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Symmetries of planar N = 4 sYM
and Q̄ equations



planar N = 4 sYM: Harmonic oscillator of QFT

1. Solvable 4-dimensional QFT
2. New mathematical structures
3. Fruitful playground for Feynman loop integrals
4. SUSY cousin of QCD
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Field Content and Superamplitude

Simplicity of field content:

• 2 gauge bosons with h = ±1: |a⟩+1, |a⟩−1ABCD,
• 8 fermions with h = ±1/2: |a⟩+1/2A , |a⟩−1/2BCD ,
• 6 scalars: |a⟩0AB.

Related by SUSY generators Qα
A and Q̃α̇

A ,

grouped into a single supermultiplet:

|a⟩ := exp(Q̃A · λ̃ · ηA)|a⟩+

= |a⟩+ + ηA|a⟩1/2A + · · ·+ 1
4!η

AηBηCηD|a⟩−ABCD

We are considering the scattering of n supermultiplets:

An({pi, ηi}) =
δ4(P)δ8(Q)

⟨12⟩⟨23⟩ · · · ⟨n1⟩
(
An,0({pi}) +An,1({pi, ηi}) + · · ·

)
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Dual super conformal symmetries and notations

Amplitudes in planar N = 4 sYM enjoy not only superconformal
symmetries, but also dual superconformal symmetries,
[Drummond,Henn,Smirnov,Sokatchev] which is manifest in a chiral
superspace cooidnates (x, θ)

xαα̇i − xαα̇i+1 = λα
i λ̃

α̇
i = pµi σ

αα̇
µ , θαAi − θαAi+1 = λα

i η
A
i

planar poles: (pi + pi+1 + · · ·+ pj−1)2 = x2ij

In dual space, an amplitude become a light-like
polygonal Wilson loop which is invariant under
conformal transformation:

I(xαα̇i ) =
xαα̇i
x2i

D(xαα̇i ) = txαα̇i
x1

x2

x3

x4

x5p1

p2 p3

p4

p5
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Symmetry generator

Dual superconformal symmetry SL(4|4) is linearly realized in terms
of (super-)momentum twistor

Zi = (Zai |χAi ) := (λα
i , xαα̇i λiα|θαAi λiα). [Hodges]

For funture convenience, we introduce two basic invariants:

Plücker coordinate : ⟨ijkl⟩ := εabcdZai Z
b
j Z

c
kZ
d
l ,

(
x2ij =

⟨i−1 i j−1 j⟩
⟨i−1 i⟩⟨j−1 j⟩

)
R invariant : [i j k lm] :=

δ0|4(χAi ⟨jklm⟩+ cyclic)
⟨ijkl⟩⟨jklm⟩⟨klmi⟩⟨lmij⟩⟨mijk⟩

In terms of moment twistors, the generators of dual superconformal
symmetries can be written as

GIJ =
∑
i

Z J
i
∂

∂Z I
i
.

Tree amplitudes satisfy

GRtreen = 0 Atreen =
δ4(P)δ8(Q)
⟨12⟩ · · · ⟨n1⟩

Rtreen
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General structure of amplitude in planar N = 4 sYM

• The dual conformal invariance of amplitudes is broken at the
loop-level due to the infrared divergence.

• This symmtery can be restored by subtracting the infrared part
ABDSn [Bern, Dixon, Smirnov].

An = ABDSn︸︷︷︸
IR

×

finite functions of dual conformal invariants︷ ︸︸ ︷
exp(Rn)︸ ︷︷ ︸
Remainder
function

×
(
1+ PNMHV

n + · · ·+ PMHV
n

)
︸ ︷︷ ︸

helicity structure

For example, R6 will be a function of u = ⟨1234⟩⟨4561⟩
⟨1245⟩⟨3461⟩ , v =

⟨3456⟩⟨6123⟩
⟨3461⟩⟨5623⟩ ,

w = ⟨5612⟩⟨2345⟩
⟨5623⟩⟨1245⟩ .

We are interested in the function R(2)8,1 =
(
exp(R8)PNMHV

8
)(2)

In the following, we will denote exp(Rn)PNkMHV
n by Rn,k
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Why octagons?

The cut structures of L-loop hexagon and heptagon amplitudes are
described by polylogarithms [Goncharov] of weight 2L which satisfy

dF(2L) =
∑
β

F(2L−1)β d log sβ

This define the symbol of F:

S(F2L) :=
∑
β

S(F(2L−1)β )⊗ sβ

where sβ are called symbol letters.

Some example:

S(log x log y) = x⊗ y+ y⊗ x, S(Li2(1− z)) = −
(
z⊗ 1− z

)
The first entries of symbol indicate the locus of cuts of F
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Why octagons?

The cut structures of L-loop hexagon and heptagon amplitudes are
described by polylogarithms [Goncharov] of weight 2L which satisfy

dF(2L) =
∑
β

F(2L−1)β d log sβ

This define the symbol of F:

S(F2L) :=
∑
β

S(F(2L−1)β )⊗ sβ

where sβ are called symbol letters.

The alphabets (collection of all possible letters) for hexagon and
heptagon are highly constrained by the corresponding cluster
algebras G4,6 and G4,7 which consist of 9 and 42 variables,
respectively.
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Why octagons

Legs

Loops

NMHV
MHV

∞...
8
7
6
5
4

∞. . .7654321

[Bern,Caron-Huot, Dixon, Drummond,…]

For more than seven particles, symbol alphabets are not well
understood

• G4,n≥8 are infinite-type cluster algebras.
• Square roots appear in symbol letters even at one-loop in
N2MHV amplitudes
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Dual superconformal anomaly and Q̄ equations

BDS-normalized amplitudes Rn,k are dual conformal invariants, but
Rn,k are not dual superconformal invariants, they have anomalies
under the symmetries generated by

Q̄Aa =
∑
i

χAi
∂

∂Zai

An OPE analysis tell us the action of Q̄ on Rn,k will yield an integral
over higher-point amplitudes [Caron-Huot, He]

Q̄AaRn,k =
Γcusp
4

∫ τ=∞

τ=0

∮
ϵ=0

(
d2|3Zn+1

)A
a
[Rn+1,k+1 − Rn,kRtreen+1,1] + cyclic

where the particle n+1 is added in a collinear limit

Zn+1 = Zn − ϵZn−1 +
⟨n−1n 2 3⟩
⟨n 1 2 3⟩ ϵτZ1 +

⟨n−2n−1n 1⟩
⟨n−2n−1 2 1⟩ ϵ

2Z2
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Dual superconformal anomaly and Q̄ equations

BDS-normalized amplitudes Rn,k are dual conformal invariants, but
Rn,k are not dual superconformal invariants, they have anomalies
under the symmetries generated by

Q̄Aa =
∑
i

χAi
∂

∂Zai

Perturbatively, this equation becomes

Q̄AaR
(L)
n,k =

∫ τ=∞

τ=0

∮
ϵ=0

(
d2|3Zn+1

)A
a
[R(L−1)n+1,k+1 − R(L−1)n,k Rtreen+1,1] + cyclic

where the particle n+1 is added in a collinear limit

Zn+1 = Zn − ϵZn−1 +
⟨n−1n 2 3⟩
⟨n 1 2 3⟩︸ ︷︷ ︸

C

ϵτZ1 +
⟨n−2n−1n 1⟩
⟨n−2n−1 2 1⟩︸ ︷︷ ︸

C′

ϵ2Z2
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The integral measure

The basic operation
∫
(d2|3Zn+1)

A
a consist of bosonic part and

fermionic part:

(
d2|3Zn+1

)A
a


εabcdZbn+1dZcn+1dZdn+1 = C(n̄)aϵdϵdτ (Bosonic Part)

(d3χn+1)A (Fermionic Part)

where (n̄)a := εabcdZbn−1ZcnZd1
The order of performing integral:

• Fermionic integral (d3χn+1)A

• The substitution Zn+1 → Zn − ϵZn−1 + CϵτZ1 + C′ϵ2Z2

• Take the residue
∮
ϵ=0 dϵ (Collinear limit)

• 1-D integral
∫∞
0 dτ (Real integral)

10



Structures of Loop amplitudes
and action of Q̄



Poles and Cuts

In general, the BDS-normalized amplitudes Rn,k can be written as

R(L)n,k =
∑
α

Yαn,kF(2L)α

where Yn,k are Yangian invariants1 (which means Q̄Yn,k = 0)

• Yn,k bear the pole structure of amplitudes

• Tree amplitudes Rtreen,k consist of Yn,k only.
one example Rtreen,1 =

∑
1<i<j[1, i, i+1, j, j+1]

• Yn,k are determined by Yangian symmetries only. (Independent
of loop-integral)

1Objects are invariant under both superconformal and dual superconformal
symmetries.
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one example Rtreen,1 =

∑
1<i<j[1, i, i+1, j, j+1]

• Yn,k are determined by Yangian symmetries only. (Independent
of loop-integral)
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1Objects are invariant under both superconformal and dual superconformal
symmetries.
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Poles and Cuts

In general, the BDS-normalized amplitudes Rn,k can be written as

R(L)n,k =
∑
α

Yαn,kF(2L)α

where Yn,k are Yangian invariantsObjects are invariant under both
superconformal and dual superconformal symmetries. (which means
Q̄Yn,k = 0)

• Yn,k bear the pole structure of amplitudes
• Tree amplitudes Rtreen,k consist of Yn,k only.
one example Rtreen,1 =

∑
1<i<j[1, i, i+1, j, j+1]

• Yn,k are determined by Yangian symmetries only. (Independent
of loop-integral)

Yn,0 = 1, Yn,1 := {[i, j, k, l,m]}

F are transcendental functions which bear the cut structure of
amplitudes and are expected to be generalized polylogarithms of
weight 2L at L-loop level for MHV and NMHV cases.
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Q̄ as Differenial

Due to dual conformal invariance(DCI), F are functions of cross ratios
of Plücker coordinates. Since F are expected to be generalized
polylogarithms, they satisfy

dF(2L) =
∑
β

F(2L−1)β d log sβ
(

d :=
∑
i

dZi
∂

∂Zi

)
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Q̄ as Differenial

Due to dual conformal invariance(DCI), F are functions of cross ratios
of Plücker coordinates. Since F are expected to be generalized
polylogarithms, they satisfy

dF(2L) =
∑
β

F(2L−1)β d log sβ
(

d :=
∑
i

dZi
∂

∂Zi

)

Thus, the action of Q̄ on R(L)n,k gives

Q̄R(L)n,k =
∑
α,β

Yαn,kF
(2L−1)
α,β Q̄ log sα,β

(
Q̄ :=

∑
i

χi
∂

∂Zi

)

where sα,β are some DCI of Plücker coordinates and referred to the
last entries of amplitudes
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Kernel of Q̄

Q̄-equation can not determine N2MHV amplitudes on its own due to
the non-trivial dependence of its kernel on k:

• For k = 0, the kernel of Q̄ is trivial

• For k = 1, it’s non-trivial, but has no space of DCI functions
• For k ≥ 2, it’s non-trivial, and it indeed contain DCI functions.
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Q̄-equation can not determine N2MHV amplitudes on its own due to
the non-trivial dependence of its kernel on k:

• For k = 0, the kernel of Q̄ is trivial
• For k = 1, it’s non-trivial, since

Q̄[1, 2, 3, 4, 5] log ⟨1234⟩
⟨2345⟩ = [1, 2, 3, 4, 5]Q̄ log

⟨1234⟩
⟨2345⟩

= (3̄)a[1, 2, 3, 4, 5]
⟨1234⟩χA5 + cyclic
⟨2345⟩⟨2341⟩

• For k = 1, it’s non-trivial, but has no space of DCI functions
• For k ≥ 2, it’s non-trivial, and it indeed contain DCI functions.
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RHS of Q̄ equations

Now let us consider the RHS of Q̄ equation:∫ τ=∞

τ=0

∮
ϵ=0

(
d2|3Zn+1

)A
a
[R(L−1)n+1,k+1 − R(L−1)n,k Rtreen+1,1︸ ︷︷ ︸] + cyclic
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RHS of Q̄ equations

Now let us consider the RHS of Q̄ equation:∫ τ=∞

τ=0

∮
ϵ=0

(
d2|3Zn+1

)A
a
[R(L−1)n+1,k+1 − R(L−1)n,k Rtreen+1,1︸ ︷︷ ︸

trivial

] + cyclic

The first step:

R(L−1)n+1,k+1

{
Yn+1,k+1
F(2L−2)
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RHS of Q̄ equations

Now let us consider the RHS of Q̄ equation:∫ τ=∞

τ=0

∮
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(
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)A
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F(2L−2)
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RHS of Q̄ equations

Now let us consider the RHS of Q̄ equation:∫ τ=∞

τ=0

∮
ϵ=0

(
d2|3Zn+1

)A
a
[R(L−1)n+1,k+1 − R(L−1)n,k Rtreen+1,1︸ ︷︷ ︸

trivial
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The first step:

R(L−1)n+1,k+1

Yn+1,k+1
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∮
ϵ=0 ϵdϵd3χn+1−−−−−−−−−−−−→

∑
I,J Y

I,J
n,kQ̄ log ⟨n̄I⟩

⟨n̄J⟩d log fI,J(τ)

F(2L−2) Zn+1→Zn−ϵZn−1+···−−−−−−−−−−−−→ F(2L−2)(τ, ϵ → 0)

The second step:∫ ∞

0
d log fI,J(τ)F(2L−2)(τ, ϵ → 0) = F(2L−1)

where fI,J(τ) are rational functions of τ (with some exceptions
discussed later)
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RHS of Q̄ equations

Now let us consider the RHS of Q̄ equation:∫ τ=∞

τ=0

∮
ϵ=0

(
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)A
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∑
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I,J
n,kQ̄ log ⟨n̄I⟩

⟨n̄J⟩d log fI,J(τ)

F(2L−2) Zn+1→Zn−ϵZn−1+···−−−−−−−−−−−−→ F(2L−2)(τ, ϵ → 0)

The operation C(n̄)a
∮
ϵ=0 ϵdϵd

3χn+1 is independent of loop order
which gives last entry conditions on amplitudes
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Last entry conditions

For NMHV yangian invariants [i j k lm], the operation gives either 0 or

Q̄ log
⟨n̄i⟩
⟨n̄j⟩

Then cyclic permutations gives the well-known MHV last entries ⟨̄ıj⟩
[Caron-Huot]
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Last entry conditions

The N2MHV Yangian invariants have already classified.
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka]

They are

Y(2)1 = [1, 2, (23) ∩ (456), (234) ∩ (56), 6][2, 3, 4, 5, 6]

Y(2)2 = [1, 2, (34) ∩ (567), (345) ∩ (67), 7][3, 4, 5, 6, 7]

Y(2)3 = [1, 2, 3, (345) ∩ (67), 7][3, 4, 5, 6, 7]

Y(2)4 = [1, 2, 3, (456) ∩ (78), 8][4, 5, 6, 7, 8]

Y(2)5 = [1, 2, 3, 4, 8][4, 5, 6, 7, 8]

Y(2)6 = [1, 2, 3, (45) ∩ (678), 8][4, 5, 6, 7, 8]

Y(2)7 = [1, 2, 3, (45) ∩ (678), (456) ∩ (78)][4, 5, 6, 7, 8]

Y(2)8 = [1, 2, 3, 4, (456) ∩ (78)][4, 5, 6, 7, 8]

Y(2)9 = [1, 2, 3, 4, 9][5, 6, 7, 8, 9]

Y(2)10 = [1, 2, 3, 4, (567) ∩ (89)][5, 6, 7, 8, 9]

Y(2)11 = [1, 2, 3, 4, (56) ∩ (789)][5, 6, 7, 8, 9]

Y(2)12 = φ[1, 2, 3, (45) ∩ (789), (46) ∩ (789)][(45) ∩ (123), (46) ∩ (123), 7, 8, 9]

Y(2)13 = [1, 2, 3, 4, 5][6, 7, 8, 9, 10]

Y(2)14 = ψ[A, 1, 2, 3, 4][B, 5, 6, 7, 8]

where

(ij) ∩ (klm) = Zi⟨j k lm⟩ − Zj⟨i k lm⟩
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Last entry conditions

For NMHV yangian invariants [i j k lm], the operation gives either 0 or

Q̄ log
⟨n̄i⟩
⟨n̄j⟩

Then cyclic permutations gives the well-known MHV last entries ⟨̄ıj⟩
[Caron-Huot]

For N2MHV yangian invariants, this operation gives

[i j k lm]Q̄ log
⟨n̄I⟩
⟨n̄J⟩

where I, J can generally be intersections of momentum twistors of
the form (ij) ∩ (klm)
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Two-loop NMHV octagons



Input

To compute the 2-loop NMHV octagon, we need the input of the
one-loop N2MHV BDS-normalized amplitude R(1)9,2, which can be
obtained from the chiral box expansion [Bourjaily, Caron-Huot,
Trnka]:

R(1)n+1,2 =
∑

a<b<c<d

(fa,b,c,d − Rtreen+1,2fMHVa,b,c,d)Ifina,b,c,d

where

• fa,b,c,d are linear combinations of N2MHV yangian invariants
• fMHVa,b,c,d are either 1 or 0

• I fina,b,c,d denote the finite part of DCI-regulated box integrals

16



Four-mass box

The most generic term in chiral box expansion arise form four-mass

box:

a

b−1
b

c−1c

d−1
d

a−1
·· ·

· ··

···

·· ·


x2ab :=

⟨a−1 a b−1 b⟩
⟨a−1 a⟩⟨b−1 b⟩

= (pa + · · · + pb−1)
2
,

u =
x2adx

2
bc

x2acx2bd
= zz̄, v =

x2abx
2
cd

x2acx2bd
= (1− z)(1− z̄),

∆abcd =
√

(1− u− v)2 − 4uv

For such a box,

fa,b,c,d =
1− u− v±∆

2∆ [α±,b−1,b, c− 1, c][δ±,d−1,d,a−1,a]

Ifina,b,c,d = Li2(z)− Li2(z̄) +
1
2 log(zz̄) log

1− z
1− z̄

where α± and δ± are two solutions of Schubert problem
α = (a−1a) ∩ (dd−1 γ), γ = (c−1 c) ∩ (bb−1α)
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Four-mass box

The most generic term in chiral box expansion arise form four-mass

box:

a
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b
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d
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·· ·

· ··

···

·· ·
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u =
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= zz̄, v =

x2abx
2
cd
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= (1− z)(1− z̄),

∆abcd =
√

(1− u− v)2 − 4uv

For such a box,

fa,b,c,d =
1− u− v±∆

2∆ [α±,b−1,b, c− 1, c][δ±,d−1,d,a−1,a]

Ifina,b,c,d = Li2(z)− Li2(z̄) +
1
2 log(zz̄) log

1− z
1− z̄

where α± and δ± are two solutions of Schubert problem
α = (a−1a) ∩ (dd−1 γ), γ = (c−1 c) ∩ (bb−1α)

The square root will disappear when one mass corner become
massless, e.g. b = a+1
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Rationalize the square root ∆

Now it is difficult to perform τ-integral for four-mass box coefficients
fa,b,c,d due to the appearance of square root ∆ whose collinear limit
∆(τ) may be not a rational function.
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Rationalize the square root ∆

Now it is difficult to perform τ-integral for four-mass box coefficients
fa,b,c,d due to the appearance of square root ∆ whose collinear limit
∆(τ) may be not a rational function.

However, ∆(τ) can be rationlized by a variable substitution, since ∆2

is only a quadratic polynomial of τ .

This is just the classic problem to find a rational parameterization of
a quadratic curve y2 = x2 + ax+ b, the key point is to find rational
points of the quadratic.

Example: For the quadratic y2 = x2 + 1, the rational parameterization

(x, y) =
(

2t
1− t2 ,

1+ t2
1− t2

)

is obtained by inserting y− 1 = (x− 0)t.
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Example: f2,4,6,9

Let’s focus on the octagon (n=8), for which nine 9-point four-mass
boxes is needed. It is easy to see only

f2,4,7,9, f2,5,7,9, f2,4,6,9, f3,5,7,9

can potentially contribute square root. Where f2,4,6,9 and f3,5,7,9
indeed contribute two square roots ∆1,3,5,7 and ∆2,4,6,8 respectively.

∆2,4,6,9(τ) owns τ = ∞ as its rational point. Thus, we can find the
following substitution

τ =
ρ(t− z2,4,6,8)(t− z̄2,4,6,8)

t− σ

where ρ and σ are some cross ratios of Plücker coordinates.

The square root in z2,4,6,8 enters the final result via the limit of
integration

∫∞
0 dτ →

∫∞
z dtdτ/dt
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Symbol alphabet for 2-loop NMHV octagons

At the end, we obtain the symbol of 2-loop NMHV octagons as

S(R(2)8,1) =
∑

1≤i<j<k<l<8

[i, j, k, l, 8]Si,j,k,l

where Si,j,k,l are symbols of weight 4. We find 18 algebraic letters
which are generated by cyclic shifts the following 7 seeds

x∗ − z
x∗ − z̄


xa = ⟨1(52)(34)(78)⟩⟨3456⟩

⟨1345⟩⟨1256⟩⟨3478⟩ , xb = xa|5↔6 ,

xc = ⟨1378⟩⟨3456⟩
⟨1356⟩⟨3478⟩ , xd = xc|3↔4 , xe = ⟨187(34)∩(256)⟩

⟨1256⟩⟨3478⟩

xf = 1, xg = 0, z = z2,4,6,8

Further more, all algebraic letters always enter the symbol in the
following combinations(

u⊗ 1− z
1− z̄ + v⊗ z̄

z

)
︸ ︷︷ ︸

symbol of 4-mass box

⊗x∗ − z
x∗ − z̄
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New kind of cuts

Besides 18 algebraic ones, we find 180 rational letters which are
contained in the prediction from Laudau equations [Prlina, Spradlin,
Stankowicz, Stanojevic].

The algebraic letters can be rewritten as (a±
√
a2 − 4b), where (a,b)

are polynomials of Plücker coordinates. Such letters indicate two
kinds of cuts. One arise from the discriminant a2 − 4b, which are
square root branch points from Landau equations. The other arise
from b→ 0 which is the same as the cut of log b. Thus the branch
points b = 0 correspond to zero locus of some rational letters.
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Comparison with Feynman integral computation

The component χ1χ3χ5χ7 of two-loop NMHV octagon is completely
free of algebraic letters, which is given by the coefficient of [1,3,5,7,8]
in our basis. This component correspond to the difference of two
Feynman integrals [Bourjaily, et al]

8 1

2

345

6

7

N1N1 −

2 3

4

567

8

1

N1N1


,

each of which depend on many algebraic roots.
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The component χ1χ3χ5χ7 of two-loop NMHV octagon is completely
free of algebraic letters, which is given by the coefficient of [1,3,5,7,8]
in our basis. This component correspond to the difference of two
Feynman integrals [Bourjaily, et al]

8 1

2

345

6

7

N1N1 −

2 3

4

567

8

1

N1N1


,

each of which depend on many algebraic roots.

The symbol size ∼ 2.8× 104 terms
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Outlook



Summary

• Three-loop MHV octagon.
• The connection to cluster algebra, tropical Grassmannian
• Q̄ equations for individual integral and other theories.
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Thank You



Questions?
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