Braneworld in f(R) gravity and critical gravity

Yu-Xiao Liu

Institute of Theoretical Physics, Lanzhou University

ICTS, USTC, Hefei

2011.12.13

つくい

- Introduction and motivation
- $f(R)$ thick brane
	- \bullet $f(R)$ thick brane model
	- **a** The solution
	- The stability of the solution
	- The localization of gravity
- Thin brane solutions in critical gravity
	- The case $n = 4$
	- The case $n \neq 4$
- Thick brane solutions in critical gravity

 299

- The case $n = 4$
- The case $n \neq 4$
- Summary and open issues

Brief history of extra dimensions and braneworlds

- 1920's, Kaluza and Klein, KK Theory
- 1980's, Akama, Rubakov, Domain Wall Braneworld
- 1998, Arkani-Hamed, Dimopoulos, and Dvali, Large Extra Dimension (ADD Braneworld Scenario)
- 1999, Randall and Sundrum(RS), Warped Extra Dimension (RS thin Braneworld Scenario)
- 1999, DeWolfe, Freedman, Gubser, and Karch, Thick Braneworld Scenario

Picture of braneworlds

- 4D space-time is seen as a brane (hypersurface) embedded in higher-dimensional space-time
- Matter and gauge fields are confined on the brane, only the gravity can propagate in the bul[k](#page-2-0)

つくい

Thin brane & thick brane

 $ds^2 = e^{2A(y)}g_{\mu\nu}dx^{\mu}dx^{\nu} - dy^2$, $e^{2A(y)}$ is the warp factor.

 299

Why braneworlds in $f(R)$ and critical gravities?

- General relativity is not a renormalizable theory.
- By adding some higher order curvature terms (such as $R^2, R^2_{\mu\nu}, R^2_{\mu\nu\lambda\sigma})$) to the original Einstein-Hilbert action, we can get a renormalizable theory of gravity.
- Higher-order curvature terms also appear in low-energy effective action of string theory.
- It is necessary and important to reconsider braneworld scenarios in higher-order curvature modified theories.

Why braneworlds in $f(R)$ and critical gravities? (cont.)

- \bullet $f(R)$ gravity and critical gravity are such simple toy models.
- \bullet $f(R)$ gravity has been applied in discussing dark energy, inflation, thermodynamics, entropic force, the holographic principle, etc..
- Critical gravity [Lu and Pope, PRL 106 (2011) 181302] possess such an AdS vacuum, for which there is only massless tensor, and the linearized excitations have vanishing energy.

Related works about thin $f(R)$ -brane

About thin $f(R)$ -brane

- **1** In 1988, Barrow and Cotsakis found that $f(R)$ gravity conformally equivalents to the second order Einstein gravity plus a scalar degree of freedom.
- **2** BC's discovery was applied to construct thin $f(R)$ -brane by M. Parry, S. Pichler, and D. Deeg in 2005 [hep-ph/0502048]
- **3** For thin branes the **Israel junction conditions** were investigated by two groups: Balcerzak etc. [arXiv:0710.3670] and Dabrowski etc. [arXiv:0711.1150] in 2007.
- Θ Bouhmadi-Lopez etc. discussed $f(R)$ brane cosmology [arXiv:1001.3028] recently.

Related works about thick $f(R)$ -brane

For thick $f(R)$ -branes, the related works are

- **1** [1] V.I. Afonso, D. Bazeia, R. Menezes, and A.Yu. Petrov, $ff(R)$ -Brane", PLB 658(2007)71, arXiv:0710.3790.
- ² [2] V. Dzhunushaliev, V. Folomeev, B. Kleihaus, and J. Kunz, "Some thick brane solutions in $f(R)$ -gravity", JHEP 1004(2010)130, arXiv:0912.2812.
- **3** [3] Y. Zhong, Y.-X. Liu and K. Yang, "Tensor perturbations of $f(R)$ -branes, Phys. Lett. B699 (2011) 398, arXiv:1010.3478.
- ⁴ [4] Y.-X. Liu, Y. Zhong, Z.-H. Zhao and H.-T. Li, "Domain wall brane in squared curvature gravity", JHEP 1106 (2011) 135,arXiv:1104.3188.

Related works about thick $f(R)$ -brane (cont.)

5 [5] H. Liu, H. Lu and Z.-L. Wang, "f(R) Gravities, Killing Spinor Equations, "BPS" Domain Walls and Cosmology", arXiv:1111.6602.

In Refs. $\left[1,2\right]$ $f(R) \propto R + R^n$ are assumed.

[1] PLB 658(2007)71:

- Thick $f(R)$ -brane solutions exist either for constant and variant bulk curvatures with a background scalar field.
- The curvature equals to a constant is only a special case.
- For the non-constant curvature case, the solution has a singular point, which we don't want to see in thick braneworld models.

Related works about thick $f(R)$ -brane (cont.)

[2] JHEP 1004(2010)130:

- Some numerical thick $f(R)$ -brane solutions exist without the introducing of background scalar field.
- The numerical solution can not be applied to discuss more complex problems.
- There is a problem in localizing fermions on the brane.

[5] H. Liu, H. Lu and Z.-L. Wang, arXiv:1111.6602:

- The Killing spinor equations are used to reduce the fourth-order differential equations of motion to the first order for both the domain wall and FLRW cosmological solutions.
- **"BPS" domain walls that describe the smooth** Randall-Sundrum II were obtained.
- **1** The thick $f(R)$ -brane solution in $f(R)$ gravity with $f(R) = R + \gamma R^2$ [4].
- **2** The analysis of the tensor perturbations of brane metric in $f(R)$ gravity [3,4].

 Ω

3 The thin and thick brane solutions in critical gravity.

Content

- **a** Introduction and motivation
- \circ $f(R)$ thick brane
	- \bullet $f(R)$ thick brane model
	- **a** The solution
	- The stability of the solution
	- The localization of gravity
- Thin brane solutions in critical gravity
	- The case $n = 4$
	- The case $n \neq 4$
- Thick brane solutions in critical gravity

 299

- The case $n = 4$
- The case $n \neq 4$
- Summary and open issues

Recently, we have found an analytical thick brane solution of the action

$$
S = \int d^4x dy \sqrt{-g} \left[f(R) - \frac{1}{2} g^{AB} (\nabla_A \phi)(\nabla_B \phi) - V(\phi) \right], \quad (1)
$$

where $f(R)$ and $V(\phi)$ are given by

$$
f(R) = \frac{1}{2\kappa_5^2}(R + \gamma R^2). \tag{2}
$$

$$
V(\phi) = \lambda(\phi^2 - v^2)^2 + \Lambda_5, \qquad (3)
$$

and the metric has the following from

$$
ds^{2} = e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}.
$$
 (4)

| ④ 重 ≯ ④ 重 ≯

 299

$f(R)$ thick brane model (cont.)

The (four-order) field equations are

$$
f(R) + 2f_R (4A'^2 + A'') - 6f'_R A' - 2f''_R = \kappa_5^2 (\phi'^2 + 2V),
$$
 (5)
- 8f_R (A'' + A'^2) + 8f'_R A' - f(R) = $\kappa_5^2 (\phi'^2 - 2V),$ (6)
4A' \phi' + \phi'' = $\frac{\partial V}{\partial \phi}.$ (7)

For the case $f(R) = R + \gamma R^2$,

$$
f_R = 1 + 2\gamma R, \tag{8}
$$

$$
f'_R = 2\gamma R', \tag{9}
$$

$$
f''_R = 2\gamma R'', \qquad (10)
$$

$$
R' = -(8A''' + 40A'A''), \qquad (11)
$$

$$
R'' = -(8A''' + 40A''^2 + 40A'A''). \qquad (12)
$$

\bullet The solution is 1

$$
e^{2A(y)} = \cosh^{-2}(ky),
$$
\n
$$
\phi(y) = v \tanh(ky).
$$
\n(13)

where $v = 7\sqrt{3}/(29\kappa^2)$.

- **2** At the boundary of the extra dimension, i.e., $v = \pm \infty$. the bulk curvature $R = -20k^2$, which means that the spacetime is asymptotically anti-de Sitter. The corresponding cosmological constant $\Lambda = -\frac{159k^2}{29\kappa_5^2}$ <u>ι59κ=</u>
29_{κ5} -5
- **3** As shown in the following figure, this solution describes a typical thick braneworld model.

¹Y.-X. Liu, Y. Zhong, Z.-H. Zhao and H.-T. Li, [JHE](#page-14-0)[P](#page-16-0) [1](#page-14-0)[10](#page-15-0)[6](#page-16-0) [\(2](#page-0-0)[011](#page-52-0)[\)](#page-0-0) [1](#page-0-0)[35](#page-52-0) つくい

 $\kappa_5 = 1$, $k = 1$ (red dotted) and $k = 2$ (blue solid).

 \sim \sim

つくへ

The analysis of a full set of gravitational fluctuations of the metric is a hard work.

However, the problem can be simplified when one only considers the transverse and traceless (TT) part of the metric fluctuation.

• Consider the tensor perturbations of the background metric:

$$
ds^{2} = e^{2A(y)}(\eta_{\mu\nu} + h_{\mu\nu})dx^{\mu}dx^{\nu} + dy^{2}, \qquad (15)
$$

where $h_{\mu\nu} = h_{\mu\nu}(x^{\mu}, y)$.

The perturbation of the scalar field $\delta\phi(x^{\mu}, y)$ decouples from the metric perturbations under the transverse and traceless gauge $\partial_{\mu}h^{\mu}_{\ \nu}=0=\eta^{\mu\nu}h_{\mu\nu}$.

The stability of the solution (cont.)

Thus, the perturbed Einstein equation is [Y. Zhong, Y.-X. Liu and K. Yang, PLB 699 (2011) 398]

$$
\Box^{(5)}h_{\mu\nu} = \frac{f'_R}{f_R}\partial_y h_{\mu\nu},\qquad(16)
$$

For $f(R) = R$, this equation reduces to the KG equation for massless spin-2 particles.

By doing the coordinate transformation $dz = e^{-A(y)}dy$, we can rewrite the metric [\(4\)](#page-13-0) into a conformally flat one:

$$
ds^{2} = e^{2A(y(z))} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2}).
$$
 (17)

Then the perturbed equation [\(16\)](#page-18-0) reads

$$
\left[\partial_z^2 + \left(6\partial_z A + \frac{\partial_z f_R}{f_R}\right)\partial_z + \Box^{(4)}\right]h_{\mu\nu} = 0. \tag{18}
$$

 \curvearrowright

The stability of the solution (cont.)

With the KK decomposition $h_{\mu\nu}=e^{i p \times}e^{-\frac{3}{2}A}\;f_R^{-1/2}$ $\int_R^{\epsilon-1/2} \varepsilon_{\mu\nu} h(z)$, the above equation is reduced to the following Schrodinger equation for $h(z)$:

$$
\left[-\partial_z^2 + V_G(z)\right]h(z) = m^2h(z),\tag{19}
$$

where the potential is given by

$$
V_G(z) = \left(\frac{3}{2}A'' + \frac{9}{4}(A')^2\right) + \left(3A'\frac{f'_R}{f_R} - \frac{1}{4}\frac{f'^2_R}{f^2_R} + \frac{1}{2}\frac{f''_R}{f_R}\right). \tag{20}
$$

One can also factorize the Schrodinger equation [\(19\)](#page-19-0) as

$$
\left[\partial_z + \left(3A' + \frac{1}{2}\frac{f'_R}{f_R}\right)\right] \left[-\partial_z + \left(3A' + \frac{1}{2}\frac{f'_R}{f_R}\right)\right] h(z)
$$
\n
$$
= m^2 h(z), \tag{21}
$$

which indicates that

- there is no gravitational mode with $m^2 < 0$ and therefore the solution for our model is stable.
- The zero mode $(m^2 = 0)$

$$
h_0(z) = N_0 e^{\frac{3}{2}A(y(z))} f_R^{1/2}(R(z))
$$
 (22)

is the ground state of the Schrodinger equation [\(19\)](#page-19-0).

• In $f(R)$ gravity, the zero mode depends not only on the form of the warp factor, but also on the form of $f(R)$.

For our model, the warp factor $e^{2A(y)} = \cosh^{-2}(ky)$ becomes $e^{2A(y(z))} = (1 + k^2 z^2)^{-1}$ in z coordinate, and the potential takes the form

$$
V_G(z) = \frac{15k^2 \left(-14 + 37k^2 z^2 + 28k^4 z^4 + 4k^6 z^6\right)}{4 \left(5 + 7k^2 z^2 + 2k^4 z^4\right)^2}.
$$
 (23)

When $|z|\rightarrow\infty$, $V_G(z)\rightarrow\frac{15}{4z^2}$. The corresponding zero mode can be normalized as

$$
h_0(z) = \sqrt{\frac{k}{8}} \frac{\sqrt{5 + 2k^2 z^2}}{(1 + k^2 z^2)^{5/4}}.
$$
 (24)

The localization of gravity (cont.)

- **The existence of the zero mode indicates that the** gravity can be localized on the brane.
- The zero mode gives the Newtonian potential $\mathcal{U} \propto \frac{1}{r}$ felt by the massive objects on the brane.
- In addition to the zero mode, there is a series of continues massive KK states, which would give a correction to the Newtonian potential.
- **a** Introduction and motivation
- $f(R)$ thick brane
	- \bullet $f(R)$ thick brane model
	- **a** The solution
	- The stability of the solution
	- The localization of gravity
- Thin brane solutions in critical gravity
	- The case $n = 4$
	- The case $n \neq 4$
- Thick brane solutions in critical gravity

 299

- The case $n = 4$
- The case $n \neq 4$
- Summary and open issues

Thin brane solutions in critical gravity

First, we consider the thin braneworld with co-dimension one generated in $n = (p + 1)$ -dimensional critical gravity, where $n > 3$. The action is

$$
S = S_{\mathbf{g}} + S_{\mathbf{b}},\tag{25}
$$

where the gravity part S_g and the brane part S_b are given by

$$
S_{\mathbf{g}} = \frac{1}{2\kappa^2} \int d^n x \sqrt{-g} \Big[R - (n-2)\Lambda_0 + \alpha R^2 + \beta R_{MN} R^{MN} \Big], (26)
$$

$$
S_{\mathbf{b}} = \int d^{n-1} x \sqrt{-g^{(\mathbf{b})}} V_0.
$$
 (27)

Here $g^{(\mathbf{b})}_{\mu\nu}$ is the induced metric on the brane, and V_0 is the brane tension.

Thin brane solutions in critical gravity (cont.)

The line-element is assumed as

$$
ds2 = gMNdxMdxN = e2A(y) \eta\mu\nu dx\mu dx\nu + dy2,
$$
 (28)

where e^{2A} is the warp factor with the normalized condition $\mathbf{e}^{2A(0)}=1$ on the brane located at $y=0.$ We introduce the Z_2 symmetry by setting $A(y) = A(-y)$. The equations of motion are given by

$$
G_{MN} + \alpha E_{MN}^{(1)} + \beta E_{MN}^{(2)} = \kappa^2 T_{MN} - \frac{1}{2}(n-2)\Lambda_{0\,SMN},\tag{29}
$$

where $T_{\mu\nu} = -V_0 g_{\mu\nu} \delta(y)$, $T_{nn} = 0$,

$$
E_{MN}^{(1)} = 2R(R_{MN} - \frac{1}{4}R_{BMN}) + 2g_{MN}\Box R - 2\nabla_M\nabla_N R,
$$

\n
$$
E_{MN}^{(2)} = 2R^{PQ}(R_{MPNQ} - \frac{1}{4}R_{PQ}g_{MN}) + \Box(R_{MN} + \frac{1}{2}R_{BMN}) - \nabla_M\nabla_N R.
$$

Thin brane solutions in critical gravity (cont.)

The junction conditions are determined by

 $+1$

$$
\int_{0^{-}}^{0^{+}} dy \Big[R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \alpha E_{\mu\nu}^{(1)} + \beta E_{\mu\nu}^{(2)} \Big] = -\kappa^{2} V_{0} g_{\mu\nu}(y = 0). (30)
$$

At $y \neq 0$, the explicit forms of the above EOMs are

$$
(\rho - 1)(\Lambda_0 + \rho A'^2 + 2A'') - \rho^2(\rho - 3)[(\rho + 1)\alpha + \beta]A'^4 - 2\rho [(6\rho^2 - 4\rho - 6)\alpha + (\rho^2 + 3\rho - 6)\beta] A'^2A''
$$

 $- \left[4p\alpha + (p+1)\beta\right](2A^{(4)} + 4pA'A^{(3)} + 3pA''^{2}) = 0,$ (31)

$$
(\rho - 1) (\Lambda_0 + \rho A'^2) - \rho^2 (\rho - 3)((\rho + 1)\alpha + \beta)A'^4 + \rho [4\rho \alpha + (\rho + 1)\beta] (A''^2 - 2A'A^{(3)} - 2\rho A'^2 A'') = 0. (32)
$$

Thin brane solutions in critical gravity (cont.)

It is very difficult to find the solution of thin brane for arbitrary α and β for the above four-order differential equations and the junction conditions [\(30\)](#page-26-1).

However, at the critical point $4p\alpha + (p+1)\beta = 0$, the $EOMs$ are reduced to \cdot

$$
4\Lambda_0 + 4pA^2 + p(p-1)(p-3)\beta A^{\prime 4} = 0, \qquad (33)
$$

$$
[2 + (p-1)(p-3)\beta A'^2]A'' = 0, \qquad (34)
$$

 Ω

and the junction condition is

$$
\int_{0^-}^{0^+} dy \left[2 + (p-1)(p-3)\beta A'^2\right] A'' = -\frac{2\kappa^2}{p-1} V_0.
$$
 (35)

It can be seen from Eqs. [\(33\)](#page-27-0) and [\(34\)](#page-27-1) that the curvature-squared modifications in the 4D critical gravity $(p = 3 \text{ or } n = 4)$ has no effect on the brane solution.

In the following, we give the solutions of the above brane equations for $n = 4$ and $n \neq 4$, respectively.

 Ω

For this case ($p = 3$), the solution is

$$
A(y) = -\sqrt{\frac{-\Lambda_0}{3}}|y|,
$$
\n
$$
V_0 = \frac{4}{\kappa^2}\sqrt{\frac{-\Lambda_0}{3}} \quad (>0).
$$
\n(37)

Thus, we get a brane with positive tension and the warp factor exponentially falling from the brane to infinity. The brane is embedded in a 4D AdS spacetime.

This is nothing but the RS solution in four dimensions. But the perturbation structure of the system is very different from the RS one.

For the case $n \neq 4$, we first give the solution corresponding to $\beta = 0$:

$$
A(RS)(y) = -\sqrt{-\frac{\Lambda_0}{\rho}}|y|,
$$
\n
$$
V_0(RS) = \frac{2(p-1)}{\kappa^2}\sqrt{-\frac{\Lambda_0}{\rho}} \quad (>0),
$$
\n(39)

 299

which describes the RS positive tension brane embedded in an AdS spacetime.

Note that the tension brane is positive.

In critical gravity ($\beta \neq 0$), we have two solutions:

$$
A_{\pm}(y) = -\sqrt{\frac{2[-p \pm \sqrt{p[p - (p - 1)(p - 3)\beta\Lambda_0}]}{p(p - 1)(p - 3)\beta}}|y|, (40)
$$

$$
V_{0\pm} = \pm \frac{p - 1}{p\kappa^2} \sqrt{\frac{-8\Lambda_0 p[p - (p - 1)(p - 3)\beta\Lambda_0]}{p \pm \sqrt{p[p - (p - 1)(p - 3)\beta\Lambda_0]}}}, (41)
$$

which correspond to positive and negative tension branes, respectively.

For the positive tension brane solution, the constrain conditions for the parameters are $\Lambda_0 < 0$ and $\beta > 0$, or $\Lambda_0 < 0$ and $\frac{p}{(p-1)(p-3)\Lambda_0} < \beta < 0$. For the negative tension case, the constrain conditions

are
$$
\beta < 0
$$
 and $\Lambda_0 > 0$, or $\beta < 0$ and $\frac{p}{(p-1)(p-3)\beta} < \Lambda_0 < 0$.

Next, we study the limits of the solutions [\(40\)](#page-31-0) under the condition of $\beta \Lambda_0 \rightarrow 0$.

For the negative tension brane solution $A_-(y)$, the limit is divergent.

While, for the case of positive tension, $A_+(y)$ and V_{0+} can be expanded as

$$
A_{+}(y) = -\sqrt{-\frac{\Lambda_{0}}{\rho}} \left[1 + \frac{(\rho - 1)(\rho - 3)}{8\rho} \beta \Lambda_{0} + \mathcal{O}(\beta \Lambda_{0})^{2} \right] |y|, \qquad (42)
$$

$$
V_{0+} = \frac{2(\rho - 1)}{\kappa^{2}} \sqrt{\frac{-\Lambda_{0}}{\rho}} \left[1 - \frac{3(\rho - 1)(\rho - 3)}{8\rho} \beta \Lambda_{0} + \mathcal{O}(\beta \Lambda_{0})^{2} \right]. \qquad (43)
$$

So, when $\beta \to 0$ but keep Λ_0 as a constant, the above positive tension brane solution [\(40\)](#page-31-0)-[\(41\)](#page-31-1) can be reduced to the RS one [\(38\)](#page-30-0)-[\(39\)](#page-30-1), while the negative one cannot.

It is interesting to note that, when Λ_0 and β satisfy the following relation

$$
\Lambda_0 = \frac{p}{(p-1)(p-3)\beta},\tag{44}
$$

the brane tension vanishes and the warp factor is simplified as

$$
A(y) = -\sqrt{-\frac{2\Lambda_0}{p}}|y|.\tag{45}
$$

Obviously, such solution could not appear in standard Einstein gravity theory. While, in critical gravity theory, although the naked brane tension is zero, but with the identification of $\kappa^2\,T_{\mu\nu}^{(\mathrm{eff})}\equiv-\alpha E_{\mu\nu}^{(1)}-\beta E_{\mu\nu}^{(2)}$, there will be a positive effective brane tension coming from the contribution of the curvature-squared terms.

- **a** Introduction and motivation
- $f(R)$ thick brane
	- \bullet $f(R)$ thick brane model
	- **a** The solution
	- The stability of the solution
	- The localization of gravity
- Thin brane solutions in critical gravity
	- The case $n = 4$
	- The case $n \neq 4$
- Thick brane solutions in critical gravity

 299

- The case $n = 4$
- The case $n \neq 4$
- Summary and open issues

Next, we consider the thick brane generated by a scalar field in n-dimensional critical gravity. The action reads as

$$
S = S_{\mathbf{g}} + S_{\mathbf{m}},\tag{46}
$$

where $S_{\rm g}$ is given by [\(26\)](#page-24-0) and the matter part is

$$
S_{\mathbf{m}} = \int d^{n}x \sqrt{-g} \Big[-\frac{1}{2} g^{MN} \partial_{M} \phi \partial_{N} \phi - V(\phi) \Big]. \tag{47}
$$

The line-element is also assumed as [\(28\)](#page-25-0) and the scalar field $\phi = \phi(y)$ for static branes.

Thick brane solution in critical gravity (cont.)

The EOMs for general α and β are four-order, while they are reduced to the following two-order ones in critical case:

$$
[(p-1)(p-3)\beta A'^{2} - 2] A'' = \frac{2\kappa^{2}}{p-1} \phi'^{2},
$$
\n
$$
p(p-1)(p-3)\beta A'^{4} + 4pA'^{2} + 4\Lambda_{0} = \frac{8\kappa^{2}}{p-1} \Big(\frac{1}{2}\phi'^{2} - V\Big)(49)
$$
\n
$$
\phi'' + pA'\phi' = V_{\phi},
$$
\n(50)

where $V_{\phi} \equiv \frac{dV}{d\phi}$ $\frac{dV}{d\phi}$. Note that eq. [\(50\)](#page-36-0) can be derived from eqs. [\(49\)](#page-36-1) and

[\(48\)](#page-36-2). Hence, the above three equations are not independent. We can solve the above second-order differential

equations by the superpotential method.

Thick brane solution in critical gravity (cont.)

Introducing the superpotential function $W(\phi)$, the EOMs [\(49\)](#page-36-1)-[\(50\)](#page-36-0) can be solved by the first-order equations:

$$
A' = -\frac{\kappa^2}{\rho - 1} W, \tag{51}
$$

$$
\phi' = (1 - hW^2) W_{\phi}, \qquad (52)
$$

$$
V = \frac{1}{2} (1 - hW^2)^2 W_{\phi}^2 - \frac{p-1}{2\kappa^2} \Lambda_0
$$

$$
-\frac{p\kappa^2}{2(p-1)} W^2 \Big(1 - \frac{1}{2} hW^2 \Big), \tag{53}
$$

where $h = -\frac{p-3}{2(p-1)}\beta \kappa^4$. Again, the parameter β has no effect on the Einstein equations in four-dimensional case.

Thick brane solution in critical gravity (cont.)

The energy density $\rho(y)$ of the system is given by

$$
\rho(y) = -T_{MN} u^M u^N = -T^0{}_0 = \frac{1}{2} \phi'^2 + V, \qquad (54)
$$

where $u^{\cal M} = (E^{-A}, 0, 0, 0, 0)$.

For brane solutions, we require that the energy density on the boundaries of the extra dimension γ should vanish:

$$
\rho(|y| \to \infty) \to 0,\tag{55}
$$

with which the naked cosmological constant Λ_0 will be determined.

For $n = 4$, the EOMs read

$$
A' = -\frac{\kappa^2}{2}W, \tag{56}
$$

$$
\phi' = W_{\phi}, \tag{57}
$$

$$
V = -\frac{3}{4}\kappa^2 W^2 + \frac{1}{2}W_{\phi}^2 - \frac{\Lambda_0}{\kappa^2}.
$$
 (58)

In order for the scalar to get a kink solution, the potential $V(\phi)$ should at least has two finite vacua. And the usual ϕ^4 potential is a natural choice.

However, with the superpotential method, the ϕ^4 potential derived from the superpotential $\mathit{W}(\phi) = a \phi + b \phi^2$ can not support kink solution for the scalar.

The case $n = 4$ (cont.)

Hence, we turn to use another superpotential $W(\phi) = a\left(\phi - \frac{\phi^3}{3v_0^2}\right)$ $3v_0^2$), which corresponds to the ϕ^6 model:

$$
V(\phi) = -\frac{a^2 \kappa^2}{12 v_0^4} \left(\phi^2 - v_0^2 \right)^2 \left[\phi^2 - 2(3\kappa^{-2} + 2v_0^2) \right]
$$
 (59)

with the two vacua are at $\phi_{\pm} = \pm v_0$ (the extreme points of the superpotential $W(\phi)$).

The solution is found to be

$$
\begin{array}{rcl}\n\phi(y) & = & v_0 \tanh(ky), \\
\mathrm{e}^{2A(y)} & = & \left[\cosh(ky) \right]^{-\frac{2}{3}\kappa^2 v_0^2} \exp\left(-\frac{1}{6}\kappa^2 v_0^2 \tanh^2(ky) \right),\n\end{array} \tag{60}\n\tag{61}
$$
\n
$$
\Lambda_0 = -\frac{1}{3} a^2 v_0^2 \kappa^4 < 0 \,, \tag{62}
$$

御 ▶ メ 君 ▶ メ 君 ▶ ...

 299

where $k = a/v_0$.

The case $n = 4$ (cont.)

The scalar curvature and the energy density are

$$
R(y) = \frac{1}{3}a^2\kappa^2 \Big[\kappa^2 v_0^2 \operatorname{sech}^6(ky) + 3(\kappa^2 v_0^2 + 3) \operatorname{sech}^4(ky) - 4\kappa^2 v_0^2 \Big],
$$
(63)

$$
\rho(y) = a^2 \left[\frac{\kappa^2 v_0^2}{12} \left(3 + \operatorname{sech}^2(ky) \right) + 1 \right] \operatorname{sech}^4(ky).
$$
 (64)

The energy density vanishes at the boundaries:

$$
\rho(|y| \to \infty) \propto e^{-4k|y|} \to 0. \tag{65}
$$

And the bulk curvature $R(|y| \to \infty) \to -\frac{4}{3}a^2v_0^2\kappa^4 = 4\Lambda_0$, which means that the spacetime is asymptotically AdS. The corresponding cosmological constant is just the naked one: $Λ = Λ₀$.

As shown in the following figure, the above solution describes a typical thick braneworld embedded in an AdS spacetime.

Figure: The shapes of the scalar curvature $R(y)$ and the energy density $\rho(y)$ for the case $n = 4$.

The case $n \neq 4$

For general $n \neq 4$ ($n > 5$ and $n = 3$) and $\beta \neq 0$, $h \neq 0$ and so we have chance to get the usual ϕ^4 potential by setting $W = a\phi$. The potential is

$$
V(\phi) = b(\phi^2 - v_0^2)^2, \tag{66}
$$

where

$$
b = \frac{p-3}{8(p-1)^2} [(p-3)a^2 \kappa^2 \beta^2 - p\beta] a^4 \kappa^6, \qquad (67)
$$

$$
v_0^2 = -\frac{2(p-1)}{(p-3)a^2 \kappa^4 \beta}. \qquad (68)
$$

When $(p-3)\beta > 0$, the above $V(\phi)$ [\(66\)](#page-43-0) is not a usual ϕ^4 potential with two degenerate vacua since $\rm v_0^2 < 0.$ Such potential does not support a thick brane solution.

The case $n \neq 4$ (cont.)

So we consider the case of $(p-3)\beta < 0$, namely,

•
$$
p > 3
$$
 and $\beta < 0$, or

$$
\bullet \ \ p = 2 \ \text{and} \ \beta > 0,
$$

for which $v_0^2 > 0$, $b > 0$, so the potential $V(\phi) = b(\phi^2 - v_0^2)^2$ has two vacua at $\phi_{\pm} = \pm v_0$. The solution is

$$
\phi(y) = v_0 \tanh(ky), \qquad (69)
$$

$$
e^{2A(y)} = [\cosh(ky)]^{-\frac{2}{p-1}\kappa^2 v_0^2}, \qquad (70)
$$

$$
\Lambda_0 = \frac{p}{(p-1)(p-3)\beta} < 0 \,, \tag{71}
$$

where $k=a/v_0=\sqrt{-\frac{(p-3)}{2(\rho-1)}\kappa^4\beta}.$ This solution stands for a thick flat brane with the energy density given by

$$
\rho(y) = \frac{1}{2}v_0^2 \left(k^2 + 2bv_0^2\right) \text{sech}^4(ky). \tag{72}
$$

On the boundaries $|v| \to \infty$,

$$
A(|y| \to \infty) \to -\sqrt{-\frac{2\Lambda_0}{\rho}}|y|.\tag{73}
$$

So the asymptotic solution [\(73\)](#page-45-0) with the relation [\(71\)](#page-44-0) ($Λ_0 = \frac{p}{(p-1)(p-1)}$ $\frac{\rho}{(\rho-1)(\rho-3)\beta}$) is in accord with the thin brane solution [\(44\)](#page-33-0)-[\(45\)](#page-33-1) given in previous section.

From the asymptotic solution [\(73\)](#page-45-0), we have $R_{MN}(|y| \to \infty) \to 2\Lambda_0 g_{MN} = \Lambda g_{MN}.$

Therefore, the thick flat brane is embedded in an AdS spacetime with the effective cosmological constant $\Lambda = 2\Lambda_0$.

In $n(\neq 4)$ -dimensional critical gravity without matter fields, there are two disconnect AdS vacua with the cosmological constants determined by $\Lambda_0 = \Lambda - \frac{(\rho-1)(\rho-3)\beta}{4\rho}$ $\frac{((p-3)\beta)}{4p}$ Λ² 2 .

In the case here with matter field, because of the relation $\Lambda_0 = \frac{p}{(p-1)(p-1)}$ $\frac{p}{(p-1)(p-3)\beta}$, which is caused by the condition [\(55\)](#page-38-0) $\rho(|y| \to \infty) \to 0$, the two asymptotic AdS vacua become the same one with the cosmological constant $\Lambda = 2\Lambda_0$.

 $2H$. Lu and C. N. Pope, Critical Gravity in Four Dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971[hep-th]]. \longleftrightarrow $\overline{\ }$ QQ

The tensor fluctuation of the metric

The tensor perturbation of the background metric is

$$
ds^{2} = e^{2A(y)}(\eta_{\mu\nu} + \bar{h}_{\mu\nu})dx^{\mu}dx^{\nu} + dy^{2}.
$$
 (74)

The fluctuation equations in TT gauge are given by

$$
G_{MN}^{(L)} + \frac{1}{2}(n-2)\Lambda_0 e^{2A} \bar{h}_{\mu\nu} + \alpha E_{MN}^{(1)(L)} + \beta E_{MN}^{(2)(L)} = 0, \qquad (75)
$$

where the fluctuation of $\mathcal{G}_{\mu\nu}^{(1)}$ is

$$
G_{\mu\nu}^{(L)} = -\frac{1}{2} \left[\Box^{(4)} \bar{h}_{\mu\nu} + e^{2A} \bar{h}_{\mu\nu}^{\prime\prime} + 4A^{\prime} e^{2A} \bar{h}_{\mu\nu}^{\prime} + e^{2A} (4A^{\prime 2} + A^{\prime\prime}) \bar{h}_{\mu\nu} \right], (76)
$$

The tensor fluctuation of the metric (cont.)

and the fluctuations of $E^{(1)}_{\mu\nu}$ and $E^{(2)}_{\mu\nu}$ read

$$
E_{\mu\nu}^{(1)(L)} = 4(2A'' + 5A'^2)\Box^{(4)}\bar{h}_{\mu\nu} + 4(2A'' + 5A'^2)e^{2A}\bar{h}''_{\mu\nu}
$$

+8e^{2A}(A''' + 9A'A'' + 10A'^3)\bar{h}'_{\mu\nu}
-8e^{2A}(2A'''' + 16A'A''' + 12A''² + 37A'^2A'' + 5A'^4)\bar{h}_{\mu\nu},
\n
$$
E_{\mu\nu}^{(2)(L)} = -\frac{1}{2}e^{-2A}\Box^{(4)}\Box^{(4)}\bar{h}_{\mu\nu} - \Box^{(4)}\bar{h}''_{\mu\nu}
$$

-2A'\Box⁽⁴⁾\bar{h}'_{\mu\nu} + 2(A'' + 3A'^2)\Box^{(4)}\bar{h}_{\mu\nu}

$$
-\frac{1}{2}e^{2A}\bar{h}''''_{\mu\nu} - 4e^{2A}A'\bar{h}'''_{\mu\nu} - 4e^{2A}A'^2\bar{h}''_{\mu\nu}
$$

+e^{2A}(40A'^3 + 16A'A'' + 2A''')\bar{h}'_{\mu\nu}
-e^{2A}(5A'''' + 40A'A''' + 30A''² - 72A'^4 + 20A''A'^2)\bar{h}_{\mu\nu}.

It is unclear whether the tensor perturbation of the brane metric is stable.

 299

For $f(R)$ gravity theory:

- In the frame of fourth-order $f(R)$ gravity theory, we have found a smooth thick brane solution.
- The brane is generated by a background scalar field with the usual ϕ^4 potential.
- The tensor perturbation of the metric solution is stable.
- The 4D massless graviton can be localized on such brane.
- By introducing the Yukawa coupling between the fermion and the background scalar field, the fermions can be trapped on the brane.

For critical gravity theory:

- The curvature-squared modifications in the 4D critical gravity has no effect on the brane solution. So the brane solutions are same with the RS ones in four dimensions
- In other dimensions, the thin brane solutions are also similar to the RS ones. But the brane tension can be positive, negative or vanishing in some conditions.
- The thick branes are also similar to the RS ones. They are embedded in AdS space-times with effective cosmological constant $\Lambda = \Lambda_0$ and $\Lambda = 2\Lambda_0$ for $n = 4$ and $n \neq 4$, respectively.
- The fluctuation equations of the brane solution are very different for the critical gravity (four-order) and the standard Einstein gravity (two-order).

There are some questions should be addressed:

- It is unclear whether the scalar perturbations of the brane metric are stable in $F(R)$ gravity with matter fields.
- It is unclear whether the tensor and scalar perturbations of the brane metric are stable in critical gravity.
- It is not known whether the four-dimensional Newton's Law can be recovered on the brane in critical gravity.
- The reduced Einstein equations on the branes may be applied to cosmology.

Thanks!

ŧ

すロチ す御 ト すき ト すき ト

 299