AO(T’ «, N)
TEP(O{~y}YUO{BT})
+ (_1)5_1 Z 7){7”37'706’,\[}’{770_7,\/},40(7’0-’ N)7

c€P(O{a}UO{B})|o1=a1
(21)

This relation can be explained by the contour of worldsheet
integral(Fig. 3). The KK-BCJ relation(Fig. 2) is the special case
with no ~.
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Figure: 3. Contour for general monodromy relation



This general monodromy relation can also be generated by primary
relations. For example, for the case with only one (3, by using the
properties of momentum kernel, we have

W(VL - Vs B1; o, .., Oér’N)
— e217ra kv kg, W(’}’l, O 51; Yy 01y oevy ar‘N), (22)

Thus W(v1, ..., 7t B1; @2, ..., a,|N) can be expressed by the W
with no ~

W1y ey Vs 515 Q24 oy | N)

2ira’ i ky; -k
i=1 ! BlW(@;/Bl;ryl7"'77t7a17"'7al’|N)' (23)

= €

In a similar way, All the general monodromy relation can be given
as linear combinations of KK-BCJ relations, thus they are
generated by the primary relations.



The field theory limit of general monodromy relation can be given by taking o/ — 0.

For example
Wf(1,2;3,4;5|6)
= Ag(1,2,4,3,5,6) + [1 + ima/(sa2 + 532)]Ag(1,4,3,2,5,6)
+[1 + ira/(sa2)]Ag(1,4,2,3,5,6) + [1 + ima/ (sa1 + s31 + sa2 + 532)]Ag(4,3,1,2,5,6)
1+ ima/ (541 + sa2 + 532)]Ag(4,1,3,2,5,6) + [1 + ima/(sa1 + s42)] Ag (4, 1,2,3,5,6)
—[1 — ima/(sa5 + s34 + s35)]Ag (1, 2,5,3,4,6)
—o0. (24)

The real part gives

Ag(1,2,4,3,5,6) + Ag(1,4,3,2,5,6) + Ag(1,4,2,3,5,6)
+Ag(4,3,1,2,5,6) + Ag(4,1,3,2,5,6) + Ag(4,1,2,3,5,6) — Ag(1,2,5,4,3,6)
o, (25)

The imaginary part gives

(542 + S32)Ag(].7 4,3,2,5, 6) + 542Ag(1, 4,2 3,5, 6)
+(sa1 + 31 + sa2 + 532)Ag(4,3,1,2,5,6) + (sa1 + sa2 + 532)Ag(4,1,3,2,5,6)

+(sa1 + s42)Ag(4,1,2,3,5,6) + (sa5 + s34 + s35)Ag(1,2,5,3,4,6)

=o0. (26)



Minimal-basis expansion in string theory

The reduction of the independent amplitudes in string theory from
KK-basis to BCJ-basis is not apparent. However, one can use the
BCJ relations to solve this minimal-basis expansion out. the
general formula of minimal-basis expansion is

Ao(1,B1, ..., Bs, 2,01, oy iy —s—3, N)

o €P(0{a}U{B}) All divisionsO{B}—O{B1,....8; }O{Biy +1,--:Bi -, OB, _y+1:---,8i, }

S8y P11 2.0 /By BLYNY AL BL By 2.0 /(B By T NY
B sin[ra’s ] AN
j=o lﬁlw-”@fj

xAo(1,2,0, N).

)

(27)

where ©; = szij_ﬁrl 007 (Brs1) — o1 (Bk)) for ij > ij—1 + 1
and ©; =1 for (ij = ij_1 +1).



If the minimal-basis expansion is right for the cases with s < 2, let
us consider the minimal-basis expansion with three 8s. The BCJ
relation at level-3 is given as

Ao(1, B1, B2, 83,2, 1, ..., an—g, N)
1

sin[fra’51/3152/33]

X > S(63,62,61,1,2,0,N},{1,61,62,2,0,N} Ao (1, B1, B2, 2, 0, N)
0€P(0{63}U0{a})
+ > S{8s,62,81,1,2,0,N},{1,81,2,6" N} Ao (L, B1, 2,07, N)

o’ €P(0{B2,83}U0{a})

+ Z S{ﬁaﬁz’lﬁ¢1,2,a,’V}»{1’270”7N}Ao(l’2’U//’N) (28)
o’ €P(0{p1,B2,83}U0{a})



The minimal-basis expansions with one 3 is

AO(1)51127Q11“'1QN747N)
1
L s As(1,2,0,N)
- 7 len . Z {B81,1,2,a1,...,an_4,N},{1,2,0,N} Ao\ L, £, T, IV ),
sin[2ra’ky - kg, ] o€P(0{B1}U0{a})

(29)
and that with two (s is

Ao(1, b1, 2,2, a1, ..., an—s5, N)

S(8,81,1,2,0,N},{1,81,2,0/{81}, N} S{81,1,2,0/{81},N},{1,2,0,N}
sin(ma’s g, )

H ’
0 €P(O{a}U{B1,62}) sin(ra’s1,5,)

S o
_ {ﬁ25€151727a7N}a{1721 N} 9(0’71(52) _ 071(61)) Ao(1,2,a, N) (30)
sin(ma’s18,3,)




Substituting these two expansions into the BCJ relation with three
s, we can easily obtain the minimal-basis expansion with three (s

Ao(L, B1, B2, B3,2, 01, ..., an_g, N) =
o€P(0{a}U{B1,B2,83})
3 3{133,132,131,1,2,u,N},(1,51,52,2,0/{B1,B2},N} S{82,81.1,2,0/{B1,82} N} {1.81,2,0/{B1},N}
sinfima’s18, g, 851 sin(ra’s18, 8,)
o S{B1.1,2,0/{B1},N},{1,2,5,N}
sin(ma’s g, )

(=1

+3{53,52,51,1,2.a,N},{1,/31,/32,2,0/{/31,/32},N} S{6,81,1,2,0/{81,823 N}, {1,2,0,N}
sin[ﬂa’slﬁ15253] sin(ma’s18, 8,)
x0(c ™1 (B2) = o (B1)
+S{Ba,Bz,ﬁplyZ,OY’V}={1v51v2,0/{ﬁ1}yN} 9(g71(ﬁ3) -~ 0—1(62))S{B1~1=2v0/{31}JV},{L?#’,N}
sin[ra’s16, 8,851 sin(ma’s g, )

 S{B3.85.81.1.2..N} . {1.2,5.N} 0
sin[7ro¢’51515253]

(07 MBs) — o (B2))0(0  (B2) — o1 (B1)) | Ao(1, 2, 5, ).

(31)



Conclusion

» All the KK and BCJ relations can be generated by two
primary relations. The primary relations in string theory can
be chosen as cyclic symmetry as well as either one of
fundamental KK relation and fundamental BCJ relation. In
field theory, the U(1)-decoupling identity(fundamental KK
relation) cannot be chosen as primary relation.

> The general monodromy relation can also be generated by
primary relations.

» One can derive and prove the minimal-basis expansion
recursively.



