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IMBH: intermediate-mass black holes

MBH ∼ 102 − 105M⊙

IMBHs could be primordial, generated in the early Universe, or they may
form in center of dense globular clusters through runaway stellar collision.
They are thought to be the seeds from which SMBHs grow.

Astrophysical problems: galaxy formation and growth, BH accretion and
the reionisation ...

Accumulated evidence: X-ray and optical observation

No reliable way to determine its mass and spin
⇒ Gravitational wave?
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IMRAC: intermediate mass-ratio coalescence

q =
MCO
MBH

∼ 10−2 − 10−4.

In the literature, it was often termed intermediate mass-ratio inspiral
(IMRI).

Two types of IMRACs:

1. Type I: the stellar mass compact object orbiting around IMBH
2. Type II: IMBH orbiting around a supermassive black hole in the

center of galaxies
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IMRAC: intermediate mass-ratio coalescence

q =
MCO
MBH

∼ 10−2 − 10−4.

In the literature, it was often termed intermediate mass-ratio inspiral
(IMRI). Two types of IMRACs:

1. Type I: the stellar mass compact object orbiting around IMBH
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GW from IMRACs
Depending on their orbital parameters, IMRACs in clusters can be
detectable not only by the planned space-based gravitational wave
observatories, including LISA, 太极/天琴,..., but also by the
ground-based observatories, LIGO/Virgo, KAGRA or ET. Amaro-Seoane 2018, Audley

et.al. 2017, Huerta et.al. 2011

In particular, for IMRACs with a total mass ≤ 2000M⊙ and initial
eccentricities up to 0.999 (nearly a circular orbit), the gravitational waves
can be detected first by LISA one year in advance such that the
ground-based observatories can get a warning. Amaro-Seoane 2018

Event rate: a few hundred per yearGair et.al 2010

The second type of IMRAC would be a very loud source in the LISA
band. The GW signal may have a large signal-to-noise ratio (SNR) and
can be detectable during the end of inspiral without the need for
matched filteringMiller et.al. 2004.
Event rate: a few to a few hundred per year Miller et.al. 2004, Gair 2010

Analytic and numerical studies are highly expected ....
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Numerical study

For comparable mass binary systems, the inspiral phase could be well
modeled by post-Newtonian(PN) theory and numerical relativity.

For EMRIs (q ∼ 10−6), BH perturbation theory (Teukolsky formalism)
For IMRACs, not very clear! A hybrid approach, PN + Teukolsky
formalism
Kludge waveform model Babak et.al. 2006, Huerta et.al. 2008...

However, the kludge waveform model is developed to compute waveform
templates rapidly, without a high precision

Analytic study?
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Analytic study on high spin BH

Consider the case the the central object is a maximally spinning Kerr
black hole.

Type I IMRAC: IMBH is a near-extreme BH

Type II IMRAC: the central object is a Gargantua

Gargantua: the supermassive BH which is nearly maximal spinning K. Thorne

”Interstellar”

X-ray observations: 7 out of 22 AGNs are candidates for being high spin
BH Brenneman 1309.6334

Why a near extreme Kerr BH special?
Enhanced scaling symmetry in the near horizon region.
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.rms = r̂ISCO, rmb = r̂IBCO.
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Kerr spacetime
In terms of Boyer-Lindquist coordinates t̂, r̂, θ, ϕ̂, the metric of a Kerr
spacetime is

ds2 = −(1− 2GMr̂
Σ

)dt̂ + Σ

∆
d̂r2 +Σdθ2 +

+(̂r2 + a2 + 2GMa2r̂ sin2 θ

Σ
) sin2 θdϕ̂2 − 4GMâr sin2 θ

Σ
dt̂dϕ̂

where
∆ ≡ r̂2 − 2GMr̂ + a2, Σ ≡ r̂2 + a2 cos2 θ,

and a is the Kerr parameter a = J/M.
For a near extreme Kerr BH, introduce a parameter

λ =

√
1− J2

M4
<< 1.

The ISCO and IBCO have different scaling behaviors under λ→ 0 limit
r̂ISCO = GM + 21/3λ2/3GM + O(λ)

r̂IBCO = GM + 21/2λGM + o(λ).
This motivates us to consider two different limits of near horizon
geometry.
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NHEK: near horizon geometry of extreme Kerr

Taking the high spin limit λ→ 0,

T =
t̂

2Mλ2/3, R =
r̂ − r̂+

M λ−2/3, Φ = ϕ̂− t̂
2M ,

we get the NEHK geometryJ. M. Bardeen and G.T. Horowitz 9905099

ds2 = 2M2Γ(θ)

(
−R2dT2 +

dR2

R2
+ dθ2 + Λ2(θ)(dΦ+ RdT)2

)
,

where the polar functions are

Γ(θ) =
1 + cos2 θ

2
, Λ(θ) =

2 sin θ
1 + cos2 θ .

Obviously it has enhanced SL(2,R)× U(1) symmetry.
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Near-NHEK: very near horizon region
We may take a different limit: λ→ 0, κ fixed

t = t̂
2Mκλ, r = κ

r̂ − r̂+
Mλ , Φ = ϕ̂− t̂

2M ,

we will find the near-NHEK geometry: I. Bredberg et.al. 0907.3477

ds2 = 2M2Γ(θ)

(
−r(r + 2κ)dt2 + dr2

r(r + 2κ)
+ dθ2 + Λ2(θ)(dϕ+ (r + κ)dt)2

)
,

where κ > 0 is arbitrary as a consequence of emerging scale invariance.
The near-NHEK is closer to the horizon than the NHEK. It has enhanced
SL(2,R)× U(1) symmetry as well.

Besides the enhanced symmetry, there is a discrete PT-symmetry in both
NHEK and near-NHEK geometries:

T → −T, Φ → −Φ NHEK
t → −t, ϕ→ −ϕ near-NHEK
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Remarks
The NHEK and near-NHEK has played key roles in setting up the
Kerr/CFT correspondence. M. Guica et.al. 0809.4266,I. Bredberg et.al. 0907.3477,BC and C-S Chu 1001.3208

Due to the enhanced symmetry, the motion of the point particles can be
classified. It turns out to be that the trajectories in such geometry could
be related to each other by conformal transformations and PT
transformations. A.P. Porfyriadis and A. Strominger 1401.3746,...

Very recently G. Compere et.al. studied the gravitational wave in the
final stages of EMRIs of non-spinning compact objects into supermassive
nearly extremal Kerr BH. G. Compere et.al. 1712.0713

▶ Geodesic approximation: no internal structure of the compact
object, no backreaction

▶ Consider GWs at different stages using Teukolsky’s formalism:
asymp. flat ⇒ NHEK ⇒ near-NHEK

▶ Paste GWs in different stages
The same treatment can be applied to high spin IMRACs, but ...
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Motivation

The small body spin and finite size effect becomes more and more
important when the mass-ratio q > 10−3.

Our recent work is to consider the spin and finite size effect in IMRACs
involving a HS BH.

1. The spin effect could be essential in the GW signal emitted from
IMRACs if q ≥ 10−3, by preliminary numerical study Huerta et.al. 2011

2. The finite size effect has not been studied before

3. As the first step for further study in self-force formalism



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation

The small body spin and finite size effect becomes more and more
important when the mass-ratio q > 10−3.

Our recent work is to consider the spin and finite size effect in IMRACs
involving a HS BH.

1. The spin effect could be essential in the GW signal emitted from
IMRACs if q ≥ 10−3, by preliminary numerical study Huerta et.al. 2011

2. The finite size effect has not been studied before

3. As the first step for further study in self-force formalism



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Beyond point-particle approx.

In the geodesic approximation, the compact object is taken as a point
particle without internal structure. This is certainly not true.

This problem has been discussed long time ago, first by M. Mathisson
(1937) in an ambitious paper
“Neue mechanik materieller systemes”, Acta Phys. Polon 6
(1937)163-2900.
(“New mechanics of material systems”, Republication, Gen.Rel.Grav.
42(2010)1011-1048.)

Some years later, A. Papapetrou (1951) addressed this issue.
“Spinning test particle in general relativity, 1”, Proc. Roy. Soc. Lond.
A209(1951)248-258.

The modern version was developed by W.G. Dixon in a series of papers in
1970s. He completed Mathisson’s formalism to discuss the dynamics of
extended bodies in GR beyond the dipole and quadrupole approx.. This
resulted in the so-called Mathisson-Papapetrou-Dixon (MPD) equations.
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This problem has been discussed long time ago, first by M. Mathisson
(1937) in an ambitious paper
“Neue mechanik materieller systemes”, Acta Phys. Polon 6
(1937)163-2900.
(“New mechanics of material systems”, Republication, Gen.Rel.Grav.
42(2010)1011-1048.)

Some years later, A. Papapetrou (1951) addressed this issue.
“Spinning test particle in general relativity, 1”, Proc. Roy. Soc. Lond.
A209(1951)248-258.

The modern version was developed by W.G. Dixon in a series of papers in
1970s. He completed Mathisson’s formalism to discuss the dynamics of
extended bodies in GR beyond the dipole and quadrupole approx.. This
resulted in the so-called Mathisson-Papapetrou-Dixon (MPD) equations.
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Beyond point-particle approx.

In the geodesic approximation, the compact object is taken as a point
particle without internal structure. This is certainly not true.

This problem has been discussed long time ago, first by M. Mathisson
(1937) in an ambitious paper
“Neue mechanik materieller systemes”, Acta Phys. Polon 6
(1937)163-2900.
(“New mechanics of material systems”, Republication, Gen.Rel.Grav.
42(2010)1011-1048.)

Some years later, A. Papapetrou (1951) addressed this issue.
“Spinning test particle in general relativity, 1”, Proc. Roy. Soc. Lond.
A209(1951)248-258.

The modern version was developed by W.G. Dixon in a series of papers in
1970s. He completed Mathisson’s formalism to discuss the dynamics of
extended bodies in GR beyond the dipole and quadrupole approx.. This
resulted in the so-called Mathisson-Papapetrou-Dixon (MPD) equations.
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Mathisson’s multipolar scheme
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MPD equations
The motion of an extended object could be taken as a world-tube.
Relative to the center of mass, there exists an infinite set of moment
tensors: momentum pµ, the antisymmetric spin tensor Sαβ , together with
the quadrupole and higher order moment tensors.

The MPD evolution equation of the momentum and spin are given by

Dpµ

Dτ = −1

2
Rµ

ναβuνSαβ + Fµ

DSµν

Dτ = pµuν − pνuµ + Lµν

where Fµ and Lµν are respectively the force and the torque caused by
the quadrupole and higher multipoles. The masses m > 0, m > 0 are
defined as

m2 = −pµpµ, m = −pµuµ.

Note that the 4-momentum cannot simply related to the 4-velocity
pµ ̸= muµ.
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where Fµ and Lµν are respectively the force and the torque caused by
the quadrupole and higher multipoles. The masses m > 0, m > 0 are
defined as

m2 = −pµpµ, m = −pµuµ.

Note that the 4-momentum cannot simply related to the 4-velocity
pµ ̸= muµ.
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Moments

The dipole moment is described by the spin tensor Sαβ , and the spin
length is defined by

S2 =
1

2
SµνSµν .

The 2n-pole moment, n ≥ 2, is described by a tensor Jµ1···µn−2αβγδ with
n + 2 indices with the following symmetry structure

Jµ1···µn−2αβγδ = J(µ1···µn−2)[αβ][γδ],

Jµ1···µn−2α[βγδ] = 0,

Jµ1···µn−3[µn−2αβ]γδ = 0, for n ≥ 3

nµ1Jµ1···µn−2αβγδ = 0, for n ≥ 3

where n̂ is a unit timelike vector.
In particular the quadrupole Jαβγδ has 20 independent components and
has the symmetries of the Riemann tensor.
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Spin supplementary condition (SSC)

The MPD equations are underdetermined. They need to be supplemented
by a choice of worldline xµ∗ (τ) within the extended body. One can
uniquely identify the center-of-mass by imposing nµ = pµ/(−p · p)
together with the Tulczyjew spin supplementary condition

Sµνpν = 0.

There are alternative SSCs in the literature. For example the one by
Mathisson

Sµνuν = 0,

however, it does not uniquely fix a worldline already within special
relativity.
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Spin supplementary condition (SSC)

The MPD equations are underdetermined. They need to be supplemented
by a choice of worldline xµ∗ (τ) within the extended body. One can
uniquely identify the center-of-mass by imposing nµ = pµ/(−p · p)
together with the Tulczyjew spin supplementary condition

Sµνpν = 0.

There are alternative SSCs in the literature. For example the one by
Mathisson

Sµνuν = 0,

however, it does not uniquely fix a worldline already within special
relativity.
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Quadrupole model
The force and torque caused by the quadrupole Jαβγδ is more explicitly
given by

Fµ = −1

6
Jαβγδ∇µRαβγδ,

Lµν =
4

3
Jαβγ[µRν]

γαβ .

For the compact objects, the quadrupole deformation is mainly induced
by the spinning

Jµνρσ = 3κS2

m
m4

Sα[µpν]S [ρ
α pσ].

Here we have ignored the quadrupole deformations induced by the
gravito-electric and gravito-magnetic tidal fields.

The parameters κS2

characterizes the spin-induced quadrupole

κS2 = 1 (BH), κS2 ≃ 5 (Neutron star).
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Quadrupole model
The force and torque caused by the quadrupole Jαβγδ is more explicitly
given by

Fµ = −1

6
Jαβγδ∇µRαβγδ,

Lµν =
4

3
Jαβγ[µRν]

γαβ .

For the compact objects, the quadrupole deformation is mainly induced
by the spinning

Jµνρσ = 3κS2

m
m4

Sα[µpν]S [ρ
α pσ].

Here we have ignored the quadrupole deformations induced by the
gravito-electric and gravito-magnetic tidal fields. The parameters κS2

characterizes the spin-induced quadrupole

κS2 = 1 (BH), κS2 ≃ 5 (Neutron star).
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Strategy

We consider IMRAC with a mass ratio

q ≡ µ

M ≪ 1.

The probe object has a spin restricted by the extremal black hole bound
such that

χ ≡ S
µ2

obeys − 1 ≤ χ ≤ 1

Strategy:
1. Solve the MPD equations with spin and quadrupole in the NHEK and
near-NHEK regions
2. Find the stress tensor of the extended object, which is the source of
GW
3. Solve the Teukolsky problem to read the waveform
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Strategy

We consider IMRAC with a mass ratio

q ≡ µ

M ≪ 1.

The probe object has a spin restricted by the extremal black hole bound
such that

χ ≡ S
µ2

obeys − 1 ≤ χ ≤ 1

Strategy:
1. Solve the MPD equations with spin and quadrupole in the NHEK and
near-NHEK regions

2. Find the stress tensor of the extended object, which is the source of
GW
3. Solve the Teukolsky problem to read the waveform
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Strategy

We consider IMRAC with a mass ratio

q ≡ µ

M ≪ 1.

The probe object has a spin restricted by the extremal black hole bound
such that

χ ≡ S
µ2

obeys − 1 ≤ χ ≤ 1

Strategy:
1. Solve the MPD equations with spin and quadrupole in the NHEK and
near-NHEK regions
2. Find the stress tensor of the extended object, which is the source of
GW

3. Solve the Teukolsky problem to read the waveform
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Strategy

We consider IMRAC with a mass ratio

q ≡ µ

M ≪ 1.

The probe object has a spin restricted by the extremal black hole bound
such that

χ ≡ S
µ2

obeys − 1 ≤ χ ≤ 1

Strategy:
1. Solve the MPD equations with spin and quadrupole in the NHEK and
near-NHEK regions
2. Find the stress tensor of the extended object, which is the source of
GW
3. Solve the Teukolsky problem to read the waveform
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The circular near-NHEK trajectory

The circular near-NHEK equatorial trajectory is

r = r0, θ =
π

2
, ϕ = −αr0t

where α is the rescaled angular velocity. The normalization condition
u2 = −1 solved for

ut =
1

Mr0
√
8(1 + κ0)α− (3 + 4α2 + 6κ0 + 4κ20)

, uϕ = −αr0ut,

where we defined κ0 ≡ κ
r0 . Setting κ0 = 0, we get the trajectory in

NHEK geometry.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Solution to the MPD eq.
Assuming the SSC and using the probe mass µ and spin ratio χ, we
obtain the near-NHEK solution to the MPD equations

Str =
ℓχq2

√
3ℓ∗

(1 + 2χq) + O(q4),

Srϕ = − eχq2

√
3ℓ∗

(1 +
2χq

1− ℓ2∗
ℓ2

) + O(q4),

pt = −
√
3ℓ∗q
2e (

ℓ2

ℓ2∗
− 1)(1− χ2q2

2
) + O(q4),

pϕ = −
√
3ℓq
2ℓ∗

(1 + (
1

2
− κS2)χ2q2) + O(q4),

m = Mq(1− κS2

2
(
ℓ2

ℓ2∗
+ 1)χ2q2) + O(q4),

α

κ0
=

√
3ℓ

2
√
ℓ2 − ℓ2∗

(1 +
1

2
(κS2 − 1)χ2q2) + O(q3).

where e and ℓ are specific energy and angular momentum, and ℓ∗

ℓ∗[χq] ≡ 2M√
3
(1 + χq + (

1

2
− κS2)(χq)2) + O(q3).
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Stress tensor
The MPD equations are equivalent to the conservation equations
∇νTµν = 0 of the stress-energy tensor described by the multipole
moments.
In the quadrupole approximation, the stress tensor is given by J. Steinhoff and D.

Puetzfeld 2009

Tµν =

∫
dτ [(p(µuν))D +

1

3
R (µ
αβγ Jν)γβαD −∇α(Sα(µuν)D)

−2

3
∇α∇β(Jα(µν)βD)],

where D is the Dirac function

D =
1√
−gδ

(4)(xµ − xµ∗ (τ)).

With the MPD solutions, we can read the stress tensor of the extended
object straightforwardly.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stress tensor
The MPD equations are equivalent to the conservation equations
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Teukolsky problem

We consider a source within the NHEK or the near-NHEK region. Within
either of these regions, gravitational waves have a frequency ω̂ ∈ R and
mode number m ∈ Z close to the superradiant bound

M|ω̂ − m
2M | ≪ 1.

At the leading order in the high spin limit, the Teukolsky perturbation
can be deduced from a matched asymptotic expansion scheme. The
details can be found in G. Compère et.al. 1712.07130.
The main quantity of interest is the Newman-Penrose scalar δψ4 defined
in the Kinnersley tetrad adapted to the Kerr geometry.
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Teukolsky problem

We consider a source within the NHEK or the near-NHEK region. Within
either of these regions, gravitational waves have a frequency ω̂ ∈ R and
mode number m ∈ Z close to the superradiant bound

M|ω̂ − m
2M | ≪ 1.

At the leading order in the high spin limit, the Teukolsky perturbation
can be deduced from a matched asymptotic expansion scheme. The
details can be found in G. Compère et.al. 1712.07130.
The main quantity of interest is the Newman-Penrose scalar δψ4 defined
in the Kinnersley tetrad adapted to the Kerr geometry.
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For a source in the NHEK region, δψ4 asymptotes to

δψ4(̂r → ∞) =
M3

√
2π

∫ ∞

−∞
δΩ

∑
lm

Blm(x∗)KfarSlm(θ)eimϕ̂e− i
2M (m+λ2/3Ω)ûr̂−1

where the asymptotic retarded time û = t̂ − r̂∗ is defined in terms of the
asymptotic tortoise coordinate r̂∗, Slm(θ) are the extremal spheroidal
harmonics with separation constants Elm = l(l + 1) + O(m), and Kfar is
fixed.

The coefficients Blm(x∗) encode the details of the source. It is
determined by the homogeneous solution to the radial Teukolsky
differential equation. The details can be found in the paper.
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Metric perturbation

The metric perturbation is related to the curvature perturbation as

δψ4 → 1

2
∂2t̂ (h+ − ih×), r̂ → ∞.

Since the oscillation timescale is locked at ω̂ = m/(2M) at the leading
order in λ, we can directly integrate for each mode m to get

h+ − ih× = −8(M2/m2)δψ4.

The metric perturbation at infinity is therefore given by

h+ − ih× =
µ

r̂
∑
l,m

Alm(
ℓ

ℓ∗
, χq;λ, κS2)Slm(θ)eimϕ̂−iω̂û

where µ = qM and Alm = −8 M4

qm2 Blm(x∗)Kfar
κ is independent of M.
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Frequency shift
The frequency of emitted gravitational waves is locked by the kinematics
to be around the extremal value

ω̂ext =
m
2M .

For a circular orbit in NHEK and in the high spin limit, the frequency is
given by

ω̂ − ω̂ext
ω̂ext

= −3λ2/3

25/3
(1−χq + (κS2 − 5

4
)χ2q2 + O(q3)).

We observe that a positive secondary spin tends to slightly lower this
relative shift.
For a circular orbit in near-NHEK, the relative shift of angular frequency
is

ω̂ − ω̂ext
ω̂ext

= −
√
3

2

λ√
1− ℓ2∗

ℓ2

(1 +
1

2
(κS2 − 1)χ2q2) + O(q3).
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Critical behavior
The description of the near-NHEK orbit displays a critical behavior in the
limit ℓ→ ℓ∗G. Compère et.al. 1712.07130

ℓ∗[χq] ≡ 2M√
3
(1 + χq + (

1

2
− κS2)(χq)2) + O(q3)

Question: whether the enhancement factor

1√
1− ℓ2∗

ℓ2

may actually lead to divergences?
Answer: no!
Because that the near-NHEK approximation requires that

λ√
1− ℓ2∗

ℓ2

≪ 1.

Therefore, the critical behavior ℓ→ ℓ∗ is never exactly reached for a
given near-extremality parameter λ.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Amplitude

The leading contribution to the amplitude isM. Kesden, 1101.3749, S. Gralla et.al. 1506.08496, M.

Colleoni et.al. 1501.07330

A ∼
√
λ.

For the near-NHEK circular orbit, we observe that the amplitude displays
the following critical behavior

limℓ→ℓ∗Alm(
ℓ

ℓ∗
, χq, λ, κS2) ∼

 λ√
1− ℓ2∗

ℓ2

1/2

.

The interpretation of this critical behavior is therefore that there is an
amplitude enhancement with a power law behavior ∼ (1− ℓ2∗

ℓ2 )
−1/4 that

partially compensate the redshift of the amplitude ∼
√
λ due to the

existence of the NHEK region. The final amplitude is always finite.
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Ringdown

The ringdown has particular features in the high spin regime.
▶ The spectrum of quasi-normal modes splits in the near-extremal

limit into damped modes in the asymptotically flat region, and into
zero-damped modes in the near-horizon regionH. Yang et.al. 1212.3271

▶ The presence of zero-damped modes in the near-horizon region leads
to polynomial quasi-normal mode ringing due to harmonic stacking
of overtones H. Yang et.al. 1307.8086

▶ This polynomial ringing gets emitted for geodesic plunges and leads
to a “smoking gun” signature of the gravitational wave emission
from a plunging source into a high spin black holeG. Compère et.al. 1712.07130,

S.Gralla et.al. 1804.04753

These features are identical after finite size corrections, since the angular
dependence of the waveform remains unchanged.
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Conclusion

We derived the Teukolsky perturbation at leading order in the high spin
regime of a finite size compact object orbiting a circular equatorial orbit
in the near-horizon region of a highly spinning massive black hole, by
solving the MPD equations.

We discussed the spin and quadrupole corrections to the frequency of
emission and to the amplitude.

Finite size effects allow to distinguish black holes from neutron stars in
precise gravitational wave observations. In particular, the measurement of
κS2 , the amplitude of the spin induced quadrupole, encodes information
about the internal structure of neutron stars.
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Outlook

The first and second order self-force?

The orbits outside the equatorial plane?

Next-to-leading order high spin correction?
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Thanks for your attention!
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Conserved mass
Given any Killing vector ξ̂ of the background spacetime, one can define
the conserved quantities

Qξ = ξµpµ +
1

2
Sµν∇µξν ,

even in the presence of higher multipole moments. J. Ehlers and E. Rudolph (1977)

The masses m, m are non-conserved and differ at O(S3) in the spin
tensor,

m = m + O(S3).

The masslike quantity µ defined as

µ = m +
κS2

2m EµνSµ
αSαν

is conserved up to O(S3), where

Eµν =
1

m2
Rµρνσpρpσ.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conserved mass
Given any Killing vector ξ̂ of the background spacetime, one can define
the conserved quantities

Qξ = ξµpµ +
1

2
Sµν∇µξν ,

even in the presence of higher multipole moments. J. Ehlers and E. Rudolph (1977)

The masses m, m are non-conserved and differ at O(S3) in the spin
tensor,

m = m + O(S3).

The masslike quantity µ defined as

µ = m +
κS2

2m EµνSµ
αSαν

is conserved up to O(S3), where

Eµν =
1

m2
Rµρνσpρpσ.


	Motivation
	MPD

