STRING INSPIRED LOW ENERGY

PHENOMENOLOGY

Tianjun Li

Institute of Theoretical Physics, Chinese Academy of Sciences

- I. Introduction
- II. String Scale Gauge Coupling Unification
- III. String Inspired SEMSSM
- IV. Summary
- ICTS, USTC, Hefei, May 17, 2007

I. INTRODUCTION

String Theory

- String theory is the only known theory which might correctly describe quantum gravity
- Boson string theory: 26 dimensions
- Superstring theory: 10 dimensions
- The observed world is 4-dimensional
- Calabi-Yau compactifications for extra 6 dimensions
- Preserving the 4-dimensional $N = 1$ supersymmetry

Implication of String Theory:

- Cosmology^a
- Particle Physics

Hints in the model building and at the LHC and ILC

^aY. F. Cai, M. Z. Li, J. X. Lu, Y. S. Piao, T. T. Qiu and X. M. Zhang, arXiv:hep-th/0701016.

Hints in the model building:

- Problem: Doublet-triplet splitting problem in GUTs Higgs representations: H_u and H_d in the MSSM while 5 and $\overline{5}$ in $SU(5)$
- Solution: the Wilson line gauge symmetry breaking in the heterotic string model building or the D-brane splitting in the Type II orientifold models.
- The MSSM μ problem.

 $W \supset \mu H_d H_u$.

The problems in the model building might not exist in the string models.

String Scale Gauge Coupling Unification:

• M_{String} in weakly coupled heterotic string theory is $^{\text{a}}$

 $M_{\rm String}=g_{\rm string}\times 5.3\times 10^{17}~{\rm GeV}~.$

• MSSM unification scale: $M_{\text{GUT}} \sim 2.4 \times 10^{16} \text{ GeV}$

Little Hierarchy between $M_{\rm String}$ and $M_{\rm GUT}.$

^aK. Dienes.

Superpotential at stringy tree level:

 $W = y_{\phi} \phi_1 \phi_2 \phi_3.$

- Chern-Simmons terms in the heterotic string compactification with standard spin connection embedding ^a.
- Instanton effects in Type IIA intersecting D6-brane models ^b.

Implication in Particle Physics Model Building

^aE. Witten; TL, J. Lopez and D. V. Nanopoulos.

^bD. Cremades, L. E. Ibanez and F. Marchesano; M. Cvetic and I. Papadimitriou; S. A. Abel and A. W. Owen.

II. STRING SCALE GAUGE

COUPLING UNIFICATION

- Gauge couplings unify at string scale ^a
- Testable flipped $SU(5) \times U(1)_X$ model b

^aV. Barger, J. Jiang, P. Langacker and TL, hep-ph/0612206. ^bJ. Jiang, TL and D. V. Nanopoulos, hep-ph/0610054.

Gauge couplings unify at string scale:

• $SU(3)_C$ and $SU(2)_L$ unify at M_{String} : vector-like particles with $\Delta b_2 < \Delta b_3$

$$
\Delta b_3 - \Delta b_2 = 1, \quad M_V \sim 2 \times 10^{13} \text{ GeV},
$$

$$
\Delta b_3 - \Delta b_2 = 2, \quad M_V \sim 3 \times 10^{15} \text{ GeV},
$$

$$
\Delta b_3 - \Delta b_2 = 3, \quad M_V \sim 2 \times 10^{16} \text{ GeV}.
$$

• $SU(3)_C \times SU(2)_L \times U(1)_Y$ unify at M_{String} : additional vector-like particles with masses at TeV scale and $\Delta b_3 = \Delta b_2 \neq \Delta b_1$, or non-canonical $U(1)_Y$ normalization.

Testable Flipped $SU(5) \times U(1)_X$ **Models:**

- $SU(3)_C$ and $SU(2)_L$ unify at M_{GUT}
- $SU(5)$ and $U(1)_X$ unify at M_{String}
- All the vector-like particles at the TeV scale form complete $SU(5) \times U(1)_X$ multiplets

 $XF = (10, 1), \overline{XF} = (\overline{10}, -1); \quad Xl = (1, -5), \overline{XI} = (1, 5),$ (XQ, \overline{XQ}) , (XD, \overline{XD}) , (XN, \overline{XN}) , (XE, \overline{XE}) .

Testable at the LHC

III. STRING INSPIRED SINGLET EXTENSIONS OF THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (SEMSSM)

The Standard Model

- $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge symmetry and classical gravity
- Three families of SM fermions
- One Higgs doublet

The SM explains existing experimental data very well, including electroweak precision tests.

Major Problems in the SM

- Fine-tuning Problems
- Aesthetic Problems

Fine-tuning Problems:

- Cosmological constant problem: $\Lambda_{\text{CC}} \sim 10^{-122} M_{\text{Pl}}^4$ ′4 ?
Pl
- Gauge hierarchy problem
- Strong CP probelm
- SM fermion masses and mixings

Aesthetic Problems:

- Interaction unification
- Fermion unification
- Gauge coupling unification
- Charge quantization
- Too many parameters

Minimal Supersymmetric Standard Model

- Solving the gauge hierarchy problem: SUSY
- Gauge coupling unification
- Radiatively electroweak symmetry breaking

Large top quark mass

- Natural dark matter candidates: R parity Neutralino, sneutrino, gravitino, ...
- Electroweak baryogenesis: light stop scenario
- Electroweak precision: R parity

Problems in the MSSM:

 \bullet μ problem

 $\mu H_u H_d$

- Fine-tuning for the lightest CP-even Higgs boson mass: $m_{h^0}=M_Z\cos2\beta$
- CP violations in SUSY breaking soft terms The EDMs of electron, neutron, and ¹⁹⁹Hg
- FCNC
- Dimension-5 proton decays

$$
W = \frac{QQQL}{M_{\rm Pl}} + \frac{U^c D^c U^c E^c}{M_{\rm Pl}}
$$

Next to the MSSM (NMSSM):

- S and Z_3 symmetry: $\phi \rightarrow w\phi$
- Solution to the μ problem: No $\mu H_d H_u$

$$
W = hSH_dH_u + \frac{\kappa}{3}S^3.
$$

- Additional F-term contribution to the Higgs quartic couplings Lifting the Higgs boson mass
- Invisible Higgs decays: $h \rightarrow aa$ Higgs is light and about 100 GeV
- Electroweak baryogenesis: $A_h h S H_d H_u$

Implication of String Theory:

- The $\mu H_d H_u$ term in the MSSM and the $\kappa S^3/3!$ term in the NMSSM do not exist at stringy tree level in the string derived models.
- Only the superpotential term hSH_dH_u is allowed.
- Problem: one global $U(1)$ symmetry, and one massless Goldstone boson (axion)
- Solution: breaking global $U(1)$ symmetry by additional superpotential terms or supersymmetry breaking soft terms.

Implication of String Theory:

• Superpotential terms $\mu H_d H_u$, $\mu' S^2/2!$, and $\kappa S^3/3!$ can be generated due to the instanton effects ^a

$$
\mu \simeq M_{\rm string} e^{-A}, \quad \mu' \sim M_{\rm string} e^{-A'}.
$$

- $\bullet~A\sim A'\sim 33$
- Solution to μ problem in the MSSM.
- κ from instanton effects may be negligible.

^aR. Blumenhagen, M. Cvetic and T. Weigand; L. E. Ibanez and A. M. Uranga.

The most general SEMSSM^a:

Superpotential

$$
W = hSH_dH_u + \mu H_dH_u + m^2S + \frac{\mu'}{2!}S^2 + \frac{\kappa}{3!}S^3.
$$

F-term scalar potential

$$
V_F = |hH_dH_u + m^2 + \mu'S + \frac{\kappa}{2!}S^2|^2 + |hS + \mu|^2|H_u|^2 + |hS + \mu|^2|H_d|^2.
$$

D-term scalar potential

$$
V_D = \frac{g_Y^2 + g_2^2}{8} (|H_u|^2 - |H_d|^2)^2.
$$

^aTL, hep-ph/0612359.

Supersymmetry breaking soft terms V_{soft}^I and V_{soft}^{II}

$$
V_{soft}^{I} = m_{H_d}^{2} |H_d|^{2} + m_{H_u}^{2} |H_u|^{2} + m_{S}^{2} |S|^{2},
$$

\n
$$
V_{soft}^{II} = - (A_h h S H_d H_u + B \mu_B H_d H_u + A_X m_X^{2} S
$$

\n
$$
+ \frac{1}{2!} B' \mu'_{B} S^{2} + \frac{1}{3!} A_{\kappa} \kappa_X S^{3} + \text{H.C.} \Big) .
$$

If $\mu \neq 0$, $m^2 \neq 0$, $\mu' \neq 0$, or $\kappa \neq 0$, we assume $\mu_B = \mu$, m_2^2 \overline{X} $= m^2$, μ'_{1} B = μ' , or $\kappa_X = \kappa$, respectively. However, even if $\mu = 0$, $m^2 = 0$, $\mu' = 0$, or $\kappa = 0$, we can show that μ_B , m_X^2 , μ'_B , or κ_X might not be zero in general.

The global $U(1)$ symmetry in the Higgs potential can be broken by the supersymmetry breaking soft terms.

Model Building:

- Forbidden some terms.
- All the relevant mass parameters should be around 1 TeV.
- Forbidden quantum gravity effects.

Anomalous $U(1)_A$ gauge symmetry

Anomalous $U(1)_A$ gauge symmetry:

- One anomalous $U(1)_A$ gauge symmetry in the heterotic string model building or up to four in the Type II orientifold model building
- The corresponding anomalies are cancelled by the (generalized) Green-Schwarz mechanism.
- Fayet-Iliopoulos term

$$
\Lambda_{FI}^2 = \frac{g_{\text{String}}^2 M_{\text{Pl}} A_{GGX}}{192\pi^2} \, .
$$

• A SM singlet field ϕ with $U(1)_A$ charge -1

$$
D_A = -\phi^2 + \Lambda_{FI}^2.
$$

$$
\langle \phi \rangle = \Lambda_{FI} , \quad \frac{\langle \phi \rangle}{M_{\text{Pl}}} \sim 0.171 - 0.221 .
$$

- The $U(1)_A$ D-flatness and supersymmetry can be preserved.
- Hidden sector superfields Z and Z' :

$$
\langle F_Z \rangle \sim 10^{21} \text{ GeV}^2
$$
, $\langle F_{Z'} \rangle \sim 10^{21} \text{ GeV}^2$.

• The $U(1)_A$ charges for S and Z are $n + p/q$ and $m + p'/q'$.

• Soft masses:

$$
\int d^4x d^2\theta d^2\overline{\theta} \frac{\overline{Z}Z}{M_{\rm Pl}^2} (|S|^2 + |H_d|^2 + |H_u|^2) .
$$

• Gaugino masses and the $A_h h S H_d H_u$ term

$$
\int d^4x d^2\theta \frac{Z \text{ (or } Z')}{M_{\text{Pl}}} W^\alpha W_\alpha + \frac{Z \text{ (or } Z')}{M_{\text{Pl}}} h S H_d H_u + \text{H.C.}.
$$

Model A:

• $U(1)_A$ charges for S and Z

$$
m+n = 47, \ p/q = 1/5, \ p'/q' = 4/5.
$$

• Relevant additional operator

$$
\int d^4x d^2\theta M_{\rm String} ZS \left(\frac{\phi}{M_{\rm Pl}}\right)^{48} + \text{H.C.}.
$$

Superpotential:

$$
W = hSH_dH_u.
$$

Supersymmetry breaking soft terms

$$
V_{soft}^{II} = -\left(A_h h S H_d H_u + A_X m_X^2 S + \text{H.C.}\right) ,
$$

The global $U(1)$ symmetry in the Higgs potential is indeed broken by the supersymmetry breaking soft term $A_X m_X^2 S$.

Model B:

• $U(1)_A$ charges for S and Z

$$
n = -22, \ p/q = 0, \ m = 0, \ p'/q' = 0.
$$

• Relevant additional operators

$$
\int d^4x d^2\theta \left(M_{\text{String}} H_d H_u + Z H_d H_u\right) \left(\frac{\phi}{M_{\text{Pl}}}\right)^{22} + \int d^4x d^2\theta d^2\overline{\theta} \left(\overline{Z}S + \frac{\overline{Z}ZS}{M_{\text{Pl}}}\right) \left(\frac{\overline{\phi}}{M_{\text{Pl}}}\right)^{22} + \text{H.C.}.
$$

Superpotential:

$$
W = hSH_dH_u + \mu H_dH_u + m^2S.
$$

Supersymmetry breaking soft terms

$$
V_{soft}^{II} = -\left(A_h h S H_d H_u + B\mu_B H_d H_u + A_X m_X^2 S + \text{H.C.}\right) .
$$

Model C:

In Model B, we consider the gauge mediated supersymmetry breaking scenario where $\langle F_Z \rangle \sim 10^{10}~{\rm GeV}^2$.

Superpotential:

$$
W = hSH_dH_u + \mu H_dH_u.
$$

Supersymmetry breaking soft terms

$$
V_{soft}^{II} = -(A_h h S H_d H_u + B\mu_B H_d H_u + \text{H.C.}) \text{ .}
$$

Model C can also be considered as the string derived models with $hS H_d H_u$ superpotential term where the extra $\mu H_d H_u$ term arises from instanton effects.

Model D:

• $U(1)_A$ charges for S and Z

$$
n = 11, \ p/q = 1/2 \ , \ m = 0, \ p'/q' = 0 \ .
$$

• Relevant additional operators

$$
\int d^4x d^2\theta \left(M_{\rm string}S^2 + ZS^2\right) \left(\frac{\phi}{M_{\rm Pl}}\right)^{23} + \text{H.C.}.
$$

Superpotential:

$$
W = hSH_dH_u + \frac{\mu'}{2!}S^2.
$$

Supersymmetry breaking soft terms

$$
V_{soft}^{II} = -\left(A_h h S H_d H_u + \frac{1}{2!}B'\mu'_B S^2 + \text{H.C.}\right) \,.
$$

Model D can be considered as the string derived models with hSH_dH_u superpotential term where the extra $\mu' S^2/2!$ term arises from instanton effects.

There exists Z_4 symmetry in Model D, where H_d and H_u have charge 1, and S has charge 2. To avoid the domain wall problem after symmetry breaking, we can turn on tiny instanton effects to break the Z_4 symmetry by generating small high-dimensional operators, and then we can dissolve the domain wall.

Numerical Results for the Higgs boson masses, the chargino and neutralino masses at tree level.

- The input parameters with dimensions of mass or mass-squared are chosen in arbitrary units.
- After finding an acceptable minimum, we require

$$
\sqrt{\langle H_d^0 \rangle^2 + \langle H_u^0 \rangle^2} \simeq 174.1 \,\text{GeV} \,.
$$

• (1) $M_1 = 150$ GeV, and $M_2 = 300$ GeV; (2) $M_1 = -150$ GeV, and $M_2=-300$ GeV.

For Model A, we choose: $h = 0.7$, $m_{H_d}^2 = -0.1$, $m_{H_u}^2 = -0.2$, $m_S^2 = 0.1$, $A_h = 1.0$, $A_X = 0.68$, $m_X^2 = 0.6$. And the VEVs for the Higgs fields at the minimum are $\langle H_d^0 \rangle = 0.7031$, $\langle H_u^0 \rangle = 0.75$, and $\langle S \rangle = 1.2563$. For Model B, we choose: $h = 0.7$, $\mu = -0.2$, $m^2 = -0.3$, $m_{H_d}^2 = -0.1$, $m_{H_u}^2 = -0.1$, $m_S^2 = 0.1$, $A_h = 0.6$, $B = -0.1$, $\mu_B = -0.2$, $A_X = -1.9$, $m_X^2 = -0.3$. And the VEVs for the Higgs fields at the minimum are $\langle H_d^0 \rangle = 0.8625$, $\langle H_u^0 \rangle = 0.8625$, and $\langle S \rangle = 1.3156$.

For Model C, we choose: $h = 0.7$, $\mu = -0.1$, $m_{H_d}^2 = -0.1$, $m_{H_u}^2 = -0.1$, $m_S^2 = -0.6$, $A_h = 2.0$, $B = -0.6$, $\mu_B = -0.1$. And the VEVs for the Higgs fields at the minimum are $\langle H_d^0 \rangle = 1.5875$, $\langle H_n^0 \rangle = 1.5875$, and $\langle S \rangle = 2.075$. For Model D, we choose: $h = 0.7$, $\mu' = -0.3, m_{H_d}^2 = -0.1, m_{H_u}^2 = -0.4, m_S^2 = -0.68, A_h = 2.0,$ $B' = -0.6$, $\mu'_{B} = -0.3$. And the VEVs for the Higgs fields at the minimum are $\langle H_d^0 \rangle = 1.6375$, $\langle H_u^0 \rangle = 1.7203$, and $\langle S \rangle = 2.275$.

Table 1: The Higgs VEVs, and the charged, CP-even, and CP-odd Higgs masses in GeV at tree level.

$\big \operatorname{\mathsf{Model}}\big \left\langle H_d^0\right\rangle\big \left\langle H_u^0\right\rangle\big \left\langle S\right\rangle\big \,H^\pm\big \,H_1^0\big \,H_2^0\big \,H_3^0\big \,A_1^0\big \,A_2^0\big $					
	A 119 127 213 205 67 196 210 127 251				
	B 123 123 188 179 45 184 206 142 214				
	C 123 123 161 165 66 148 171 31 214				
	D 120 126 167 176 67 145 181 39 225				

Model	M_i		$\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^{\pm}$ $\tilde{\chi}_1^{0}$		$\tilde{\chi}^0_2$	$\tilde{\chi}^0_3$	$\tilde{\chi}^0_4$	$\tilde{\chi}^0_5$
\mathbf{A}	> 0	115	334	68	88	175	217	336
\mathbf{A}	< 0	163	314	68	156	169	217	314
B	> 0	75	328	56	81	167	184	330
B	< 0	118	315	81	125	156	184	316
\mathcal{C}	> 0	76	329	58	80	167	185	330
\mathcal{C}	< 0	120	315	80	127	156	185	316
D	> 0	87	330	60	68	169	200	331
D	< 0	132	315	61	138	156	200	315

Table 2: The chargino and neutralino masses in GeV.

Higgs Physics (Model C as an example):

$$
H_1^0 = -0.445481H_d^0 - 0.445481H_u^0 + 0.776590S,
$$

\n
$$
H_2^0 = 0.549132H_d^0 + 0.549132H_u^0 + 0.630006S,
$$

\n
$$
H_3^0 = 0.707107H_d^0 - 0.707107H_u^0.
$$

Only H_3^0 can couple to Z boson.

Higgs search is different from the MSSM and the traditional NMSSM.

Current Projects:

- Higgs search at the LHC and ILC ^a.
- The Higgs boson masses at one loop, and comprehensive study for the chargino and neutralino mass matrices ^b.
- Comprehensive study for the productions and decays of the Higgs particles, charginos and neutralinos at the LHC ^c.

^aJ. Jiang and TL, in preparation.

^bJ. Jiang, TL and Y. R. Wang, in preparation.

^cJ. Jiang, TL and Y. R. Wang, in preparation.

IV. SUMMARY

String scale gauge coupling unification in the weakly coupled heterotic string theory might imply TeV-scale vector-like particles.

String inspired SEMSSM with new Higgs physics.