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- Talk Based On

* Yen Chin Ong, "Generalized Uncertainty Principle, Black Holes, and White
Dwarfs: A Tale of Two Infinities", JCAP 09 (2018) 015, [arXiv:1804.05176 [gr-

acll.

* Yen Chin Ong, “An Effective Black Hole Remnant via Infinite Evaporation Time
Due to Generalized Uncertainty Principle”, JHEP 10 (2018)
195, [arXiv:1806.03691 [gr-gc]].

* Yen Chin Ong, Yuan Yao, “Generalized Uncertainty Principle and White Dwarfs
Redux: How Cosmological Constant Protects Chandrasekhar Limit”, Phys. Rev.
D 98 (2018) 126018 [arXiv:1809.06348 [gr-qc]].

* Yuan Yao, Meng-Shi Hou, Yen Chin Ong, “A Complementary Third Law for Black
Hole Thermodynamics”, [arXiv:1812.03136 [gr-qc]].



https://arxiv.org/abs/1804.05176
https://arxiv.org/abs/1806.03691
https://arxiv.org/abs/1809.06348
https://arxiv.org/abs/1812.03136

Some Words On Rigor

“When one gets to the mathematical theories
which are at the basis of qguantum mechanics, one
realizes that the attitude of certain physicists in
the handling of these theories truly borders on the
delirium. [...] One has to wonder what remains in
the mind of a student who has absorbed this
unbelievable accumulation of nonsense, a real
gibberish! It should be to believe that today’s
physicists are only at ease in the vagueness, the
obscure and the contradictory.” Jean Alexandre Eugéne Dieudonné

J. DIEUDONNE: “De la communication entre mathématiciens et physiciens”, dans “La
Pensée Physique Contemporaine”, S. Diner, D. Fargue et G. Lochak, éds., (Editions

A .Fresnel, Hiersac 1982) .




A Somewhat Different View

“I would like to discuss the uncertainty
principle, that describes the dual
relationship between physical space and
frequency space. There are various
concrete formalisations of this principle,
most famously the Heisenberg
uncertainty principle and the Hardy
uncertainty principle — but in many
situations, it is the heuristic formulation
of the principle that is more useful and

|n5|ghtfu| than any pa rticular rigorous Field Medal (2006) "for his contributions to

partial differential equations, combinatorics,
th_eor_em Ehat attempts to Capture that harmonic analysis and additive number
principle. theory"

— Terence Chi-Sen Tao

[http://terrytao.wordpress.com/2010/06/25/the-
uncertainty-principle/]
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Heisenberg’s Microscope



Heisenberg’s Microscope with Gravitational

Ronald J. Adler, “Six Easy Roads to the Planck Scale”,

CO rreCt | O n Am. J. Phys. 78 (2010) 925, arXiv:1001.1205 [gr-qc].
Photon energy E = hv, so effective mass M =hv/c*=h/c\

exerts force to accelerate particle: additional fuzziness!

Aa, =~ GM . roye = G(h/\C) 1y, N

Ax ~ Aa teff — G(h/)\.C) (teff/reff) ) Feff/ beff ™ € gravity
wave nature

210, +
2 2
Ax, = Gh/\c® = (Ghic)/\ = €p/I\
of light

h A
Axm(Ap)H?z( ﬁp) ; Ap

I+

Also, black hole formation?



7\
= “&5;,‘— -

=-_—-»~ i _*

The Schwarzschild metric is ds? = — (1 _

26M\ 1
dt® + (1 — ) dr? + r2dQ*

with the event horizon at r, = 2GM /c?.

Heisenberg’s Uncertainty Principle then yields, if we identify Ax ~ r, ,

the following approximation
h h hc*?

_J_‘b,p ~ ~ —
2Ax  2r, 4AGM

Suppose now we interpret the quantum uncertainty in the kinetic energy

of the emitted particles as due to thermal agitation, the uncertainty in

the energy of photons emitted during Hawking evaporation is identified with |

hcd
4GM

AE = Apc =

A
B ~ “" 8nkyGM

where
hel

T —
BH ™ 8k, GM

is the Bekenstein-Hawking temperature of the Schwarzschild black hole.

e,




- Hawking Radiation Does Not
Originate from Near Horizonl\
de Broglie wavelength:
21Th

A= 7 Quantum thermodynamics
Mechanics
Wavelength of Hawking Particle: E =pc E =kgT
y , 21h 27Thc
A T kgT/c kg
= 8r2 - 222 = 82y, ~ 797,
c?

S. B. Giddings, “Hawking radiation, the Stefan Boltzmann law, and
unitarization,” Phys. Lett. B754 (2016) 39, 1511.08221.




Hawking Evaporation with GU¥P

Ronald J. Adler, Pisin Chen, David I. Santiago,

M 2 h “The Generalized Uncertainty Principle and Black Hole
T _ C 1 . \/1 o anc Remnants”, Gen. Rel. Grav. 33 (2001) 2101, arXiv:gr-qc/0106080
- [M2 +MV/M?2 —a—aln(M + \/M2——a)]
+ const.
Tj\

Black hole remnant!  ®s#

=]
=



- End stage of solar-mass stars

Supported by electron
degenerative pressure

Degenerate matter

(helium, carbon or other Normal gas
possible reaction (50 km thick)
products)

5000 to 6000 km




/Heuristic Derivation of White Dwarf Properxrties

Textbook material:

Total kinetic energy of a non-relativistic white dwarf

Number of electron \,NAPQ NA2 Assumption:
IS oM. ™~ (A&C)QZmB “electron star”!
. 1/3
Number density, n=N/V Ax ~ n-% _ (K) AxAp ~ h
e |

~ Ni?n5  NBR? ( 2 _gR_Q) M3 h?

E; = — = —.
2m8 2me ng R2



/Heuristic Derivation of White Dwarf Properxrties

To withstand gravitational collapse, we must balance the kinetic energy with
gravitational binding energy

G M?
2 2 2 239 E ~ :Ek
Ek:Nh'n,S :Nh (M%me—gR_g): M:;h | | 9’ R
2Mee 2Me 2m3 R2
h2
R ~ 5 - Degenerative matter
2mé GM s




(Ultra)Relativistic Case

E;, = N(v — 1)mec®, p=ymev.

Ax meV
GM? (M \*_ | M3he
T N ( V) he| ~ —
e ] me R
3 Chandrasekhar limit Subrahmanyan
M 1 hc '\ ? /Chandrasekhar mass Chandrasekhar
Ch ™~ @ 5 y (1930) (1910-1995)
© 1983 Nobel Prize in Physics




0.04

0.035

0.03

0.025 |

Ultra-relativistic lirnit

0.02

0.015 |

Radius (solar radii)

~_ ————-—___.________________
0.01 | ~

0.005 |- S

0 1 1 | | 1 | |

0 0.25 0.5 0.75 1 1.25 M 1.5 1.75
Can be rigorously solved using

. Mass (solar masses)
Lane-Emden Equation



Present state
of the Sun

1. 62. The relationship between the radii and the masses of cold stellar

bodies, according to the calculations of the Indian astrophysicist S. Chan-

drasekhar. The symbols &, @, %, and respectively represent the

Moon, the Earth, Saturn, and Jupiter. Note that for masses greater than

460,000 times the mass of the Earth, the radius becomes zero! The words
for mass and radius are in Dr. Chandrasekhar’s original Tamil.

(Chandrasekhar’s original diagram, from A Star Called the Sun by George Gamow.)



White Dwarfs with GUP

hAx dal?
AQZApNh—FOZL;ApZ/h = APNQ 72 1::\/1— z
Q p

Non-relativistic case:

2
h2 dal2M3
M3 ~ R® (1 + \ 1— —2 )

ma R?



Function Property

A bounce eventually happens,

no matter how small a¢ is!

AzAp ~ h+aLiAp*/h

|||||||||||||||||||||||||||




Both non-relativistic and
(ultra)relativistic case
diverge at large M.

Arbitrarily large white
dwarfs (?)




White. Dwarfs with GUP: No Chandrasekhar Limixe?

Previously already pointed out in

Artist's conception of the
black hole in 47 Tucanae X9
siphoning matter off the
white dwarf.

Mohamed Moussa, “Effect of Generalized Uncer-
tainty Principle on Main-Sequence Stars and White
Dwarfs”, Adv. High Energy Phys. 2015 (2015) 343284,
arXiv:1512.04337 [physics.gen-ph].

Reza Rashidi, “Generalized Uncertainty Principle and the
Maximum Mass of Ideal White Dwarfs”, Annals Phys.
374 (2016) 434, [arXiv:1512.06356 [gr-qcl].

While preventing divergence in Hawking temperature, GUP
*INTRODUCES™* another infinity in white dwarf physics!

How to resolve this? [A few possibilities]



Taming the Infinite

A simple fix! Simply Choose a < 0 AzAp ~ h+ aL2Ap*/h

Yen Chin Ong, "Generalized Uncertainty
Principle, Black Holes, and White Dwarfs:
4- A Tale of Two Infinities", JCAP 09 (2018)
015, [arXiv:1804.05176 [gr-qc]].



https://arxiv.org/abs/1804.05176

Negative GUP parameter

Petr Jizba, Hagen Kleinert, Fabio Scardigli, “Uncer-

PreViOUS|y Sugge Sted in tainty Relation on World Crystal and its Applications
to Micro Black Holes”, Phys. Rev. D 81 (2010) 084030,

larXiv:0912.2253 [hep-th]].

2
Also, if one takes the generalized Hawking temperature, 7 _ ¢ (1 _ \/1 _ ohe )

Ao GM?

and make the reasonable assumption that one should be able to obtain it from Wick-
rotating a deformed static Schwarzschild metric with metric coefficient

2M M?
git=—|1——+e—

r r2

Fabio Scardigli, Roberto Casadio, “Gravitational tests of
then for |8 ’ < ]-7 we have the Generalized Uncertainty Principle”, Eur. Phys. J. C

75 (2015) 425, arXiv:1407.0113 [hep-th].
2
M
o = —4r?e? (— < 0.



How .to Understand Negative Alpha Correction®?

At large enough energy,
RHS becomes smaller:
vahishes at Planck scale!

hG
CZL%APZ B a (C_B) Apz

h h
- %(E_p)z _
[y [ C3 C B

Planck Scale Physics Becomes Classical! aG ( 1 ) hes _ o
c3 \c2) ¢

Petr Jizba, Hagen Kleinert, Fabio Scardigli;
Bernard J. Carr, Jonas Mureika, Piero Nicolini




Previously in Literature:

* i as a dynamical field that goes to zero in the Planckian limit
(Hossenfelder) ”

* Asymptotic Safe Gravity: If Planck mass is fixed,
equivalent to zero G limit since G = hic/Mj.

 Singularity of dilaton charged black hole (naive but suggestive):

“l...] the string coupling is becoming very weak near the singularity:.
As we have discussed, we have no right to trust this solution near
the singularity, but its difficult to resist speculating about what
it might mean if the exact classical solution had a similar behav-
ior. It would suggest that, contrary to the usual picture of large
quantum fluctuations and spacetime foam near the singularity,
quantum effects might actually be suppressed. The singularity
would behave classically.”

Gary T. Horowitz, “The Dark Side of String Theory:
Black Holes and Black Strings”, [arXiv:hep-th/9210119].



Hawking Evaporation with GU¥P

5 Ronald J. Adler, Pisin Chen, David |. Santiago,
T — Mc 1 _ \/1 B ahc “The Generalized Uncertainty Principle and

G M2 Black Hole Remnants”, Gen. Rel. Grav. 33 (2001)
2101, arXiv:gr-qc/0106080

SBH A

Black hole remnant!

=]
=



Does this Affect Black Hole Physics?

Yes, but OK!

T[a>0]:%(1—\/1—%>

M o
T[(X<0]:—4|a’ﬂ_ (1— 1+W>

Small mass limit:

M +\/|af 1
Tla <0 ~ = < 00 R
| | dlajm M A1/ |a M



Does this Affect Black Hole Physics?

Yes, but OK!

Tla>0] =

M o
T[OJ<0]——4|aﬂ_(1— 1+W

Small mass limit:

Tl < 0] ~ M \/H: !

dlajm M A1/ |a

M o
el O TR & IO
4a7r( \/ M2>

|

< 00

But how to make

sense of the final
temperatures?




Lifetime of a Black Hole

Hawking temperature:
Stefan-Boltzmann Equation:

1.0

M Mo

e

Thus the lifetime of a black hole is of order M3.
Lifetime for solar mass black hole = O(10%7) years



dM M \/ ||
T — _ 1 —/1+ —=%
dt (4]c|m)? M?

so as M becomes sufficiently small, we have

dM M?

- (4m)2a?’

which leads to

25674 a2
M=M
0 (25671'4052 + Mot) !

7 8 8
5.%10 1.x 10 1.5 % 10

FIG. 2: Mass evolution of Schwarzschild black holes with no GUP cor-
rection (black, middle curve), positive GUP correction (blue, left curve),
and negative GUP correction (red, right curve). The positive GUP cor-
rection leads to a remnant in finite time, while negative GUP correction
yields infinite lifetime. These contrast with the usual case without GUP
correction, in which the black hole completely evaporates in finite time.



FIG. 2: The Hawking temperature of an asymptotically flat
Schwarzschild black hole with o« = —1, here in black dash-dotted curve,
as a function of time, shows that the temperature tends to a constant
value. The mass of the black hole, in red solid curve, tends to zero
asymptotically. In order to display both curves in the same diagram,
we have multiplied the Hawking temperature by a factor of 120, so that
the temperature curve tends to 1207T" = 120/47 =~ 9.549.



Are Black Holes




Yasunori Nomura, Jaime Varela, Sean J. Weinberg,
“Black Holes, Information, and Hilbert Space for

BlaCk H()Ie Random Walk Quantum Gravity, Phys. Rev. D.87 (2013) 084050

Don Page, “Is Black-Hole Evaporation Predictable?”,
Phys. Rev. Lett. 44 (1980) 301

~—(0.03,0.02, 0.05)

0.06
0.04

0.02
- (000)

ZBH/]W(?
% b

=

A AT SR N MY A A (R M

(0.04, -0.04, -0.06)

(0.005, -0.05, -0.12)
0.04

Figure 3: Typical paths of the black hole drifting in the three dimensional space xgy = (*BH, YBH, 2BH),
normalized by M(‘)?.




Yasunori Nomura, Jaime Varela, Sean J. Weinberg,
“Black Holes, Information, and Hilbert Space for

BlaCk H()Ie Random Walk Quantum Gravity, Phys. Rev. D.87 (2013) 084050

Don Page, “Is Black-Hole Evaporation Predictable?”,
Phys. Rev. Lett. 44 (1980) 301
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Figure 3: Typical paths of the black hole drifting in the three dimensional space xgy = (*BH, YBH, 2BH),
normalized by M(‘)?.




Sparsity

Mol N[a]
o 2TaM?2

nlal ==

Finnian Gray, Sebastian Schuster, Alexander Van-Brunt,
Matt Visser, “The Hawking Cascade from a Black Hole Is
Extremely Sparse”, Class. Quant. Grav. 33 (2016) 115003,
larXiv:1506.03975 [gr-qc]].

Matt Visser, Finnian Gray, Sebastian Schuster, Alexander
Van-Brunt, “Sparsity of the Hawking Flux”, in Proceed-
ings of the MG14 Meeting on General Relativity (2017);
pp. 1724-1729, [arXiv:1512.05809 [gr-qcl].

Wolfgang Miick, “Hawking Radiation is Corpuscular”,
Eur. Phys. J. C 76 (2016) 374, [arXiv:1606.01790 [hep-
thl].

Impact parameter
b

A 27 1T

] - s
II:""IIIE@E.T plunges or EsCcapes

_Q)________H
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300 -

200 -

100

FIG. 4: The sparsity of Hawking radiation. The constant black line
corresponds to the usual Hawking evaporation — the radiation remains
sparse even towards the end of the evaporation. The bottom two curves
are for « = 1 (bottom right curve, blue) and o = 0.05 (bottom left,
red), respectively. For a > 0: GUP correction leads to the decrease in

80| T — -
| ,5':-— Bt T Tl ey T s e L T mamam
71 4
/f
o 1 r 1
(DD 60 '!’ :';! .
- H _
5 i a=0
< O a=0.2
-~ H
g 40 . ---------- a=0.4 .
E Nl ——— a=0.6
SE= 1! :
~< 1
~ L1 i
1!
20 1 i 1
o
i
EH
Fr
0 "./.u 1 L L 1 i 1 1 1 1 1 L 1 1
0.0 0.5 1.0 15 20 25
M
GUP-corrected dimensionless parameter

FIG. 2.
lcup as given by (28) versus M for different

2
Athe'r'mal

Acyry
values of . We have taken natural units c = G = h =1

Ana Alonso-Serrano, Mariusz P. Dabrowski,
Hussain Gohar, Phys. Rev. D 97 (2018)
044029, arXiv:1801.09660 [gr-qc].

1, and the radiation becomes less sparse towards the end. However, for
a < 0, we get an ever-increasing 7, so the radiation becomes extremely

sparse. Shown here (top, purple), is an example for which o« = —0.05.



So finite temperature with vanishing mass is

unattainable! '
No!/,
]

Instead of a QG-motivated model, let us look
at a classical modified gravity theory

[How generic is this?




Massive Gravity

QFT point of view:

Gravity is a theory of spin-2
particles:

It is natural to ask:

(1) Could graviton have
nonzero mass? After all, we

thought neutrino is massless...

(2) How many types of
gravitons?

mass -
charge -

spin -

=2.3 MeV/c?

2/3 u

1/2
up
=~4.8 MeV/c?
-1/3 d
1/2
down

0.511 MeV/c?

T

1/2

electron

<2.2 eV/c?
. D
1/2 €

electron
neutrino

=1.275 GeV/c?

2/3 C

1/2

charm

=95 MeV/c?

-1/3 S

1/2

strange
105.7 MeV/c?
-1
1/2 ]‘1
muon

<0.17 MeV/c?
D
1/2 p

muon
neutrino

=173.07 GeV/c?
2/3 t
1/2

top
=4 18 GeV/c?
-1/3 b
1/2

bottom

1.777 GeV/c?
- -
1/2

tau

<15.5 MeV/c?
D
112 T

tau
neutrino

photon

91.2 GeV/c?

.

1 /
Z boson

80.4 GeV/c?

- W

1 /

W boson

0
0

126 GeV/c?

H

Higgs
boson



Dyonic black hole solution in Massive Gravity

2 2 2

re 2mg qp + qiy 2 (601 9 )
| = r <+ c°c

[2 r r2 2 | 2

c > 0, cq, ¢y either sign OK

— gy = KA

T — L |k 9T q%E,+Q?VI L m2 (Ccl | 0202)-'
A

S. H. Hendi, N. Riazi, S. Panahiyan,
“Holographical Aspects of Dyonic Black
Holes: Massive Gravity Generalization”,
Ann. Phys. (Berlin) 530 (2018) 1700211,
arXiv:1610.01505 [hep-th].

r |ry 12 i




In the absence of magnetic charge, the authors showed
that by tuning the various parameters such that

m2coc® + k — &% =

?

where ® g is the electric potential, one could have a solu-
tion with Hawking temperature of the form

m?ccq

T = 2r, P + ,
4

where P = —A/(8m) is the pressure term in the extended “Remnant
black hole thermodynamics in an asymptotically locally

anti-de Sitter spacetime. In the limit of vanishing horizon temperzinture”:
rn — 0, we see that 0 < T = m?cc;/(47) < oo. fluctuation?



m2ceq

47

T=2r, P+ (34)
which for the limit of . — 0, it is non-zero.

Remembering that in the evaporation of black holes by the Hawking radiation mechanism, the horizon radius
eventually vanishes. However, we see here that in this case, there will be a remnant for the temperature of black
holes. This indicates that all the information regarding existence of the black holes is not vanished completely despite
the statement of paradox information. In fact, a trace of existence of black holes will remain which presents itself as
a fluctuation in temperature of the background spacetime where black hole was present. This specific property for
the temperature is due to the existence of massive gravitons. This shows that generalization from massless gravitons
to massive ones, introduces new properties to the thermodynamics of black holes which could solve and answer some
long standing questions regarding the physics of black holes such as the information paradox. It is worthwhile to
mention that existence of the remnant for temperature of the black holes, to our knowledge, so far was only reported
for black holes in the context of massive gravity [63] and it is one of the unique properties of the massive gravity
which make it different from other modified theories of the gravity.

S. H. Hendi, N. Riazi, S. Panahiyan,
“Holographical Aspects of Dyonic Black
Holes: Massive Gravity Generalization”,
Ann. Phys. (Berlin) 530 (2018) 1700211,
arXiv:1610.01505 [hep-th].



A Constant Temperature Black Hole

dp=0 A=0 k=1 c2=—1/(m??

T = m?ccy /(4m)

Yen Chin Ong, Yuan Yao, “Generalized Uncertainty
Principle and White Dwarfs Redux: How
Cosmological Constant Protects Chandrasekhar
Limit”, Phys. Rev. D 98 (2018) 126018
[arXiv:1809.06348 [gr-qc]].



https://arxiv.org/abs/1809.06348

A Constant Temperature Black Hole

Set m=c=1, soco =—1.

The physical mass (the mass that appears in the first
law of thermodynamics) is [32]

2 2 2
T r -+ cC
M:?h /’c—l—l—;”—I—qETQqM—I—m2 (717°h‘|‘c202):|,

which, with our choice of the parameter values, reduces
to M = r; /4.



Evolution of Constant Temperature Black Hole

dM Th d?“h 2 1 (?)
—_ = —— — = —C’I“h 10 e
a2 dt (47)
which yields, with C' = 2C/(4m)*, 1222
c +* 700{
% — _Cffrh — % — _é’/ dt, 600
dt ri (0) Tn 0 ", 5007

400;
300;
where 7;,(0) is the initial horizon size, and ¢* is the time 20
at which the horizon has shrunk to . Integerating yields '

0 20000 40000 60000 80000 100000
t
e =1p(0)exp | —Ct* - ‘ : :
h p : FIG. 3: The evolution of the massive gravity black hole event horizon
radius as function of time. Here we choose r1,(0) = 1000. The black
hole parameters are m = k = ¢ = 1, c2 = —1 The black hole asymptotes
to zero size as time goes to infinity.

Therefore, in order to shrink to zero size, € — 0, one must
have an infinite evaporation time t* — oc.



The Complementary Third Law

Theorem: Consider an n-dimensional neu-
tral static black hole spacetime, with areal ra-
dius r, and horizon at r = ry,. Assume that
the Hawking temperature IT' and the black hole
mass M are analytic functions of ry. Sup-
pose dM/dt = —C AT™, where C' > 0 is a
constant, and T — T* € (0,00) as r, — 0,
then r;, — 0 only if t — oo, provided that the
k-th derivative MF) | for k < n — 1, do not
all vanish when r;, = 0.

In particular, this implies that in 4-
dimensions, the evaporation is
infinite if M'(0) and M"'(0) do not
both vanish.

Third Law: Zero temperature
(extremal) black hole, which is of
nonzero size, is unattainable in
finite number of steps.

Here we have the opposite
scenario, zero mass/size black
hole is unattainable in finite time
under Hawking evaporation if the
temperature is nonzero.

Yuan Yao, Meng-Shi Hou, Yen Chin Ong,
“A Complementary Third Law for Black
Hole Thermodynamics”,
[arXiv:1812.03136 [gr-qgc]].



https://arxiv.org/abs/1812.03136

Let us Return to GUP with negative «:

Despite its virtue in preventing arbitrarily

large white dwarf, and being consistent
with some models of quantum gravity,
lacks theoretical derivation, of which some

of us would go

meh

SIS,

Can we resolve the white dwarf problem
with another approach?

Phenomenology
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What Happens.in de Sitter Space?

Extended Uncertainty Principle

L[, h(Az)*
AxAp > 5 h+ 72

temperature via the heuristic method, f = +3

emark. 10 recover the correc acC ole h
R k: T th t black hol c f for Si- AxAp > E(1 o C(Ax)z)

B. Bolen, M. Cavaglia, (Anti-)de Sitter Black Hole Thermodynamics and the Generalized Uncertainty Principle, Gen. Relativ. Grav. 37, 1255 (2005), arXiv:gr-
qc/0411086v1.

M.l. Park, The Generalized Uncertainty Principle in (A)dS Space and the Modification of Hawking Temperature from the Minimal Length, Phys. Lett. B659,

698 (2008),
arXiv:0709.2307v4 [hep-th].

C. Bambi, F. R. Urban, Natural Extension of the Generalised Uncertainty Principle, Class.Quant.Grav.25:095006 (2008), arXiv:0709.1965v2 [gr-qc].

S. Mignemi, Extended Uncertainty Principle and the Gometry of (Anti)-de Sitter Space, Mod.Phys.Lett. A25 (2010) 1697-1703, arXiv:0909.1202v2 [gr-qc].




A Comparlson. Uncertalnty Prlnmp\eaon Un\\‘. C\rc\e -

1963: D. Judge published a single page, ultra-dense paper titled ”On the
Uncertainty Relation for L, and ¢ ” [Physics Letters, Vol. 5, No. 3,
1963]: (Details in 1964)

IL NUOVO CIMENTO Vor. XXXI, N. 2 16 Gennaio 1964

On the Uncertainty Relation for Angle Variables.

D. JUDGE

University College - Dublin

h
(vicevuto il 10 Luglio 1963) AXAP = = (1 i C(Ax)z)

Summary. — The uncertainty relation between the orbital angular
momentum component L, and the corresponding angle ¢ is discussed.
The uncertainty for an angle variable is defined. The formula AL,-Ag > 4,
which is sometimes quoted, is shown to be incorrect, and an alternative
relation, in full accord with the Heisenberg Uncertainty Prineciple, ix
derived.




Theurem: Assume that the self-adjoint operators A and B admits variances, then

H.P. Robertson,

1 n 1
Phys. Rev. 34 (ﬂﬂ)z(ﬂg)z = E(lpl{ﬁ; B}llb)z + 1(']["1_"1!’)2;

(1929) 163.
where A== A — (A); B == B — (B): [EL ﬁ] = il’, and {-,-} is the anti-commutator.

Corollary (Heisenberg’s Uncertainty Principle): For the position operator X and momentum

operator P = —ih d/0x in position space basis, we have [X, P| = ih, and so
“Canonical” / B2 R

1 2 2
Commutation Relation (AX)?(AP)? = Z({X,P})z - T > R
That is, h
with equality attained if and only if Ee: aKIso 47 Phue 44
. & .H. Kennard, Z. Phys.
(1) X|¢) = cP|Y), c € C, and (1527) 326

(2) (W|[{X, P}|y) =




It can be shown that angular
momentum and angular coordinate

satisfies the canonical commutation WHAT ARE YOU DOING?
relation: 6.L] = ih, L = —ih i : SPINNING COUNTERCLOCKMISE
. . o B ~ EACH TURN ROBS THE PLANET
: [ OF ANGULAR MOMENTUM
Yet can find states such that AL, is [ e el
sufficiently small, so that if THE TINIEST BIT”
| . LENGTHENING THE NIGHT,
h Pl _ ' PUSHING BACK THE DAWN
AL, - A¢p = —, ‘ —— GIVING ME A LIME
2 MORE. TIME HERE.

WITH YoV
xked

then A¢ = 2m.  Something is wrong!



= Note: Cc g;rmutatlon Relatlonldoes notm'\p\v \the form of\ =
—— ’Uncertaf’t]y PrmC|p\e~~~ ,;*:z_ —  ——

Recall that the uncertainty relation for any two operators A and B is
usually written in the form:

(A4)*(AB)* = (Yli[A, B]ly)?,

A very important notion that is not usually mentioned in quantum
mechanics textbooks is the domain of definition of an operator. Like
functions, an operator has domain.



e ——

-Ti,;“f —— = j: — s —— E; = = =
— ——— ,,fi;i%;‘fi; = U r-icecta | nfyf" rinciple _ —
Definition: An operator A on the Hilbert space H is a linear map
A:D(A) - K,

) — AlY),

where D(A) is a dense subspace of H, called the domain of definition, or simply, domain of A.

(A4)*(AB)* = (pli[A, B]lp),

LHS is defined on [y) € D(A) N D(B), the subspace of H containing all states for which the
uncertainties AA, AB are well-defined [i.e. have physical meaning].

RHS is defined only for states on the subspace D([A4,B]) = D(AB) N D(BA) € D(A) n D(B).

Thus commutation relation does not always allow us to derive
the correct uncertainty principle!

F. Gieres, “Mathematical Surprises and Dirac’s Formalism in Quantum Mechanics”,
Rep.Prog.Phys. 63 (2000) 1893, arXiv:quant-ph/9907069.

— e. Co;rn tatlof—r Rélatlorl deesdnotmplsp \the fe\'m Qj\‘ *



orm of\
= —-

—

== Note.f Commutatletr Relatnor’ doesnefjﬁ;;)\v\t\{é’ =

=

*:af;i- — iﬁf.:,;—_fi—’;;f* f Urrcertaimfy Anelple——

Take |¢) € D(A) ND(B), define A=A-(A),B =B - (B),
for simplicity, denote A|Y) = Ay.Then

|i(A‘1h Bl!)) — E(Bi,b} A’PH — |I(Ah‘¢'1'§‘¢') — l(glb:fm')l
Triangle Inequality - = |(A¢: §¢)| + |(§¢:é¢)| — 2|(ﬁ¢, E’ff’)l
> <2|Ay|-|By| =24A-AB

Cauchy-Schwarz Inequality

AL~ AB = - [i(Av, BY) - (B, A)

Both sides are now defined on the same domain
lY) € D(A) ND(B)

Thus the uncertainty principle is determined not by
commutation relation, but by Hermitian sesquilinear form.



In Short:

Uncertainty Principle Depends on Geometry

The uncertainty principle concerns Fourier transforms of functions, which
is nontrivial on curved manifolds.

Alexey Golovnev, Lev Vasil’evich Prokhorov, “Uncer-
tainty Relations in Curved Spaces”, J. Phys. A 37 (2004)
2765, [arXiv:quant-ph/0306080].

Thomas Schiirmann, “Uncertainty Principle on 3-

Dimensional Manifolds of Constant Curvature”, Found.
Phys. 48 (2018) 716, [arXiv:1804.02551 [quant-ph]].

What happens in
de Sitter space?




What Happens.in de Sitter Space?

Extended Uncertainty Principle

L[, h(Az)*
AxAp > 5 h+ 72

temperature via the heuristic method, f = +3

emark:. 10 recover the correc acC ole h
R k: T th t black hol c f for Si- AxAp > E(1 o C(Ax)z)

B. Bolen, M. Cavaglia, (Anti-)de Sitter Black Hole Thermodynamics and the Generalized Uncertainty Principle, Gen. Relativ. Grav. 37, 1255 (2005), arXiv:gr-
qc/0411086v1.

M.l. Park, The Generalized Uncertainty Principle in (A)dS Space and the Modification of Hawking Temperature from the Minimal Length, Phys. Lett. B659,

698 (2008),
arXiv:0709.2307v4 [hep-th].

C. Bambi, F. R. Urban, Natural Extension of the Generalised Uncertainty Principle, Class.Quant.Grav.25:095006 (2008), arXiv:0709.1965v2 [gr-qc].

S. Mignemi, Extended Uncertainty Principle and the Gometry of (Anti)-de Sitter Space, Mod.Phys.Lett. A25 (2010) 1697-1703, arXiv:0909.1202v2 [gr-qc].




Extended Generalized Uncertainty Principle

1 LZ(Ap)? h(Ax)?
AxAp > — P
xAp 5 h+ « ; + 73
4 P2 %
i e [ [ (o)
2amd G2 \ ¢ L me R?
1
. 1
V2 | L2M3mé — L2M3 +/Z(a,3,M,L) | -
RlaQ(M) T 2 2 ?
Bmé
where

8

F(a,B,M,L) = L*(Mm.)3 — 4L*(Mm.)3af
—2LAM2mE + LM



Extended Generalized Uncertainty Principle

QG-correction  Classical geometry-correction

1
AxAp > 5

ap2 | 2\ |
M35 ~ CB; 1— 14G§’a(ﬁz+ﬂf )
2a0mg G2 ] \ ¢ L mé R? |
1
. 1
V2 | L2M3mé — L2M3 +/Z(a,3,M,L) | -
leg(M) = 5 2 ,
pmé
where

8

F(a,B,M,L) = L*(Mm.)3 — 4L*(Mm.)3af
—2LAM2mE + LM
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FIG. 2: The mass-radius relationship of an ultra-relativistic white
dwarf with EGUP correction, R;(M). Without EGUP correction, it
is simply the vertical Chandrasekhar limit. The effect of EGUP is to
cause sufficiently small white dwarfs to deviate away from the Chan-
drasekhar limit, but note that no star can exist above the limit. Red
curve and blue curve correspond to @ = 1 and a« = —1 respectively,
they pretty much coincide with each other. Varying the magnitude of
a up to 10*" does not change the result by much.
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FIG. 4: The mass-radius relationship of an ultra-relativistic white
dwarf with EGUP correction, log[R1(M)]. Red curve and blue curve
correspond to @ = 1 and a = —1 respectively, they are still indistin-
guishable even in log plot. The dashed wvertical line corresponds to
M = Mcy,.
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and dashed curves are for a« < 0.
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The mass-radius relationship of an ultra-relativistic white
dwarf with EGUP correction, log[R1(M)].

Solid curves are for o« > 0
The curves, from top to bot-
—10'13, —10112%, —4 x 10119, 4 x

10119 10112 1013, respectively. The dashed vertical line corresponds

to M = MCh-

4



A Bound On Cosmological Constant

M 3 < 1

R?m¢ J\[ ; me

. # still large compared to the required ~10~ 122 , but smaII
ﬁ*‘ compared to the ‘atural” value o(1)™

. _v_’":;



- Talk Based On

* Yen Chin Ong, "Generalized Uncertainty Principle, Black Holes, and White
Dwarfs: A Tale of Two Infinities", JCAP 09 (2018) 015, [arXiv:1804.05176 [gr-

acll.

* Yen Chin Ong, “An Effective Black Hole Remnant via Infinite Evaporation Time
Due to Generalized Uncertainty Principle”, JHEP 10 (2018)
195, [arXiv:1806.03691 [gr-gc]].

* Yen Chin Ong, Yuan Yao, “Generalized Uncertainty Principle and White Dwarfs
Redux: How Cosmological Constant Protects Chandrasekhar Limit”, Phys. Rev.
D 98 (2018) 126018 [arXiv:1809.06348 [gr-qc]].

* Yuan Yao, Meng-Shi Hou, Yen Chin Ong, “A Complementary Third Law for Black
Hole Thermodynamics”, [arXiv:1812.03136 [gr-qc]].



https://arxiv.org/abs/1804.05176
https://arxiv.org/abs/1806.03691
https://arxiv.org/abs/1809.06348
https://arxiv.org/abs/1812.03136




Maximum Force/Tension.Conjecture

(1) Maximum Force Conjecture (Strong Form):

In 4-dimensions, forces are bounded from above by
Froax = c*/(4G )

(2) Maximum Force Conjecture (Weak Form):
In 4-dimensions, there exists a positive number K <
oo, such that forces are bounded from above by
Fpax = c*K/G. Tt is also possible that K is a
supremum instead of a maximum.

—~
—~
-
—~

3.25 x 10*3 Newtons

3 x 1032 Tonnes

Fg\

Garry Gibbons, “The Maximum Tension Principle in General Relativity”, Found. Phys., 32 (2002) 1891,

[arX|v hepth/0210109]

Christoph Schiller, “General Relativity and Cosmolo§y Derived From Principle of Maximum Power or Force”,

Int. Jour. Theo. Phys 44 (2005) 1629 [arXiv:physics/0607090 [physics.gen-ph]].

John Barrow, Garry Gibbons, “Maximum Tension: With and Without a Cosmological Constant”, Mon. Not.

Roy. Astron. Soc. 446 (2014) 3874-3877, [arXiv:1408.1820 [gr-qc]].



“Thermodynamics Force”

ds dmM
F — T— = — = —
d?"h d‘i"‘h 2G

Essentially just black hole thermodynamics (15t Law).

, , , o Claimed GUP-corrected
Mariusz P. Dabrowski, Hussain Gohar, “Abolishing the _
Maximum Tension Principle”, Phys. Lett. B 748 (2015) Schwarzschild black hole
428, [arXiv:1504.01547 [gr-qc]]. contradicts the maximum

force conjecture.



1 1 o 1 ao?

Tl =g " 3omae T oamas T T'=Tla=0]
o a?
—7(1
(+4M2+8M4+ ) y .
=T (1+ 167°aT? + 5127%aT* + - ), T[a]:E(l—\/l—W)

2

S[a]:S(l— a In M + a +) S[a]:/ldM

2M? 16M4 T
2.2 _ o [as2 > _ 2 _
:S(l—EInSJraZ +...), = 2r [M? + MV/M? —a — aln(M + VM? —a)|
S S -+ const.
QT dS[a] 2n(M?*+ M/ M? — o — «)
Fla] = F (1 - = + 167%a7? + - - ) = ——

The apparent divergence comes from taking the limit T[a] dSlal = 1
S > 0and T - o, This is inconsistent. In fact, F' = F|¢], Ve dry 2



The History of Massive Gravity: Phase 1

 Fierz-Pauli Theory [1939]: Construction of theory of massive spin-2
particle . DOF =5 = 2s+1.

e van Dam-Veltman-Zakharov (vDVZ) Discontinuity [1970]: massless limit
does not recover GR; light-bending prediction off by whopping 25%.

* Vainshtein Mechanism [1972]: Force the theory to recover the correct
limit that matches linearized general relativity.

* Bolware-Deser ghost [1972]: Non-linearity introduced by Vainshtein
mechanism excites a 6" DOF — a ghost mode arises.
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dGRT (de Rham, Gabadadze, Tolley) Non-Linear Massive Gravity [2010]:
Exorcise BD ghost by adding even more non-linearity.
Is everything ok now?

duv = physical metric

fuvy = fiducial metric




A Flavor of‘Ptolemy’s Epicircles\
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‘Hints of Problems

Various hints of superluminal propagations:
Gruzinov, [1106.3972 [hep-th]];
Burrage, de Rham, Heisenberg, Tolley, JCAP 1207 (2012) 004, [1111.5549 [hep-th]];

de Fromont, de Rham, Heisenberg, Matas, JHEP 1307 (2013) 067, [1303.0274 [hep-
th]];

Chiang, Izumi, Chen, JCAP 12 (2012) 025, [1208.1222v2 [hep-th]].

Instability in Cosmological Solutions:

De Felice, Gumrukcuoglu, Mukohyama, Phys. Rev. Lett. 109 (2012) 171101,
[1206.2080 [hep-th]];

De Felice, Gumrukcuoglu, Lin, Mukohyama; JCAP 1305 (2013) 0351, [1303.4154
[hep-th]]; Class.Quant.Grav. 30 (2013) 184004, [1304.0484 [hep-th]];

Kuhnel, Phys.Rev. D 88 (2013) 064024, [1208.1764 [gr-qc]].



Massive Gravity: Further Analysis

Deser & Waldron [2012]: Found 2" order superluminal shock
waves, using eikonal approximation.

Due to non-linearity that exorcizes BD Ghost! Analysis is not

M

lzumi & Ong [2013]: Analyzed the structure of first order shocks,
using full PDE analysis [Cauchy-Kovalevskaya Theorem]
First careful and correct analysis of characteristic of non-linear
massive gravity.

Deser, lzumi, Ong, Waldron [2013]:

Proof of existence of first order superluminal shock, also
improved analysis via spin connection. Existence for local
acausality established.

Augustin-Louis Cauchy,
1789 — 1857

Sofia Kovalevskaya,
1850 — 1891



