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Brief history of extra dimensions and braneworlds

1920’s, Kaluza and Klein, KK Theory

1980’s, Akama, Rubakov, Domain Wall Braneworld

1998, Arkani-Hamed, Dimopoulos, and Dvali, Large
Extra Dimension (ADD Braneworld Scenario)

1999, Randall and Sundrum(RS), Warped Extra
Dimension (RS thin Braneworld Scenario)

1999, DeWolfe, Freedman, Gubser, and Karch,
Thick Braneworld Scenario



Picture of braneworlds

4D space-time is seen as a brane (hypersurface)
embedded in higher-dimensional space-time

Matter and gauge fields are confined on the brane, only
the gravity can propagate in the bulk



Thin brane & thick brane

ds2 = e2A(y)gµνdx
µdxν − dy2, e2A(y) is the warp factor.
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Why braneworlds in f (R) and critical gravities?

General relativity is not a renormalizable theory.

By adding some higher order curvature terms (such as
R2,R2

µν ,R
2
µνλσ)) to the original Einstein-Hilbert action,

we can get a renormalizable theory of gravity.

Higher-order curvature terms also appear in low-energy
effective action of string theory.

It is necessary and important to reconsider braneworld
scenarios in higher-order curvature modified theories.



Why braneworlds in f (R) and critical gravities?
(cont.)

f (R) gravity and critical gravity are such simple toy
models.

f (R) gravity has been applied in discussing dark energy,
inflation, thermodynamics, entropic force, the
holographic principle, etc..

Critical gravity [Lu and Pope, PRL 106 (2011) 181302]
possess such an AdS vacuum, for which there is only
massless tensor, and the linearized excitations have
vanishing energy.



Related works about thin f (R)-brane

About thin f (R)-brane

1 In 1988, Barrow and Cotsakis found that f (R) gravity
conformally equivalents to the second order Einstein
gravity plus a scalar degree of freedom.

2 BC’s discovery was applied to construct thin f (R)-brane
by M. Parry, S. Pichler, and D. Deeg in 2005
[hep-ph/0502048]

3 For thin branes the Israel junction conditions were
investigated by two groups: Balcerzak etc.
[arXiv:0710.3670] and Dabrowski etc. [arXiv:0711.1150]
in 2007.

4 Bouhmadi-Lopez etc. discussed f (R) brane cosmology
[arXiv:1001.3028] recently.



Related works about thick f (R)-brane

For thick f (R)-branes, the related works are

1 [1] V.I. Afonso, D. Bazeia, R. Menezes, and A.Yu.
Petrov,
“f (R)-Brane”,
PLB 658(2007)71, arXiv:0710.3790.

2 [2] V. Dzhunushaliev, V. Folomeev, B. Kleihaus, and J.
Kunz, “Some thick brane solutions in f (R)-gravity”,
JHEP 1004(2010)130, arXiv:0912.2812.

3 [3] Y. Zhong, Y.-X. Liu and K. Yang,
“Tensor perturbations of f (R)-branes,
Phys. Lett. B699 (2011) 398, arXiv:1010.3478.

4 [4] Y.-X. Liu, Y. Zhong, Z.-H. Zhao and H.-T. Li,
“Domain wall brane in squared curvature gravity”,
JHEP 1106 (2011) 135,arXiv:1104.3188.



Related works about thick f (R)-brane (cont.)

5 [5] H. Liu, H. Lu and Z.-L. Wang,
“f(R) Gravities, Killing Spinor Equations, ”BPS”
Domain Walls and Cosmology”, arXiv:1111.6602.

In Refs. [1,2] f (R) ∝ R + Rn are assumed.

[1] PLB 658(2007)71:

Thick f (R)-brane solutions exist either for constant and
variant bulk curvatures with a background scalar field.

The curvature equals to a constant is only a special case.

For the non-constant curvature case, the solution has a
singular point, which we don’t want to see in thick
braneworld models.



Related works about thick f (R)-brane (cont.)

[2] JHEP 1004(2010)130:

Some numerical thick f (R)-brane solutions exist without
the introducing of background scalar field.

The numerical solution can not be applied to discuss
more complex problems.

There is a problem in localizing fermions on the brane.

[5] H. Liu, H. Lu and Z.-L. Wang, arXiv:1111.6602:

The Killing spinor equations are used to reduce the
fourth-order differential equations of motion to the first
order for both the domain wall and FLRW cosmological
solutions.

“BPS” domain walls that describe the smooth
Randall-Sundrum II were obtained.



The context of the report

1 The thick f (R)-brane solution in f (R) gravity with
f (R) = R + γR2 [4].

2 The analysis of the tensor perturbations of brane metric
in f (R) gravity [3,4].

3 The thin and thick brane solutions in critical gravity.
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f (R) thick brane model

Recently, we have found an analytical thick brane
solution of the action

S =

∫

d4xdy
√−g

[

f (R)− 1

2
gAB(∇Aφ)(∇Bφ)− V (φ)

]

, (1)

where f (R) and V (φ) are given by

f (R) =
1

2κ25
(R + γR2). (2)

V (φ) = λ(φ2 − v2)2 + Λ5, (3)

and the metric has the following from

ds2 = e2A(y)ηµνdx
µdxν + dy2. (4)



f (R) thick brane model (cont.)

The (four-order) field equations are

f (R) + 2fR
(

4A′2 + A′′
)

− 6f ′RA
′ − 2f ′′R = κ25(φ

′2 + 2V ), (5)

− 8fR
(

A′′ + A′2
)

+ 8f ′RA
′ − f (R) = κ25(φ

′2 − 2V ), (6)

4A′φ′ + φ′′ =
∂V

∂φ
. (7)

For the case f (R) = R + γR2,

fR = 1 + 2γR , (8)

f ′R = 2γR ′, (9)

f ′′R = 2γR ′′, (10)

R ′ = −(8A′′′ + 40A′A′′), (11)

R ′′ = −(8A′′′′ + 40A′′2 + 40A′A′′′). (12)



The solution

1 The solution is 1

e2A(y) = cosh−2(ky), (13)

φ(y) = v tanh(ky). (14)

where v = 7
√

3/(29κ2).

2 At the boundary of the extra dimension, i.e., y = ±∞,
the bulk curvature R = −20k2, which means that the
spacetime is asymptotically anti-de Sitter. The
corresponding cosmological constant Λ = −159k2

29κ2
5
.

3 As shown in the following figure, this solution describes
a typical thick braneworld model.

1Y.-X. Liu, Y. Zhong, Z.-H. Zhao and H.-T. Li, JHEP 1106 (2011) 135



The solution
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The stability of the solution

The analysis of a full set of gravitational fluctuations of
the metric is a hard work.

However, the problem can be simplified when one only
considers the transverse and traceless (TT) part of the
metric fluctuation.

Consider the tensor perturbations of the background
metric:

ds2 = e2A(y)(ηµν + hµν)dx
µdxν + dy2, (15)

where hµν = hµν(x
µ, y).

The perturbation of the scalar field δφ(xµ, y) decouples
from the metric perturbations under the transverse and
traceless gauge ∂µh

µ
ν = 0 = ηµνhµν .



The stability of the solution (cont.)

Thus, the perturbed Einstein equation is [ Y. Zhong,
Y.-X. Liu and K. Yang, PLB 699 (2011) 398]

�
(5)hµν =

f ′R
fR

∂yhµν , (16)

For f (R) = R , this equation reduces to the KG equation
for massless spin-2 particles.

By doing the coordinate transformation dz = e−A(y)dy ,
we can rewrite the metric (4) into a conformally flat one:

ds2 = e2A(y(z))(ηµνdx
µdxν + dz2). (17)

Then the perturbed equation (16) reads

[

∂ 2
z +

(

6∂zA+
∂z fR
fR

)

∂z +�
(4)

]

hµν = 0. (18)



The stability of the solution (cont.)

With the KK decomposition hµν = e ipxe−
3
2
A f

−1/2
R εµνh(z),

the above equation is reduced to the following Schrodinger
equation for h(z):

[

−∂2
z + VG (z)

]

h(z) = m2h(z), (19)

where the potential is given by

VG (z) =

(

3

2
A′′ +

9

4

(

A′)2
)

+

(

3A′ f
′
R

fR
− 1

4

f ′2R
f 2R

+
1

2

f ′′R
fR

)

. (20)

One can also factorize the Schrodinger equation (19) as

[

∂z +

(

3A′ +
1

2

f ′R
fR

)][

−∂z +

(

3A′ +
1

2

f ′R
fR

)]

h(z)

= m2h(z), (21)



The stability of the solution (cont.)

which indicates that

there is no gravitational mode with m2 < 0 and therefore
the solution for our model is stable.

The zero mode (m2 = 0)

h0(z) = N0e
3
2
A(y(z))f

1/2
R (R(z)) (22)

is the ground state of the Schrodinger equation (19).

In f (R) gravity, the zero mode depends not only on the
form of the warp factor, but also on the form of f (R).



The localization of gravity

For our model, the warp factor e2A(y) = cosh−2(ky)
becomes e2A(y(z)) = (1 + k2z2)−1 in z coordinate, and the
potential takes the form

VG (z) =
15k2

(

−14 + 37k2z2 + 28k4z4 + 4k6z6
)

4 (5 + 7k2z2 + 2k4z4)2
. (23)

When |z | → ∞, VG (z) → 15
4z2

. The corresponding zero mode
can be normalized as

h0(z) =

√

k

8

√
5 + 2k2z2

(1 + k2z2)5/4
. (24)



The localization of gravity (cont.)
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The existence of the zero mode indicates that the
gravity can be localized on the brane.

The zero mode gives the Newtonian potential U ∝ 1
r
felt

by the massive objects on the brane.

In addition to the zero mode, there is a series of
continues massive KK states, which would give a
correction to the Newtonian potential.
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Thin brane solutions in critical gravity

First, we consider the thin braneworld with co-dimension
one generated in n = (p + 1)-dimensional critical gravity,
where n ≥ 3. The action is

S = Sg + Sb, (25)

where the gravity part Sg and the brane part Sb are given by

Sg =
1

2κ2

∫

dnx
√−g

[

R − (n − 2)Λ0 + αR2 + βRMNR
MN

]

, (26)

Sb =

∫

dn−1x

√

−g (b) V0. (27)

Here g
(b)
µν is the induced metric on the brane, and V0 is the

brane tension.



Thin brane solutions in critical gravity (cont.)

The line-element is assumed as

ds2 = gMNdx
MdxN = e2A(y)ηµνdx

µdxν + dy2, (28)

where e2A is the warp factor with the normalized condition
e2A(0) = 1 on the brane located at y = 0. We introduce the
Z2 symmetry by setting A(y) = A(−y).

The equations of motion are given by

GMN + αE
(1)
MN + βE

(2)
MN = κ2TMN − 1

2
(n − 2)Λ0gMN , (29)

where Tµν = −V0 gµνδ(y), Tnn = 0,

E
(1)
MN = 2R

(

RMN − 1

4
R gMN

)

+ 2gMN�R − 2∇M∇NR ,

E
(2)
MN = 2RPQ(RMPNQ − 1

4
RPQ gMN) +�(RMN +

1

2
R gMN)−∇M∇NR .



Thin brane solutions in critical gravity (cont.)

The junction conditions are determined by

∫ 0+

0−
dy

[

Rµν −
1

2
R gµν + αE (1)

µν + βE (2)
µν

]

= −κ2V0 gµν(y = 0).(30)

At y 6= 0, the explicit forms of the above EOMs are

(p − 1)(Λ0 + pA′2 + 2A′′)− p2(p − 3)[(p + 1)α + β]A′4

− 2p
[

(6p2 − 4p − 6)α+ (p2 + 3p − 6)β
]

A′2A′′

−
[

4pα+ (p + 1)β
](

2A(4) + 4pA′A(3) + 3pA′′2
)

= 0, (31)

(p − 1)
(

Λ0 + pA′2
)

− p2(p − 3)((p + 1)α+ β)A′4

+ p
[

4pα+ (p + 1)β
](

A′′2 − 2A′A(3) − 2pA′2A′′
)

= 0. (32)



Thin brane solutions in critical gravity (cont.)

It is very difficult to find the solution of thin brane for
arbitrary α and β for the above four-order differential
equations and the junction conditions (30).

However, at the critical point 4pα+ (p + 1)β = 0, the
EOMs are reduced toµµµ

4Λ0 + 4pA′2 + p(p − 1)(p − 3)βA′4 = 0, (33)
[

2 + (p − 1)(p − 3)βA′2
]

A′′ = 0, (34)

and the junction condition is

∫ 0+

0−
dy

[

2 + (p − 1)(p − 3)βA′2
]

A′′ = − 2κ2

p − 1
V0. (35)

It can be seen from Eqs. (33) and (34) that the
curvature-squared modifications in the 4D critical gravity
(p = 3 or n = 4) has no effect on the brane solution.



Thin brane solutions in critical gravity (cont.)

In the following, we give the solutions of the above
brane equations for n = 4 and n 6= 4, respectively.



The case n = 4

For this case (p = 3), the solution is

A(y) = −
√

−Λ0

3
|y |, (36)

V0 =
4

κ2

√

−Λ0

3
(> 0) . (37)

Thus, we get a brane with positive tension and the warp
factor exponentially falling from the brane to infinity. The
brane is embedded in a 4D AdS spacetime.

This is nothing but the RS solution in four dimensions.
But the perturbation structure of the system is very different
from the RS one.



The case n 6= 4

For the case n 6= 4, we first give the solution
corresponding to β = 0:

A(RS)(y) = −
√

−Λ0

p
|y|, (38)

V
(RS)
0 =

2(p − 1)

κ2

√

−Λ0

p
(> 0) , (39)

which describes the RS positive tension brane embedded in
an AdS spacetime.

Note that the tension brane is positive.



The case n 6= 4 (cont.)

In critical gravity (β 6= 0), we have two solutions:

A±(y) = −

√

2
[

− p ±
√

p[p − (p − 1)(p − 3)βΛ0]
]

p(p − 1)(p − 3)β
|y|, (40)

V0± = ±p − 1

pκ2

√

−8Λ0p[p − (p − 1)(p − 3)βΛ0]

p ±
√

p[p − (p − 1)(p − 3)βΛ0]
, (41)

which correspond to positive and negative tension branes,
respectively.

For the positive tension brane solution, the constrain
conditions for the parameters are Λ0 < 0 and β > 0, or Λ0 < 0
and p

(p−1)(p−3)Λ0
< β < 0.

For the negative tension case, the constrain conditions
are β < 0 and Λ0 > 0, or β < 0 and p

(p−1)(p−3)β < Λ0 < 0.



The case n 6= 4 (cont.)

Next, we study the limits of the solutions (40) under the
condition of βΛ0 → 0.

For the negative tension brane solution A−(y), the limit
is divergent.

While, for the case of positive tension, A+(y) and V0+

can be expanded as

A+(y) = −
√

−Λ0

p

[

1 +
(p − 1)(p − 3)

8p
βΛ0 +O(βΛ0)

2

]

|y |, (42)

V0+ =
2(p − 1)

κ2

√

−Λ0

p

[

1− 3(p − 1)(p − 3)

8p
βΛ0 +O(βΛ0)

2

]

. (43)

So, when β → 0 but keep Λ0 as a constant, the above
positive tension brane solution (40)-(41) can be reduced to
the RS one (38)-(39), while the negative one cannot.



The case n 6= 4 (cont.)

It is interesting to note that, when Λ0 and β satisfy the
following relation

Λ0 =
p

(p − 1)(p − 3)β
, (44)

the brane tension vanishes and the warp factor is simplified as

A(y) = −
√

−2Λ0

p
|y |. (45)

Obviously, such solution could not appear in standard
Einstein gravity theory. While, in critical gravity theory,
although the naked brane tension is zero, but with the

identification of κ2T
(eff)
µν ≡ −αE

(1)
µν − βE

(2)
µν , there will be a

positive effective brane tension coming from the contribution
of the curvature-squared terms.
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Thick brane solution in critical gravity

Next, we consider the thick brane generated by a scalar
field in n-dimensional critical gravity. The action reads as

S = Sg + Sm, (46)

where Sg is given by (26) and the matter part is

Sm =

∫

dnx
√−g

[

− 1

2
gMN∂Mφ∂Nφ− V (φ)

]

. (47)

The line-element is also assumed as (28) and the scalar field
φ = φ(y) for static branes.



Thick brane solution in critical gravity (cont.)

The EOMs for general α and β are four-order, while they
are reduced to the following two-order ones in critical case:

[

(p − 1)(p − 3)βA′2 − 2
]

A′′ =
2κ2

p − 1
φ′2, (48)

p(p − 1)(p − 3)βA′4 + 4pA′2 + 4Λ0 =
8κ2

p − 1

(1

2
φ′2 − V

)

,(49)

φ′′ + pA′φ′ = Vφ, (50)

where Vφ ≡ dV
dφ .

Note that eq. (50) can be derived from eqs. (49) and
(48). Hence, the above three equations are not independent.

We can solve the above second-order differential
equations by the superpotential method.



Thick brane solution in critical gravity (cont.)

Introducing the superpotential function W (φ), the
EOMs (49)-(50) can be solved by the first-order equations:

A′ = − κ2

p − 1
W , (51)

φ′ =
(

1− hW 2
)

Wφ, (52)

V =
1

2

(

1− hW 2
)2

W 2
φ − p − 1

2κ2
Λ0

− pκ2

2(p − 1)
W 2

(

1− 1

2
hW 2

)

, (53)

where h = − p−3
2(p−1)βκ

4.
Again, the parameter β has no effect on the Einstein

equations in four-dimensional case.



Thick brane solution in critical gravity (cont.)

The energy density ρ(y) of the system is given by

ρ(y) = −TMN uMuN = −T 0
0 =

1

2
φ′2 + V , (54)

where uM = (E−A, 0, 0, 0, 0).
For brane solutions, we require that the energy density

on the boundaries of the extra dimension y should vanish:

ρ(|y | → ∞) → 0, (55)

with which the naked cosmological constant Λ0 will be
determined.



The case n = 4

For n = 4, the EOMs read

A′ = −κ2

2
W , (56)

φ′ = Wφ, (57)

V = −3

4
κ2W 2 +

1

2
W 2

φ − Λ0

κ2
. (58)

In order for the scalar to get a kink solution, the potential
V (φ) should at least has two finite vacua. And the usual φ4

potential is a natural choice.
However, with the superpotential method, the φ4

potential derived from the superpotential W (φ) = aφ+ bφ2

can not support kink solution for the scalar.



The case n = 4 (cont.)

Hence, we turn to use another superpotential

W (φ) = a
(

φ− φ3

3v2
0

)

, which corresponds to the φ6 model:

V (φ) = − a2κ2

12v40

(

φ2 − v20
)2 [

φ2 − 2(3κ−2 + 2v20 )
]

(59)

with the two vacua are at φ± = ±v0 (the extreme points of
the superpotential W (φ)).

The solution is found to be

φ(y) = v0 tanh(ky), (60)

e2A(y) =
[

cosh(ky)
]− 2

3
κ2v2

0 exp
(

− 1

6
κ2v20 tanh

2(ky)
)

, (61)

Λ0 = −1

3
a2v20κ

4 < 0 , (62)

where k = a/v0.



The case n = 4 (cont.)

The scalar curvature and the energy density are

R(y) =
1

3
a2κ2

[

κ2v20 sech
6(ky) + 3(κ2v20 + 3)sech4(ky)− 4κ2v20

]

,(63)

ρ(y) = a2
[

κ2v20
12

(

3 + sech2(ky)
)

+ 1

]

sech4(ky). (64)

The energy density vanishes at the boundaries:

ρ(|y | → ∞) ∝ e−4k|y | → 0. (65)

And the bulk curvature R(|y | → ∞) → −4
3a

2v20κ
4 = 4Λ0,

which means that the spacetime is asymptotically AdS. The
corresponding cosmological constant is just the naked one:
Λ = Λ0.



The case n = 4 (cont.)

As shown in the following figure, the above solution
describes a typical thick braneworld embedded in an AdS
spacetime.
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Figure: The shapes of the scalar curvature R(y) and the energy density
ρ(y) for the case n = 4.



The case n 6= 4

For general n 6= 4 (n ≥ 5 and n = 3) and β 6= 0, h 6= 0 and
so we have chance to get the usual φ4 potential by setting
W = aφ. The potential is

V (φ) = b(φ2 − v20 )
2, (66)

where

b =
p − 3

8(p − 1)2
[

(p − 3)a2κ2β2 − pβ
]

a4κ6, (67)

v20 = − 2(p − 1)

(p − 3)a2κ4β
. (68)

When (p − 3)β > 0, the above V (φ) (66) is not a usual
φ4 potential with two degenerate vacua since v20 < 0. Such
potential does not support a thick brane solution.



The case n 6= 4 (cont.)

So we consider the case of (p − 3)β < 0, namely,

p > 3 and β < 0, or

p = 2 and β > 0,

for which v20 > 0, b > 0, so the potential V (φ) = b(φ2 − v20 )
2

has two vacua at φ± = ±v0. The solution is

φ(y) = v0 tanh(ky), (69)

e2A(y) =
[

cosh(ky)
]− 2

p−1
κ2v2

0 , (70)

Λ0 =
p

(p − 1)(p − 3)β
< 0 , (71)

where k = a/v0 =
√

− (p−3)
2(p−1)κ

4β. This solution stands for a

thick flat brane with the energy density given by

ρ(y) =
1

2
v20

(

k2 + 2bv20
)

sech4(ky). (72)



The case n 6= 4 (cont.)

On the boundaries |y | → ∞,

A(|y | → ∞) → −
√

−2Λ0

p
|y |. (73)

So the asymptotic solution (73) with the relation (71) (
Λ0 =

p
(p−1)(p−3)β ) is in accord with the thin brane solution

(44)-(45) given in previous section.
From the asymptotic solution (73), we have

RMN(|y | → ∞) → 2Λ0gMN = ΛgMN .
Therefore, the thick flat brane is embedded in an AdS

spacetime with the effective cosmological constant Λ = 2Λ0.



The case n 6= 4 (cont.)

In n(6= 4)-dimensional critical gravity without matter
fields, there are two disconnect AdS vacua with the
cosmological constants determined by Λ0 = Λ− (p−1)(p−3)β

4p Λ2

2.
In the case here with matter field, because of the

relation Λ0 =
p

(p−1)(p−3)β , which is caused by the condition

(55) ρ(|y | → ∞) → 0, the two asymptotic AdS vacua become
the same one with the cosmological constant Λ = 2Λ0.

2H. Lu and C. N. Pope, Critical Gravity in Four Dimensions, Phys. Rev.
Lett. 106 (2011) 181302 [arXiv:1101.1971[hep-th]].



The tensor fluctuation of the metric

The tensor perturbation of the background metric is

ds2 = e2A(y)(ηµν + h̄µν)dx
µdxν + dy2. (74)

The fluctuation equations in TT gauge are given by

G
(L)
MN +

1

2
(n − 2)Λ0e

2Ah̄µν + αE
(1)(L)
MN + βE

(2)(L)
MN = 0, (75)

where the fluctuation of G
(1)
µν is

G (L)
µν = −1

2

[

�
(4)h̄µν + e2Ah̄′′µν + 4A′e2Ah̄′µν + e2A(4A′2 + A′′)h̄µν

]

,(76)



The tensor fluctuation of the metric (cont.)

and the fluctuations of E
(1)
µν and E

(2)
µν read

E (1)(L)
µν = 4(2A′′ + 5A′2)�(4)h̄µν + 4(2A′′ + 5A′2)e2Ah̄′′µν

+8e2A(A′′′ + 9A′A′′ + 10A′3)h̄′µν

−8e2A(2A′′′′ + 16A′A′′′ + 12A′′2 + 37A′2A′′ + 5A′4)h̄µν ,

E (2)(L)
µν = −1

2
e−2A

�
(4)

�
(4)h̄µν −�

(4)h̄′′µν

−2A′
�

(4)h̄′µν + 2(A′′ + 3A′2)�(4)h̄µν

−1

2
e2Ah̄′′′′µν − 4e2AA′h̄′′′µν − 4e2AA′2h̄′′µν

+e2A(40A′3 + 16A′A′′ + 2A′′′)h̄′µν

−e2A(5A′′′′ + 40A′A′′′ + 30A′′2 − 72A′4 + 20A′′A′2)h̄µν .

It is unclear whether the tensor perturbation of the brane
metric is stable.



Summary

For f (R) gravity theory:

In the frame of fourth-order f (R) gravity theory, we have
found a smooth thick brane solution.

The brane is generated by a background scalar field with
the usual φ4 potential.

The tensor perturbation of the metric solution is stable.

The 4D massless graviton can be localized on such
brane.

By introducing the Yukawa coupling between the
fermion and the background scalar field, the fermions
can be trapped on the brane.



Summary

For critical gravity theory:

The curvature-squared modifications in the 4D critical
gravity has no effect on the brane solution. So the brane
solutions are same with the RS ones in four dimensions

In other dimensions, the thin brane solutions are also
similar to the RS ones. But the brane tension can be
positive, negative or vanishing in some conditions.

The thick branes are also similar to the RS ones. They
are embedded in AdS space-times with effective
cosmological constant Λ = Λ0 and Λ = 2Λ0 for n = 4 and
n 6= 4, respectively.

The fluctuation equations of the brane solution are very
different for the critical gravity (four-order) and the
standard Einstein gravity (two-order).



Open issues

There are some questions should be addressed:

It is unclear whether the scalar perturbations of the
brane metric are stable in F (R) gravity with matter
fields.

It is unclear whether the tensor and scalar perturbations
of the brane metric are stable in critical gravity.

It is not known whether the four-dimensional Newton’s
Law can be recovered on the brane in critical gravity.

The reduced Einstein equations on the branes may be
applied to cosmology.



Thanks!


