STRING INSPIRED LOW ENERGY

PHENOMENOLOGY

Tianjun Li

Institute of Theoretical Physics, Chinese Academy of Sciences

- I. Introduction
- II. String Scale Gauge Coupling Unification
- III. String Inspired SEMSSM
- IV. Summary
- ICTS, USTC, Hefei, May 17, 2007

I. INTRODUCTION

String Theory

- String theory is the only known theory which might correctly describe quantum gravity
- Boson string theory: 26 dimensions
- Superstring theory: 10 dimensions
- The observed world is 4-dimensional
- Calabi-Yau compactifications for extra 6 dimensions
- Preserving the 4-dimensional N = 1 supersymmetry

Implication of String Theory:

- Cosmology ^a
- Particle Physics

Hints in the model building and at the LHC and ILC

^aY. F. Cai, M. Z. Li, J. X. Lu, Y. S. Piao, T. T. Qiu and X. M. Zhang, arXiv:hep-th/0701016.

Hints in the model building:

- Problem: Doublet-triplet splitting problem in GUTs
 Higgs representations: H_u and H_d in the MSSM while 5 and 5 in SU(5)
- Solution: the Wilson line gauge symmetry breaking in the heterotic string model building or the D-brane splitting in the Type II orientifold models.
- The MSSM μ problem.

 $W \supset \mu H_d H_u$.

The problems in the model building might not exist in the string models.

String Scale Gauge Coupling Unification:

• M_{String} in weakly coupled heterotic string theory is ^a

 $M_{\text{String}} = g_{\text{string}} \times 5.3 \times 10^{17} \text{ GeV}$.

• MSSM unification scale: $M_{\rm GUT} \sim 2.4 \times 10^{16} \, {\rm GeV}$

Little Hierarchy between M_{String} and M_{GUT} .

^aK. Dienes.

Superpotential at stringy tree level:

 $W = y_{\phi}\phi_1\phi_2\phi_3 .$

- Chern-Simmons terms in the heterotic string compactification with standard spin connection embedding ^a.
- Instanton effects in Type IIA intersecting D6-brane models ^b.

Implication in Particle Physics Model Building

^aE. Witten; TL, J. Lopez and D. V. Nanopoulos.

^bD. Cremades, L. E. Ibanez and F. Marchesano; M. Cvetic and I. Papadimitriou; S. A. Abel and A. W. Owen.

II. STRING SCALE GAUGE

COUPLING UNIFICATION

- Gauge couplings unify at string scale ^a
- Testable flipped $SU(5) \times U(1)_X$ model ^b

^aV. Barger, J. Jiang, P. Langacker and TL, hep-ph/0612206. ^bJ. Jiang, TL and D. V. Nanopoulos, hep-ph/0610054.

Gauge couplings unify at string scale:

• $SU(3)_C$ and $SU(2)_L$ unify at M_{String} : vector-like particles with $\Delta b_2 < \Delta b_3$

$$\Delta b_3 - \Delta b_2 = 1, \quad M_V \sim 2 \times 10^{13} \text{ GeV} ,$$

 $\Delta b_3 - \Delta b_2 = 2, \quad M_V \sim 3 \times 10^{15} \text{ GeV} ,$
 $\Delta b_3 - \Delta b_2 = 3, \quad M_V \sim 2 \times 10^{16} \text{ GeV} .$

SU(3)_C × SU(2)_L × U(1)_Y unify at M_{String}: additional vector-like particles with masses at TeV scale and ∆b₃ = ∆b₂ ≠ ∆b₁, or non-canonical U(1)_Y normalization.

Testable Flipped $SU(5) \times U(1)_X$ **Models:**

- $SU(3)_C$ and $SU(2)_L$ unify at M_{GUT}
- SU(5) and $U(1)_X$ unify at M_{String}
- All the vector-like particles at the TeV scale form complete $SU(5) \times U(1)_X$ multiplets

$$\begin{split} XF &= (\mathbf{10}, \mathbf{1}) , \ \overline{XF} = (\overline{\mathbf{10}}, -\mathbf{1}) ; \quad Xl = (\mathbf{1}, -\mathbf{5}) , \ \overline{Xl} = (\mathbf{1}, \mathbf{5}) , \\ (XQ, \overline{XQ}) , \quad (XD, \overline{XD}) , \quad (XN, \overline{XN}) , \quad (XE, \overline{XE}) . \end{split}$$

Testable at the LHC

III. STRING INSPIRED SINGLET EXTENSIONS OF THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (SEMSSM)

The Standard Model

- $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge symmetry and classical gravity
- Three families of SM fermions
- One Higgs doublet

The SM explains existing experimental data very well, including electroweak precision tests.

Major Problems in the SM

- Fine-tuning Problems
- Aesthetic Problems

Fine-tuning Problems:

- Cosmological constant problem: $\Lambda_{\rm CC} \sim 10^{-122} M_{\rm Pl}^4$?
- Gauge hierarchy problem
- Strong CP probelm
- SM fermion masses and mixings

Aesthetic Problems:

- Interaction unification
- Fermion unification
- Gauge coupling unification
- Charge quantization
- Too many parameters

Minimal Supersymmetric Standard Model

- Solving the gauge hierarchy problem: SUSY
- Gauge coupling unification
- Radiatively electroweak symmetry breaking

Large top quark mass

• Natural dark matter candidates: R parity

Neutralino, sneutrino, gravitino, ...

- Electroweak baryogenesis: light stop scenario
- Electroweak precision: R parity

Problems in the MSSM:

• μ problem

 $\mu H_u H_d$

• Fine-tuning for the lightest CP-even Higgs boson mass:

 $m_{h^0} = M_Z \cos 2\beta$

- CP violations in SUSY breaking soft terms The EDMs of electron, neutron, and ¹⁹⁹Hg
- FCNC
- Dimension-5 proton decays

$$W = \frac{QQQL}{M_{\rm Pl}} + \frac{U^c D^c U^c E^c}{M_{\rm Pl}}$$

Next to the MSSM (NMSSM):

- S and Z_3 symmetry: $\phi \to w\phi$
- Solution to the μ problem: No $\mu H_d H_u$

$$W = hSH_dH_u + \frac{\kappa}{3}S^3$$

- Additional F-term contribution to the Higgs quartic couplings Lifting the Higgs boson mass
- Invisible Higgs decays: $h \rightarrow aa$ Higgs is light and about 100 GeV
- Electroweak baryogenesis: $A_h h S H_d H_u$

Implication of String Theory:

- The $\mu H_d H_u$ term in the MSSM and the $\kappa S^3/3!$ term in the NMSSM do not exist at stringy tree level in the string derived models.
- Only the superpotential term hSH_dH_u is allowed.
- Problem: one global U(1) symmetry, and one massless Goldstone boson (axion)
- Solution: breaking global U(1) symmetry by additional superpotential terms or supersymmetry breaking soft terms.

Implication of String Theory:

• Superpotential terms $\mu H_d H_u$, $\mu' S^2/2!$, and $\kappa S^3/3!$ can be generated due to the instanton effects ^a

$$\mu \simeq M_{\text{string}} e^{-A}, \quad \mu' \sim M_{\text{string}} e^{-A'}.$$

- $A \sim A' \sim 33$
- Solution to μ problem in the MSSM.
- κ from instanton effects may be negligible.

^aR. Blumenhagen, M. Cvetic and T. Weigand; L. E. Ibanez and A. M. Uranga.

The most general SEMSSM ^a:

Superpotential

$$W = hSH_dH_u + \mu H_dH_u + m^2S + \frac{\mu'}{2!}S^2 + \frac{\kappa}{3!}S^3 .$$

F-term scalar potential

$$V_F = |hH_dH_u + m^2 + \mu'S + \frac{\kappa}{2!}S^2|^2 + |hS + \mu|^2|H_u|^2 + |hS + \mu|^2|H_d|^2$$

٠

D-term scalar potential

$$V_D = \frac{g_Y^2 + g_2^2}{8} \left(|H_u|^2 - |H_d|^2 \right)^2 .$$

^aTL, hep-ph/0612359.

Supersymmetry breaking soft terms V_{soft}^{I} and V_{soft}^{II}

$$V_{soft}^{I} = m_{H_{d}}^{2} |H_{d}|^{2} + m_{H_{u}}^{2} |H_{u}|^{2} + m_{S}^{2} |S|^{2} ,$$

$$V_{soft}^{II} = - \left(A_{h}hSH_{d}H_{u} + B\mu_{B}H_{d}H_{u} + A_{X}m_{X}^{2}S\right)$$

$$+ \frac{1}{2!}B'\mu_{B}'S^{2} + \frac{1}{3!}A_{\kappa}\kappa_{X}S^{3} + \text{H.C.}) .$$

If $\mu \neq 0$, $m^2 \neq 0$, $\mu' \neq 0$, or $\kappa \neq 0$, we assume $\mu_B = \mu$, $m_X^2 = m^2$, $\mu'_B = \mu'$, or $\kappa_X = \kappa$, respectively. However, even if $\mu = 0$, $m^2 = 0$, $\mu' = 0$, or $\kappa = 0$, we can show that μ_B , m_X^2 , μ'_B , or κ_X might not be zero in general.

The global U(1) symmetry in the Higgs potential can be broken by the supersymmetry breaking soft terms.

Model Building:

- Forbidden some terms.
- All the relevant mass parameters should be around 1 TeV.
- Forbidden quantum gravity effects.

Anomalous $U(1)_A$ gauge symmetry

Anomalous $U(1)_A$ gauge symmetry:

- One anomalous $U(1)_A$ gauge symmetry in the heterotic string model building or up to four in the Type II orientifold model building
- The corresponding anomalies are cancelled by the (generalized) Green-Schwarz mechanism.
- Fayet-Iliopoulos term

$$\Lambda_{FI}^2 = \frac{g_{\text{String}}^2 M_{\text{Pl}} A_{GGX}}{192\pi^2}$$

• A SM singlet field ϕ with $U(1)_A$ charge -1

$$D_A = -\phi^2 + \Lambda_{FI}^2 \; .$$

$$\langle \phi \rangle = \Lambda_{FI} , \quad \frac{\langle \phi \rangle}{M_{\rm Pl}} \sim 0.171 - 0.221 .$$

- The $U(1)_A$ D-flatness and supersymmetry can be preserved.
- Hidden sector superfields Z and Z':

$$\langle F_Z \rangle \sim 10^{21} \,\mathrm{GeV}^2 \,, \quad \langle F_{Z'} \rangle \sim 10^{21} \,\mathrm{GeV}^2 \,.$$

• The $U(1)_A$ charges for S and Z are n + p/q and m + p'/q'.

• Soft masses:

$$\int d^4x d^2\theta d^2\overline{\theta} \frac{\overline{Z}Z}{M_{\rm Pl}^2} \left(|S|^2 + |H_d|^2 + |H_u|^2 \right) \ .$$

• Gaugino masses and the $A_h h S H_d H_u$ term

$$\int d^4x d^2\theta \frac{Z \text{ (or } Z')}{M_{\rm Pl}} W^{\alpha} W_{\alpha} + \frac{Z \text{ (or } Z')}{M_{\rm Pl}} hSH_dH_u + \text{H.C.}.$$

Model A:

• $U(1)_A$ charges for S and Z

$$m + n = 47, \ p/q = 1/5, \ p'/q' = 4/5.$$

• Relevant additional operator

$$\int d^4x d^2\theta M_{\rm String} ZS \left(\frac{\phi}{M_{\rm Pl}}\right)^{48} + {\rm H.C.} \; .$$

Superpotential:

$$W = h S H_d H_u .$$

Supersymmetry breaking soft terms

$$V_{soft}^{II} = -(A_h h S H_d H_u + A_X m_X^2 S + \text{H.C.}) ,$$

The global U(1) symmetry in the Higgs potential is indeed broken by the supersymmetry breaking soft term $A_X m_X^2 S$.

Model B:

• $U(1)_A$ charges for S and Z

$$n = -22, p/q = 0, m = 0, p'/q' = 0.$$

• Relevant additional operators

$$\int d^4x d^2\theta \left(M_{\rm String} H_d H_u + Z H_d H_u \right) \left(\frac{\phi}{M_{\rm Pl}} \right)^{22} + \int d^4x d^2\theta d^2\overline{\theta} \left(\overline{Z}S + \frac{\overline{Z}ZS}{M_{\rm Pl}} \right) \left(\frac{\overline{\phi}}{M_{\rm Pl}} \right)^{22} + {\rm H.C.} \,.$$

Superpotential:

$$W = hSH_dH_u + \mu H_dH_u + m^2S.$$

Supersymmetry breaking soft terms

$$V_{soft}^{II} = -(A_h h S H_d H_u + B \mu_B H_d H_u + A_X m_X^2 S + \text{H.C.}) .$$

Model C:

In Model B, we consider the gauge mediated supersymmetry breaking scenario where $\langle F_Z \rangle \sim 10^{10} \text{ GeV}^2$.

Superpotential:

$$W = hSH_dH_u + \mu H_dH_u \,.$$

Supersymmetry breaking soft terms

$$V_{soft}^{II} = -(A_h h S H_d H_u + B \mu_B H_d H_u + H.C.)$$
.

Model C can also be considered as the string derived models with hSH_dH_u superpotential term where the extra μH_dH_u term arises from instanton effects.

Model D:

• $U(1)_A$ charges for S and Z

$$n = 11, p/q = 1/2, m = 0, p'/q' = 0.$$

• Relevant additional operators

$$\int d^4x d^2\theta \left(M_{\rm string} S^2 + Z S^2 \right) \left(\frac{\phi}{M_{\rm Pl}} \right)^{23} + \text{H.C.} .$$

Superpotential:

$$W = hSH_dH_u + \frac{\mu'}{2!}S^2 .$$

Supersymmetry breaking soft terms

$$V_{soft}^{II} = -\left(A_h h S H_d H_u + \frac{1}{2!} B' \mu'_B S^2 + \text{H.C.}\right) .$$

Model D can be considered as the string derived models with hSH_dH_u superpotential term where the extra $\mu'S^2/2!$ term arises from instanton effects.

There exists Z_4 symmetry in Model D, where H_d and H_u have charge 1, and S has charge 2. To avoid the domain wall problem after symmetry breaking, we can turn on tiny instanton effects to break the Z_4 symmetry by generating small high-dimensional operators, and then we can dissolve the domain wall.

Numerical Results for the Higgs boson masses, the chargino and neutralino masses at tree level.

- The input parameters with dimensions of mass or mass-squared are chosen in arbitrary units.
- After finding an acceptable minimum, we require

$$\sqrt{\langle H_d^0 \rangle^2 + \langle H_u^0 \rangle^2} \simeq 174.1 \text{ GeV}$$
.

• (1) $M_1 = 150$ GeV, and $M_2 = 300$ GeV; (2) $M_1 = -150$ GeV, and $M_2 = -300$ GeV.

For Model A, we choose: h = 0.7, $m_{H_d}^2 = -0.1$, $m_{H_u}^2 = -0.2$, $m_S^2 = 0.1$, $A_h = 1.0$, $A_X = 0.68$, $m_X^2 = 0.6$. And the VEVs for the Higgs fields at the minimum are $\langle H_d^0 \rangle = 0.7031$, $\langle H_u^0 \rangle = 0.75$, and $\langle S \rangle = 1.2563$. For Model B, we choose: h = 0.7, $\mu = -0.2$, $m^2 = -0.3$, $m_{H_d}^2 = -0.1$, $m_{H_u}^2 = -0.1$, $m_S^2 = 0.1$, $A_h = 0.6$, B = -0.1, $\mu_B = -0.2$, $A_X = -1.9$, $m_X^2 = -0.3$. And the VEVs for the Higgs fields at the minimum are $\langle H_d^0 \rangle = 0.8625$, $\langle H_u^0 \rangle = 0.8625$, and $\langle S \rangle = 1.3156$. For Model C, we choose: h = 0.7, $\mu = -0.1$, $m_{H_d}^2 = -0.1$, $m_{H_u}^2 = -0.1$, $m_S^2 = -0.6$, $A_h = 2.0$, B = -0.6, $\mu_B = -0.1$. And the VEVs for the Higgs fields at the minimum are $\langle H_d^0 \rangle = 1.5875$, $\langle H_u^0 \rangle = 1.5875$, and $\langle S \rangle = 2.075$. For Model D, we choose: h = 0.7, $\mu' = -0.3$, $m_{H_d}^2 = -0.1$, $m_{H_u}^2 = -0.4$, $m_S^2 = -0.68$, $A_h = 2.0$, B' = -0.6, $\mu'_B = -0.3$. And the VEVs for the Higgs fields at the minimum are $\langle H_d^0 \rangle = 1.6375$, $\langle H_u^0 \rangle = 1.7203$, and $\langle S \rangle = 2.275$.

Table 1: The Higgs VEVs, and the charged, CP-even, and CP-odd Higgs masses in GeV at tree level.

Model	$\langle H_d^0 \rangle$	$\langle H_u^0 \rangle$	$\langle S \rangle$	H^{\pm}	H_{1}^{0}	H_2^0	H_3^0	A_1^0	A_2^0
А	119	127	213	205	67	196	210	127	251
В	123	123	188	179	45	184	206	142	214
С	123	123	161	165	66	148	171	31	214
D	120	126	167	176	67	145	181	39	225

Model	M_i	$\tilde{\chi}_1^{\pm}$	$\tilde{\chi}_2^{\pm}$	$ ilde{\chi}_1^0$	$ ilde{\chi}_2^0$	$ ilde{\chi}_3^0$	$ ilde{\chi}_4^0$	$ ilde{\chi}_5^0$
А	> 0	115	334	68	88	175	217	336
А	< 0	163	314	68	156	169	217	314
В	> 0	75	328	56	81	167	184	330
В	< 0	118	315	81	125	156	184	316
С	> 0	76	329	58	80	167	185	330
C	< 0	120	315	80	127	156	185	316
D	> 0	87	330	60	68	169	200	331
D	< 0	132	315	61	138	156	200	315

Table 2: The chargino and neutralino masses in GeV.

Higgs Physics (Model C as an example):

$$\begin{split} H^0_1 &= -0.445481 H^0_d - 0.445481 H^0_u + 0.776590 S \ , \\ H^0_2 &= 0.549132 H^0_d + 0.549132 H^0_u + 0.630006 S \ , \\ H^0_3 &= 0.707107 H^0_d - 0.707107 H^0_u \ . \end{split}$$

Only H_3^0 can couple to Z boson.

Higgs search is different from the MSSM and the traditional NMSSM.

Current Projects:

- Higgs search at the LHC and ILC ^a.
- The Higgs boson masses at one loop, and comprehensive study for the chargino and neutralino mass matrices ^b.
- Comprehensive study for the productions and decays of the Higgs particles, charginos and neutralinos at the LHC ^c.

^aJ. Jiang and TL, in preparation.

^bJ. Jiang, TL and Y. R. Wang, in preparation.

^cJ. Jiang, TL and Y. R. Wang, in preparation.

IV. SUMMARY

String scale gauge coupling unification in the weakly coupled heterotic string theory might imply TeV-scale vector-like particles.

String inspired SEMSSM with new Higgs physics.