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I. Motivation

• Einstein gravity is not a quantum complete theory (at least
as the folklore says.)

• The principle of General Relativity is too good to throw away.

• Introduce higher derivative term, while keeping the principle
and the symmetry. The f(R) formalism is the simplest gen-
eralization.

• Enlarge the symmetry to include supersymmetry, yielding su-
pergravities. (Boosted by string theory, as low-energy effec-
tive theories of strings)

• Although both are generalizing GR, little overlap between the
two.



I. Motivation, continued

A rather fundamental property of supergravity is that it admits
Killing spinor equations, whose defining property is that the Γ-
matrix projected integrability condition give rise to equations of
motion.

It is hard to imagine such a property for f(R) theories, and hence
the two subjects rarely overlap.

However, in a recent paper (arXiv:1111.6602), we (Liu, Lü and
Wang) demonstrate that there exist large classes of f(R) theories
that do admit Killing spinor equations.



I. Killing Spinor Equations in f(R)

Condition:

f ′′−

(
4(D − 1)(D − 2)W2 +R

)
W ′(

4D(D − 1)W2 +R

)
W

f ′+
W ′(

4D(D − 1)W2 +R

)
W
f = 0 .

Killing spinor equations:

Dµε ≡
(
Dµ +W (R)Γµ

)
ε = 0 ,

(
Γµ∇µF + U(R)

)
ε = 0 ,

where

U = −
(4D(D − 1)W2 +R)f ′′(R)

4(D − 1)W ′

The integrability condition projected by a Γ-matrix:

ΓµRµνε = 0 .



I. Motivation, continued

• The existence of KSE is not unique to, but an important
feature of supergravities

• Thus the f(R) formulation of gravity is not totally incompat-
ible with supersymmetry

• Hence the f(R) formalism is not totally incompatible with
string theory

• Higher-order curvature terms are little known in supergravities
or in string theories

• May shed some light on the supersymmetrizing of higher order
curvature terms.



Two reviews

Before going to discuss f(R) formalism of supergravities, we first
give some short reviews on the following two subjects:

• Why is Killing spinor equation so important in supergravities?

• What is f(R) theory?



Why is KSE so important in supergravity?

This is a new way of looking at constructing supergravities that
you do not seen in supergravity books.

Introduce a fermionic partner for the graviton, a gravitno ψµ.

Note that

δ(
√
−gR) = Gµνδg

µν

where Gµν = Rµν − 1
2Rgµν Thus, any symmetry transformation

has to generate Gµν to cancel the above one. The kinetic term
for the fermions has one derivative, so the the transformation
rule for the fermion has to have another.

General coordinate transformation:

δgµν = ∇(µξν) .

Analogous transformation

δψµ = Dµε

where the covariant derivative on fermion is

Dµε = ∂µε+ 1
4ω

ab
µ Γabε



Property of covariant derivatives

On vector:

[∇µ,∇ν]V ρ = RρλµνV
λ

On spinor:

[Dµ, Dν]ε = 1
4R

ab
µνΓabε

Describe parallel transports around an infinitesimal closed path.



Projections

Γν[Dµ, Dν]ε = 1
2RµνΓνε

Γµ
νρ[Dν, Dρ]ε = GµνΓνε

We see that the Einstein tensor Gµν appears!



Gravitino kinetic term

L = 1
2

√
−gψ̄µΓµνρDνψρ

Consider a transformation δψµ = Dµε, then we have

δL =
√
−gψ̄µΓµνρDνδψρ =

√
−gψ̄µΓµνρDνDρε

= 1
2

√
−gψ̄µΓµνρ[Dν, Dρ]ε = 1

2

√
−gGµνψ̄µΓνε



Graviton/Gravitino system: pseudo-supergravity

L =
√
−g (R+ 1

2ψ̄µΓµνρDνψρ)

transformation rules:
δψµ = Dµε

δeaµ = 1
4ψ̄µΓaε , so δgµν = 1

2ψ̄(µΓν) ε

The Lagrangian is invariant under the above transformation rules
if we do not look beyond quadratic order in fermions.

Any bosonic gravity theories that admit consistent Killing spinor
equations can pseudo-supersymmetrized up to and including the
quadratic order of fermion fields in the action.



f(R) theories of gravity

Replace the Ricci scalar R in the Einstein-Hilbert action with a
generic function f(R).

f(R) can be an arbitrarily custom-made function to suit whatever
the purpose.

If one is not a cosmologist, one might feel embarrassed to be
associated with it.



Properties of f(R) theories

It is equivalent to a special class of the Brans-Dicke theory.

Introducing an auxiliary field χ, then the Lagrangian

e−1L = f(χ) + f,χ(χ)(R− χ) .

Variation of χ gives to f,χχ (R− χ) = 0. Provided that f,χχ 6= 0,
we have χ = R, and substitute this to the Lagrangian, we obtain
f(R) gravity.

The Lagrangian is nothing but a scalar/gravity system with the
scalar χ that has no kinetic term. To see it more clearly, we can
define ϕ = f,χ(χ), and hence the Lagrangian becomes

e−1L = ϕR+ f(χ(ϕ))− ϕχ(ϕ) .

The conversion requires to find the inverse function for f ′(R)
and the close-form conversion may not always exist.



Converting scalar/gravity to f(R)

In supergravities, we typically have scalar/gravity system in the
following form

e−1LD = R− 1
2(∂φ)2 − V (φ) ,

The equations of motion for dilaton φ cannot be solved alge-
braically like the ϕ in the previous case.

However, let’s make the following conformal transformation

gµν → e−2αφgµν , ϕ = eβφ ,

where

α = −
1√

2(D − 1)(D − 2)
, β =

√
D − 2

2(D − 1)
.



The Lagrangian becomes

e−1LD = ϕR− Ṽ (ϕ) ,

where

Ṽ (ϕ) = ϕ
D

D−2V (φ(ϕ)) .

The Lagrangian has no derivative on ϕ, and hence it is an aux-
iliary field. The variation of ϕ gives rise to an algebraic equation
on ϕ, which can solved in principle. Substitute the solution of ϕ
into the Lagrangian gives rise to an f(R) theory.

Thus we define the frame where the dilation has no kinetic term
is the “f(R)” frame.



Equivalence and Inequivalence

Three Lagrangians

1. e−1LD = R− 1
2(∂φ)2 − V (φ) ,

2. e−1LD = ϕR− Ṽ (ϕ) ,

3. e−1LD = f(R)

Lagrangian 2 and Lagrangian 3 are classically equivalent. It is
analogous to the relationship between the Polyakov action and
the Nambu-Goto action in string theory.

Lagrangian 1 is not equivalent to 2 or 3, because the conformal
scaling can be singular in the solution space.

In the f(R) theory, the trace mode is turned on. The purpose of
the auxiliary ϕ in Lagrangian 2 is that it excites the trace mode.
Thus Lagrangian 2 should be viewed as a gravity theory, rather
than gravity plus matter.



The f(R) frame and Kaluza-Klein theory

Recall that the conformal transformation and field redefinition to
cast the theory into the f(R) frame:

gµν → e−2αφgµν , ϕ = eβφ ,

where

α = −
1√

2(D − 1)(D − 2)
, β =

√
D − 2

2(D − 1)
.

For those who familiar with Kaluza-Klein reduction, the con-
stants (α, β) are familiar: Consider D + 1 Lagrangian

ê−1LD+1 = R̂

and the reduction ansatz

ds2 = e2αφds2
D + e2βφ(dz +A(1))

2

The D-dimensional Lagrangian is

e−1L = R− 1
2(∂φ)2 − 1

4e
−2(D−1)αφF2

(2) .



Thus, if we consider reduction ansatz with the D-dimensional
metric unscaled, then we have

ds2 = ds2
D + ϕ2(dz +A(1))

2

The Kaluza-Klein theory becomes

e−1LD = ϕR− 1
4ϕ

3F2
(2) .

In other words, the f(R) frame is the same as the (D + 1)-
dimensional frame. And the breathing mode is auxiliary. If there
is a cosmological constant in D + 1 dimensions, we have

e−1LD = ϕ(R− 2Λ)− 1
4ϕ

3F2
(2) .

Solving for ϕ, we have

e−1LD = 4
3(R− 2Λ)

√
R−2Λ
3F2

(2)
.

This is the f(R) description of the Kaluza-Klein theory. It is
classically equivalent to the usual Kaluza-Klein theory up to a
conformal scaling that can be singular.



The breathing mode is auxiliary

String theory can be obtained from M-theory via KK reduction
on S1 or S1/Z2. The expectation value of the breathing mode is
related to the string coupling constant. The possibility that the
breathing mode is auxiliary suggests a non-perturbative formula-
tion of the string theories.

Is this an artefact of low-energy effective action? When the Rie-
mann square term is included in D+ 1 dimensions, the breathing
mode ceases to be auxiliary. However, in the reduction of Gauss-
Bonnet term, the breathing mode retains its auxiliary feature.

e−1LD
= ϕ(R− Λ0 + αEGB)− 1

4ϕ
3F2

(2) + αϕ3
(
−Rabcd(FabFcd −FacFdb)

+2∇aFbc∇aFbc + 1
3�F

2
(2) − 2∇a∇b(F2)ab + 2∇bFba∇cFca

−10
3 ∇aFbc∇

bFac + 4F ab∇a∇cFcb − 4
3F

ab∇c∇bFac
)

+αϕ5
(

1
4(F2

(2))
2 + 1

2(F2
(2))

ab(F2
(2))ab

)
,



String dilaton an auxiliary field?

The breathing mode from D = 11 to D = 10 is the string loop
coupling field.

At least for heterotic string theory, it can be demonstrated that
the dilaton is an auxiliary up to and including the α′ correction.

For type IIA or type IIB, it is too complicated to determine at
this moment.



The f(R)-frame vs. string frame

If we view type IIA string theory from D = 11 compactified on
S1, the f(R) frame is the most natural frame, especially when
higher-order curvature terms are included.

On the other hand, from string theory point of view, type IIA
supergravity is natural in the string frame.

A paradox?

Depending on the perturbative or non-perturbative approach to
strings.



The f(R) theories of D = 10 supergravities

In order to convert the usual supergravities to the f(R) descrip-
tion, it is necessary first to go to the f(R) frame.

All ten-dimensional supergravities are related to D = 11 one way
or the other. The f(R) frame is nothing but the M-theory frame.
This implies that all ten-dimensional supergravities have a natural
f(R) description.



Example N = 1 D = 10 supergravity

Bosonic sector in the Einstein frame

e−1L10 = R− 1
2(∂φ)2 − 1

12e
−φF2

(3) .

In the f(R) frame:

e−1L10 = ϕR− 1
12ϕ

−1F2
(3) .

The f(R) theory:

e−1L10 = f(R) =
√
−1

3RF
2
(3) .



Including the fermions

Full Lagrangian in the f(R) frame:

e−1L = ϕ(R+K)− 1
12ϕ

−1F2
(3) +X3, (1)

where K and the Yukawa term X3 associated with F(3) are given
by

K = 1
2ψ̄µΓµνρDνψρ − 2

√
2 i

3 λ̄ΓµνDµψν + 1
2D

µ(ψνΓνψµ) ,

X3 =
(
− 1

48ψ̄µΓµνρσλψλ − 1
8ψ

νΓρψσ +
√

2 i
12 λ̄Γνρψσ

)
Fνρσ .

The supersymmetric transformation rules in the f(R) frame are
given by

δψµ = Dµε+ 1
54FνρσΓµ

νρσε− 1
12FµνρΓ

νρε ,

δλ = 3i
4
√

2
ϕ−1(Γµ∂µϕ− 1

18FµνρΓ
µνρ)ε ,

δeaµ = 1
4ψ̄µΓaε , δgµν = 1

2ψ̄(µγν)ε , δϕ = − i
3
√

2
ϕλ̄ε ,

δAµν = ϕ(−1
2ε̄Γ[µψν] + i

3
√

2
ε̄Γµνλ) .



The f(R) description of ten-D supergravity

Integrating out ϕ, we find that the f(R) theory of the N = 1,
D = 10 f(R) supergravity is given by

e−1L =
√
−1

3(R+K)F2
(3) +X3 ,

δψµ = Dµε+ 1
54FνρσΓµ

νρσε− 1
12FµνρΓ

νρε ,

δλ = 3i
4
√

2
F−1(Γµ∂µF − 1

18FµνρΓ
µνρ)ε ,

δeaµ = 1
4ψµΓaε , δgµν = 1

2ψ̄(µγν)ε0 ,

δAµν = F (−1
2ε̄Γ[µψν] + i

3
√

2
ε̄Γµνλ) .

One can add further the matter Yang-Mills multiplet (Aµ, χ). In
the f(R) frame, the extra parts of the Lagrangian and supersym-
metric transformation rules are given by

e−1LYM = −1
4F

2
(2) + 1

2ϕχ̄ΓµDµχ− 1
48Fµνρχ̄Γµνρχ− 1

4
√

2
ϕ

1
2Fνρχ̄ΓµΓνρψµ ,

δχ = 1
4
√

2
ΓµνFµνε , δAµ = − 1

2
√

2
ϕ

1
2χ̄Γµε ,

δextraAµν = 1
2
√

2
ϕ

1
2χ̄A[µΓν]ε .

It is again straightforward to integrate out the auxiliary ϕ and
obtain the f(R) theory of heterotic supergravity.



The f(R) description of ten-D supergravity

We find that all the D = 10 supergravities can be cast into the
f(R) descriptions.

However, this is not universal. Most of lower dimensional exam-
ples do not land themselves naturally in f(R) theories.

For example, D = 7 gauged supergravity in the f(R) frame is
given by

e−1L7 = ϕR− g2ϕ
7
5

(
1
4ϕ
−8
√

6
5 − 2ϕ−

3
√

6
5 − 2ϕ

2
√

6
5

)
− 1

48ϕ
−1

5+4
√

6
5 F2

(4) − 1
4ϕ
−4

5+2
√

6
5 (F i(2))

2 + e−1LFFA ,
The irrational power suggests that this frame is not natural to
describe the system.

The majority of supergravities in fact will have such irrational
powers in f(R) frames.



An example in lower dimensions

N = 2, D = 5 gauged supergravity with a vector multiplet:

e−1L5 = R− 1
2(∂φ)2 + 4g2

(
2e
− 1√

6
φ

+ e
2√
6
φ
)
− 1

4e
− 2√

6
φ
F2

(2) − 1
4e

4√
6
φF2

(2)

+1
8e
−1εµνρσλFµνFρσAλ ,

In the f(R) frame:

e−1L = ϕ(R+8g2)+ϕ3(4g2−1
4F

2
(2))−1

4ϕ
−1F2

(2)−1
4e
−1εµνρσλFµνFρσAλ .

Supersymmetric transformation rules

δψµ = [Dµ − i
2g(
√

2Aµ +Aµ)]ε+ 1
3gϕΓµε

+3
√

2 i
16 ϕ−1FνρΓµΓνρε− 3i

4 (
√

2ϕ−1Fµν + ϕFµν)Γνε ,

δλ = −
i√
6

(
ϕ−1Γµ∇µϕ− g(ϕ− ϕ−1)− 3i

8 (
√

2ϕ−1Fµν − 2ϕFµν)Γµν
)
ε .



So what?

Is there any new physics emerging?

Even at the classical level, the solution space of the usual super-
gravity is different from that of the corresponding f(R) theory.



Example 1: N = 2, D = 10

The f(R) theory admits the following AdS7 × S3 solution

ds2 = `2
(
dr2

r2
+ r dxµdxµ + dΩ2

(3)

)
, dΩ2

3 = dθ2 + sin2 θdΩ2
2 ,

F(3) = 3`3 cos θ sin2 θdθ ∧Ω(2) , ϕ = ` cos θ .

Note that ϕ = 0 at the S3 equator θ = π/2. Thus in the original
description, the solution has a power-law curvature singularity at
the equator, and hence θ ∈ [0, π/2). The charge is Q5 =

∫
F(3) =

4πq.

In this f(R) frame, the geodesic is not complete at the equator,
and hence θ ∈ [0, π]. However if we allow that, we have Q5 =
4πq−4πq = 0 and also ϕ is negative at the southern hemisphere.

To avoid ghosts, we impose at a delta function source at the
equator

F(3) = 3`3| cos θ| sin2 θ dθ ∧Ω(2) , ϕ = `| cos θ| .
This solution with such global property clearly does not exist in

the original theory.



An analogy: AdS6 in the D4/D8 system

Does it make sense to talk about solutions with a source sitting
at the equator? In fact that is how AdS6 is embedded in string
theory. D1/D8 system in massive type IIA:

ds2
10 = (cos θ)

2
9(ds2

AdS6
+ 2dθ2 + 2 sin2 θdΩ2

3) ,

F(4) = 5
√

2
6 (cos θ)

1
3 sin3 θ dθ ∧Ω(3) , ϕ = (cos θ)−

5
9 .

Thus the solution has a power-law curvature singularity at the
equator θ = π/2 of the S4. The solution becomes regular in the
D4-brane frame, in which the Lagangian takes the form

e−1L = ϕ̃(R− 2(∂ log ϕ̃)2 − 1
1440F

2
(6)) + more .

The metric of the D4/D8 solution is then simply the AdS6 × S4

without the pre-factor. Furthermore, ϕ̃ = (sin θ)1/3. Thus it is
necessary that θ runs from 0 to π with the (cos θ)1/3 factor in
both F(4) and ϕ̃ added an absolute-value sign, namely |(cos θ)1/3|.
This requires a delta-function source on the equator.



Another example

It is well-known that N = 2, D = 5 gauge supergravity has
no BPS static black holes. The static BPS solution has a naked
singularity. The solutions are called “super stars.” The resolution
either turns it to be a bubbling solution or rotating solution with
less supersymmetry.

In the corresponding f(R) theory, the solution becomes

ds2
5 = −H−1hdt2 +H

(
dr2

h
+ r2dΩ2

3

)
, F(2) =

√
2 dt ∧ dH−1 ,

h = 1 + g2r2H2 , ϕ =
|r|√

r2 + q2
, H = 1 +

q

r2
.

Since we have

H−1h =
r2 + g2(r2 + q2)2

r2 + q2
,

it follows that the solution describes a wormhole with r runs from
−∞ to +∞. The positivity of ϕ requires that a delta-function
matter source at r = 0 is needed for supporting this wormhole.



The corresponding D = 10 type IIB solution is given by

ds2
10 =

√
∆
(
−
r2 + g2(r2 + q2)2

r2 + q2
dt2 +

(r2 + q2)dr2

r2 + g2(r2 + q2)2

+(r2 + q2)dΩ2
3 + g−2dθ2

)
+

1

g2
√

∆

(
1
4 sin2 θ (σ2

1 + σ2
2 + (σ3 + 2A(1))

2)

+
r2

r2 + q2
cos2 θ dφ2

)
,

∆ = cos2 θ +
r2

r2 + q2
sin2 θ .

It is thus clear that the coordinate r runs from 0 to ∞ in D = 10.



Thus

Usual supergravity and its corresponding f(R) theory do not have
the same solution space.

The local solutions can be related by some conformal factors
that can become singular. However, the global structures do not
survive.

In a gravity theory, a solution is not only specified by a local
metric, but also by its global structure.

Wormholes emerge naturally in f(R) theory whilst they are more
or less impossible in Einstein gravity with matter.



Conclusions

The majority of supergravities, when cast into the f(R) frame,
have irrational power of the scalar coupling. Few examples, in-
cluding all D = 10 supergravities have nice integer powers. An-
other example we find is N = 2, D = 5 gauged supergravity with
a vector multiplet. Such theories have a natural f(R) description.

The original theory and the f(R) counterpart do not share the
same solution space.

The f(R) frame is related to the Kaluza-Klein circle reduction
and it implies that the breathing mode is auxiliary. This could
hold even with appropriate higher-order curvature terms. If this is
true for M-theory, it suggests some special property of the string
coupling dilaton field.



Conclusions

The fact that N = 1 D = 10 supergravity can be expressed as

e−1L10 =
√
−1

3RF
2
(3) − 1

4α
′
(

tr(F2
(2)) + Riem2

)
suggests that there can exist very unusual types of coupling

between the curvature tensors and the matter form fields. In this
formulation, there is no string loop coupling constant and the
theory is strictly non-perturbative.

Such a construction of supergravities and such types of coupling
between gravity and form fields were not considered previously.

Our works seem to raise more questions than answer them.



AdS and Lifshitz Black Holes

in Conformal and Einstein-Weyl Gravities



A Quick Review

The most general action of gravity up to quadratic curvature
invariants is

I =
1

2κ2

∫ √
−g d4x(R− 2Λ + αRµνRµν + βR2 + γEGB) .

The theory admits one AdS vacuum with Rµν = −Λ gµν, and the
AdS Schwarzschild black hole.

The linear spectrum consists of a massless graviton, a massive
scalar and a ghost-like massive spin-2 mode.

The massive scalar decouples if we set β = −α/3, and the massive
spin-2 mode disappears and it is replaced by the log modes at
the critical point α = −1/2.

The AdS Schwarzschild black hole has a temperature, but van-
ishing energy, entropy and free energy, and hence can be viewed
as the “thermalized vacuum.”



Einstein-Weyl gravity and conformal gravity

When β = −α/3, and γ = α/2, the theory is simply Einstein-Weyl
gravity, with

I =
1

2κ2

∫ √
−g d4x(R− 2Λ + 1

2α|Weyl|2) .

Rµν − 1
2Rgµν + Λgµν − 2α(2∇ρ∇σ +Rρσ)Cµρσν = 0 .

Conformal Gravity is like to take α→∞:

I =
1

2κ2

∫ √
−g d4x(1

2α|Weyl|2) .

−2α(2∇ρ∇σ +Rρσ)Cµρσν = 0 .



Lifshitz vacua

ds2 =
dr2

σ r2
− r2zdt2 + r2(dx2 + dy2) ,

with

α =
z2 + 2z + 3

4z(z − 4)
.

The Existence of such a solution may not be so surprising since
the previously-known Liftshitz solutions are constructed with a
massive vector:

e−1L = R− 2Λ− 1
4F

2
(2) − 1

2c
2A2

(1) .

ds2 = `2
(
− r2zdt2 + r2(dx2 + dy2) +

dr2

r2

)
, A(1) = qrzdt ,

c2 =
2z

`2
, Λ = −

z2 + z + 4

2`2
, q2 =

2`2(z − 1)

z
.

Thus it is natural expect Lifshitz solutions in theories with mas-
sive spin-2 modes.



Schrödinger vacua

ds2 = −r2zdt2 +
dr2

r2
+ r2(−2dtdx+ dy2) ,

with

α =
1

2z(1− 2z)
.



Focus of the talk

Are there new spherically (T2, H2)-symmetric black holes beyond
Schwarzschild-AdS black holes?

Are there new black holes that are asymptotic to the Lifshitz
vacua?



Ansatz

ds2 = −a(r) dt2 +
dr2

f(r)
+ r2dΩ2

2,k .

Equations of motion:

a′′ =
r2fa′2 + 4a2(k + 6r2 − f − rf ′)− raa′(4f + rf ′)

2r2af
.

Note that the trace equation is independent of α.

f ′′ =
1

2r2a2f(ra′ − 2a)

(
4r2a2

α
(a(k + 3r2 − f)− rfa′) + r3f2a′3 + 2r2a2fa′(8r − f ′)

−r2afa′2(3f + rf ′)− a3(48r4 − 16r2f + 8f2 − 24r3f ′+ 4rff ′+ 3r2f ′2)

−4ka3(4r2 − 2f − rf ′)
)
.

We cannot solve these two equations.

Still some properties can be extracted.



Noether charge for k = 0

ds2 = −a(r) dt2 +
dr2

f(r)
+ b(r)(dx2 + dy2), .

The metric is invariant under the scaling a→ a/λ2, b→ bλ, t→ λ,
(x, y)→ (x, y)/

√
λ. Thus the curvature polynomial invariants are

invariant under this scaling. Furthermore
√
−g is invariant. Thus

the Lagrangian has this additional global symmetry. Gauging this
global symmetry gives rise to Noether current and the charge:

λ =
1√

a3f (ra′ − 2a)

(
2ra(18ra2 − 10a2f − 2rafa′ − r2fa′2)

−α(4ra− fa′ − af ′)(36r2a2 − 8a2f − rafa′ − 2r2fa′2 − 9ra2f ′)
)
.



Physical meaning of the Noether charge

In two-derivative gravities, the Noether charge has been shown
with examples to have the following properties

E = −
λω2

16π (z + 2)
=

2

(z + 2)
T S .

This is not longer in general true for solutions in higher-derivative
gravities.



Solutions in conformal gravity

Without explicit solutions, it is very difficult to demonstrate
whether new black holes with massive spin-2 hair could emerge.

Fortunately, conformal gravity provides an answer. Up to an
conformal factor, the most general spherically symmetric black
hole was known, given by

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2,k , f = br2 +
c2 − k2

3d
r + c+

d

r
,

The constant b is the cosmological constant of the asymptotic
AdS. If c = k, the solution becomes the usual Schwarzschild-AdS
black hole. Thus it has one extra parameter, associated with the
massive spin-2 hair.

Is this a black hole?

Surprisingly, the global structure of this solution was not studied
previously.



Thermodynamics

Schwarzschild-AdS: f = −1
3Λρ2 + k − 2M/ρ.

M = 1
6ρ+(3k − Λρ2

+) .

T =
k − Λρ2

+

4πρ+
, S = 1

6α(3k − Λρ2
+)ω2 ,

F = −
αω2

32π

∫ ∞
r+

r2dr |Weyl|2 = −
α(3k − Λρ2

+)2ω2

72πρ+
.

E =
αΛρ+(−3k + Λρ2

+)ω2

36π
=
α(−Λ)ω2

6π
M .



Thermodynamic relations

dE = TdS+Θ dΛ , F = E−TS , Θ = −
αρ+(3k − Λρ2

+)ω2

72π
.

New Smarr relation:
E = 2ΘΛ



Thermodynamics for new black holes

f = r2 +
c2 − k2

3d
r + c+

d

r
,

Set d = −d̃r+, we have

r2
+ = −c+

c2 − k2

3d̃
+ d̃ > 0 .

T =
(3d̃− c)2 − k2

12πr+d̃
, S = 1

6α(k + 3d̃− c)ω2 .

F = −
αω2

(
(c− k)2 − 3(c− k)d̃+ 3d̃2

)
24πr+

.



Additional thermo qunatities?

How to handle the extra parameter? One might expect the fol-
lowing

dE = TdS +XdY , F = E − TS −XY
In this relation, we have three unknowns (E,X, Y ). We need an

independent way of calculating these quantities.

All the previously-known methods (Deser-Tekin or AMD) of cal-
culating the energy yield divergent result. We adopt a new
method, and find the energy.



Thermalized vacuum

It is instructive to look at the solution with d = 0 first:

f = r2 + Ξ r + k .

This solution has a curvature singularity at r = 0, which can be
shielded by an horizon at r = r0 provided that Ξ is chosen so
that Ξ2 ≥ 4k. The temperature is given by

T0 =
r2

0 − k
4πr0

.

However, we find that the entropy and free energy both vanish,
suggesting that the energy should vanish also. Thus the solution
can be viewed as a “thermalized vacuum.” In a Deser-Tekin or
AMD calculation, this thermalized vacuum will generate a diver-
gence in the evaluation of the mass, and it should be subtracted.

The thermalized vacuum is locally conformal to the de Sitter
space and the horizon is mapped to the cosmic horizon.



Energy of new black holes

Adopting a new method, we find that

E =
αω2

4π
(−d+m) ,

where

m ≡
(c− k)(c2 − k2)

18d
.

Note that when c = k, it reproduces the energy for the Schwarzschild-
AdS black hole. When d = 0, it is necessary that c → k with
Ξ = (c2 − k2)/(3d) held fixed. In this limit, the quantity m van-
ishes, and hence we see that the thermalized vacuum indeed has
zero energy.



Thermodynamical relations

It turns out that
F = E − TS .

But clearly, dE 6= TdS. How we introduce the new (X,Y ). It is
natural to think that the thermalized vacuum, it is a true vacuum,
can be held fixed when we vary thermodynamical variables, and
indeed, if we hold Ξ fixed, we have dE = TdS. This leads to

dE = TdS + ΨdΞ , Ψ =
αω2(c− k)

24π
.



The most general thermodynamical relations

f = −1
3Λr2 + Ξ r + c+

d

r
, with 3Ξ d = c2 − k2 .

Letting r+ be the radius of the outer horizon, and defining d =
−r+d̃, we have

T =
(3d̃− c)2 − k2

12πr+d̃
, S = 1

6αω2(k + 3d̃− c) ,

Ψ =
αω2(c− k)

24π
, Θ =

αω2d

24π
,

F = −
αω2

(
(c− k)2 − 3(c− k)d̃+ 3d̃2

)
24πr+

, E = 2Θ Λ + Ψ Ξ .

These thermodynamic quantities satisfy the relations

dE = TdS + Θ dΛ + Ψ dΞ , F = E − T S .
The entropy of the general black hole can be decomposed as

S = 1
2αw2 k + 1

6α (−Λ)A+ 8πΨ + 1
2αω2Ξr+ ,



z = 4,0 Lifshitz(-like) black holes

ds2 = −r8fdt2 +
4dr2

r2f
+ r2dΩ2

2,k , f = 1 +
c

r2
+
c2 − k2

3r4
+

d

r6
.

ds2 = −fdt2 +
4dr2

r2f
+ r2dΩ2

2,k , f = 1 +
c

r2
+
c2 − k2

3r4
.

Thermodynamics can also be worked out for these two solutions.



AdS and Lifshitz black holes in Einstein-Weyl gravity

Near-horizon structure:

a(r) = (r − r0) + a2 (r − r0)2 + a3 (r − r0)3 + a4 (r − r0)4 + · · · ,
f(r) = f1(r − r0) + f2 (r − r0)2 + f3 (r − r0)3 + f4 (r − r0)4 + · · · .

a2 =
3r3

0 + 5f1 r
2
0 − 2f2

1 r0 + k r0 + k f1

f2
1 r

2
0

−
(3r2

0 − f1 r0 + k)

4αf2
1 r0

,

f2 =
(f1 − 3r0)(3r2

0 − 2f1 r0 + k)

f1 r
2
0

+
3(3r2

0 − f1 r0 + k)

4αf1 r0
.

Schwarzschild-AdS black hole f1 = 3r0 + k/r0.



Numerical analysis: an example

We find that if α lies in the region −∞ < α < −1
2, then defining

f1 = 3r0 + k/r0 + δ ,

there is a range for δ, with δ− < δ < δ+, for which the numerical
solutions indicate the occurrence of asymptotically AdS black
holes. The lower limit δ− is negative, while the upper limit δ+ is
positive. If the value of δ is fine-tuned to be equal to δ− or δ+,
then the asymptotic behaviour of the black hole changes from
AdS to Lifshitz. The value of z in the asymptotically Lifshitz case
is given previously. If the parameter δ is chosen to lie outside the
range δ− ≤ δ ≤ δ+, then the numerical analysis indicates that the
solution becomes singular.

As an example, let us consider α = −11
16, which implies that there

should exist asymptotically Lifshitz solutions with z = 2. Taking
k = 0 and choosing r0 = 10, we find that the limiting values for
δ are

δ− ≈ −11.596956988 , δ+ ≈ 62.826397763 .


