Two-loop NMHV octagons from \bar{Q} equations

Based on 1911.01290 with Song He and Zhenjie Li

Chi Zhang

Institute of Theoretical Physics, CAS

Table of contents

- 1. Symmetries of planar $\mathcal{N}=4$ sYM and \bar{Q} equations
- 2. Structures of Loop amplitudes and action of \bar{Q}
- 3. Two-loop NMHV octagons
- 4. Outlook

Symmetries of planar $\mathcal{N}=4$ sYM and $\bar{\mathbb{Q}}$ equations

planar $\mathcal{N}=4$ sYM: Harmonic oscillator of QFT

- 1. Solvable 4-dimensional QFT
- 2. New mathematical structures
- 3. Fruitful playground for Feynman loop integrals
- 4. SUSY cousin of QCD

Field Content and Superamplitude

Simplicity of field content:

- 2 gauge bosons with $h = \pm 1$: $|a\rangle^{+1}$, $|a\rangle_{ABCD}$
- 8 fermions with $h=\pm 1/2$: $|a\rangle_A^{+1/2}, |a\rangle_{BCD}^{-1/2}$,
- 6 scalars: $|a\rangle_{AB}^{0}$.

Related by SUSY generators $\mathcal{Q}^{lpha}_{\!A}$ and $\widetilde{\mathcal{Q}}^{\dot{lpha}}_{\!A}$,

grouped into a single supermultiplet:

$$\begin{aligned} |a\rangle &:= \exp(\widetilde{\mathcal{Q}}_A \cdot \widetilde{\lambda} \cdot \eta^A) |a\rangle^+ \\ &= |a\rangle^+ + \eta^A |a\rangle_A^{1/2} + \dots + \frac{1}{4!} \eta^A \eta^B \eta^C \eta^D |a\rangle_{ABCD}^- \end{aligned}$$

We are considering the scattering of *n* supermultiplets:

$$A_n(\lbrace p_i, \eta_i \rbrace) = \frac{\delta^4(P)\delta^8(Q)}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle} (A_{n,0}(\lbrace p_i \rbrace) + A_{n,1}(\lbrace p_i, \eta_i \rbrace) + \cdots)$$

3

Dual super conformal symmetries and notations

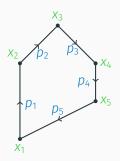
Amplitudes in planar $\mathcal{N}=4$ sYM enjoy not only superconformal symmetries, but also dual superconformal symmetries, [Drummond,Henn,Smirnov,Sokatchev] which is manifest in a chiral superspace cooldnates (x,θ)

$$\begin{aligned} x_i^{\alpha\dot{\alpha}} - x_{i+1}^{\alpha\dot{\alpha}} &= \lambda_i^{\alpha} \widetilde{\lambda}_i^{\dot{\alpha}} = p_i^{\mu} \sigma_{\mu}^{\alpha\dot{\alpha}}, \qquad \theta_i^{\alpha A} - \theta_{i+1}^{\alpha A} &= \lambda_i^{\alpha} \eta_i^A \\ \text{planar poles:} \quad (p_i + p_{i+1} + \dots + p_{j-1})^2 &= x_{ij}^2 \end{aligned}$$

In dual space, an amplitude become a light-like polygonal Wilson loop which is invariant under conformal transformation:

$$I(x_i^{\alpha\dot{\alpha}}) = \frac{x_i^{\alpha\dot{\alpha}}}{x_i^2}$$

$$D(x_i^{\alpha\dot{\alpha}}) = tx_i^{\alpha\dot{\alpha}}$$



Symmetry generator

Dual superconformal symmetry SL(4|4) is linearly realized in terms of (super-)momentum twistor

$$\mathcal{Z}_i = (Z_i^a | \chi_i^A) := (\lambda_i^\alpha, \chi_i^{\alpha \dot{\alpha}} \lambda_{i\alpha} | \theta_i^{\alpha A} \lambda_{i\alpha}).$$
 [Hodges]

For funture convenience, we introduce two basic invariants:

Plücker coordinate:
$$\langle ijkl \rangle := \varepsilon_{abcd} Z_i^a Z_j^b Z_k^c Z_l^d$$
, $\left(x_{ij}^2 = \frac{\langle i-1 \, ij-1j \rangle}{\langle i-1 \, ij \rangle \langle j-1j \rangle} \right)$

R invariant :
$$[ijklm] := \frac{\delta^{0|4}(\chi_i^A \langle jklm \rangle + \text{cyclic})}{\langle ijkl \rangle \langle jklm \rangle \langle klmi \rangle \langle lmij \rangle \langle mijk \rangle}$$

In terms of moment twistors, the generators of dual superconformal symmetries can be written as

$$G_I^J = \sum_i \mathcal{Z}_i^J \frac{\partial}{\partial \mathcal{Z}_i^J} .$$

Tree amplitudes satisfy

$$GR_n^{tree} = 0$$
 $A_n^{tree} = \frac{\delta^4(P)\delta^8(Q)}{\langle 12 \rangle \cdots \langle n1 \rangle} R_n^{tree}$

5

General structure of amplitude in planar $\mathcal{N}=4$ sYM

- The dual conformal invariance of amplitudes is broken at the loop-level due to the infrared divergence.
- This symmtery can be restored by subtracting the infrared part A_n^{BDS} [Bern, Dixon, Smirnov].

$$A_n = \underbrace{A_n^{\text{BDS}}}_{IR} \times \underbrace{\exp(R_n)}_{\substack{\text{Remainder} \\ \text{function}}} \times \underbrace{\left(1 + \mathcal{P}_n^{\text{NMHV}} + \dots + \mathcal{P}_n^{\overline{\text{MHV}}}\right)}_{\substack{\text{helicity structure}}}$$

For example,
$$R_6$$
 will be a function of $u = \frac{\langle 1234 \rangle \langle 4561 \rangle}{\langle 1245 \rangle \langle 3461 \rangle}$, $v = \frac{\langle 3456 \rangle \langle 6123 \rangle}{\langle 3461 \rangle \langle 5623 \rangle}$, $w = \frac{\langle 5612 \rangle \langle 2345 \rangle}{\langle 5623 \rangle \langle 1245 \rangle}$.

We are interested in the function
$$R_{8,1}^{(2)} = \left(\exp(R_8)\mathcal{P}_8^{\text{NMHV}}\right)^{(2)}$$

In the following, we will denote $\exp(R_n)\mathcal{P}_n^{N^kMHV}$ by $R_{n,k}$

Why octagons?

The cut structures of *L*-loop hexagon and heptagon amplitudes are described by polylogarithms [Goncharov] of weight 2*L* which satisfy

$$\mathrm{d}F^{(2L)} = \sum_{\beta} F_{\beta}^{(2L-1)} \mathrm{d} \log S_{\beta}$$

This define the symbol of F:

$$S(F^{2L}) := \sum_{\beta} S(F_{\beta}^{(2L-1)}) \otimes S_{\beta}$$

where s_{β} are called symbol letters.

Some example:

$$\mathcal{S}(\log x \log y) = x \otimes y + y \otimes x, \quad \mathcal{S}(\text{Li}_2(1-z)) = -(z \otimes 1 - z)$$

The first entries of symbol indicate the locus of cuts of F

Why octagons?

The cut structures of *L*-loop hexagon and heptagon amplitudes are described by polylogarithms [Goncharov] of weight 2*L* which satisfy

$$\mathrm{d}F^{(2L)} = \sum_{\beta} F_{\beta}^{(2L-1)} \mathrm{d}\log S_{\beta}$$

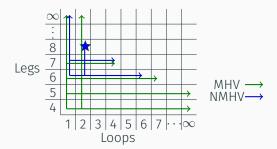
This define the symbol of F:

$$\mathcal{S}(F^{2L}) := \sum_{\beta} \mathcal{S}(F_{\beta}^{(2L-1)}) \otimes S_{\beta}$$

where s_{β} are called symbol letters.

The alphabets (collection of all possible letters) for hexagon and heptagon are highly constrained by the corresponding cluster algebras $G_{4,6}$ and $G_{4,7}$ which consist of 9 and 42 variables, respectively.

Why octagons



[Bern, Caron-Huot, Dixon, Drummond,...]

For more than seven particles, symbol alphabets are not well understood

- $G_{4,n>8}$ are infinite-type cluster algebras.
- Square roots appear in symbol letters even at one-loop in N²MHV amplitudes

Dual superconformal anomaly and \bar{Q} equations

BDS-normalized amplitudes $R_{n,k}$ are dual conformal invariants, but $R_{n,k}$ are not dual superconformal invariants, they have anomalies under the symmetries generated by

$$\bar{Q}_a^A = \sum_i \chi_i^A \frac{\partial}{\partial Z_i^a}$$

An OPE analysis tell us the action of \bar{Q} on $R_{n,k}$ will yield an integral over higher-point amplitudes [Caron-Huot, He]

$$\bar{Q}_a^A R_{n,k} = \frac{\Gamma_{\text{cusp}}}{4} \int_{\tau=0}^{\tau=\infty} \oint_{\epsilon=0} \left(\mathrm{d}^{2|3} \mathcal{Z}_{n+1} \right)_a^A \left[R_{n+1,k+1} - R_{n,k} R_{n+1,1}^{\text{tree}} \right] + \text{cyclic}$$

where the particle n+1 is added in a collinear limit

$$\mathcal{Z}_{n+1} = \mathcal{Z}_n - \epsilon \mathcal{Z}_{n-1} + \frac{\langle n-1 \, n \, 2 \, 3 \rangle}{\langle n \, 1 \, 2 \, 3 \rangle} \epsilon \tau \mathcal{Z}_1 + \frac{\langle n-2 \, n-1 \, n \, 1 \rangle}{\langle n-2 \, n-1 \, 2 \, 1 \rangle} \epsilon^2 \mathcal{Z}_2$$

9

Dual superconformal anomaly and \bar{Q} equations

BDS-normalized amplitudes $R_{n,k}$ are dual conformal invariants, but $R_{n,k}$ are not dual superconformal invariants, they have anomalies under the symmetries generated by

$$\bar{Q}_a^A = \sum_i \chi_i^A \frac{\partial}{\partial Z_i^a}$$

Perturbatively, this equation becomes

$$\bar{Q}_{a}^{A}R_{n,k}^{(L)} = \int_{\tau=0}^{\tau=\infty} \oint_{\epsilon=0} \left(\mathrm{d}^{2|3}\mathcal{Z}_{n+1} \right)_{a}^{A} \left[R_{n+1,k+1}^{(L-1)} - R_{n,k}^{(L-1)} R_{n+1,1}^{\mathsf{tree}} \right] + \mathsf{cyclic}$$

where the particle n+1 is added in a collinear limit

$$\mathcal{Z}_{n+1} = \mathcal{Z}_n - \epsilon \mathcal{Z}_{n-1} + \underbrace{\frac{\langle n-1 \, n \, 2 \, 3 \rangle}{\langle n \, 1 \, 2 \, 3 \rangle}}_{C} \epsilon \tau \mathcal{Z}_1 + \underbrace{\frac{\langle n-2 \, n-1 \, n \, 1 \rangle}{\langle n-2 \, n-1 \, 2 \, 1 \rangle}}_{C'} \epsilon^2 \mathcal{Z}_2$$

9

The integral measure

The basic operation $\int (d^{2|3}\mathcal{Z}_{n+1})_a^A$ consist of bosonic part and fermionic part:

$$\left(\mathrm{d}^{2|3}\mathcal{Z}_{n+1}\right)_{a}^{A} \begin{cases} \varepsilon_{abcd}Z_{n+1}^{b}\mathrm{d}Z_{n+1}^{c}\mathrm{d}Z_{n+1}^{d} = C(\bar{n})_{a}\epsilon\mathrm{d}\epsilon\mathrm{d}\tau & \text{(Bosonic Part)} \\ \\ \left(\mathrm{d}^{3}\chi_{n+1}\right)^{A} & \text{(Fermionic Part)} \end{cases}$$

where
$$(\bar{n})_a := \varepsilon_{abcd} Z_{n-1}^b Z_n^c Z_1^d$$

The order of performing integral:

- Fermionic integral $(d^3\chi_{n+1})^A$
- The substitution $\mathcal{Z}_{n+1} \to \mathcal{Z}_n \epsilon \mathcal{Z}_{n-1} + C\epsilon \tau \mathcal{Z}_1 + C'\epsilon^2 \mathcal{Z}_2$
- Take the residue $\oint_{\epsilon=0} d\epsilon$ (Collinear limit)
- 1-D integral $\int_0^\infty d\tau$ (Real integral)

and action of \bar{Q}

Structures of Loop amplitudes

In general, the BDS-normalized amplitudes $R_{n,k}$ can be written as

$$R_{n,k}^{(L)} = \sum_{\alpha} Y_{n,k}^{\alpha} F_{\alpha}^{(2L)}$$

where $Y_{n,k}$ are Yangian invariants¹ (which means $\bar{Q}Y_{n,k} = 0$)

• $Y_{n,k}$ bear the pole structure of amplitudes

¹Objects are invariant under both superconformal and dual superconformal symmetries.

In general, the BDS-normalized amplitudes $R_{n,k}$ can be written as

$$R_{n,k}^{(L)} = \sum_{\alpha} Y_{n,k}^{\alpha} F_{\alpha}^{(2L)}$$

where $Y_{n,k}$ are Yangian invariants¹ (which means $\bar{Q}Y_{n,k} = 0$)

- $Y_{n,k}$ bear the pole structure of amplitudes
- Tree amplitudes $R_{n,k}^{\text{tree}}$ consist of $Y_{n,k}$ only. one example $R_{n,1}^{\text{tree}} = \sum_{1 < i < j} [1, i, i+1, j, j+1]$

¹Objects are invariant under both superconformal and dual superconformal symmetries.

In general, the BDS-normalized amplitudes $R_{n,k}$ can be written as

$$R_{n,k}^{(L)} = \sum_{\alpha} Y_{n,k}^{\alpha} F_{\alpha}^{(2L)}$$

where $Y_{n,k}$ are Yangian invariants¹ (which means $\bar{Q}Y_{n,k} = 0$)

- $Y_{n,k}$ bear the pole structure of amplitudes
- Tree amplitudes $R_{n,k}^{\text{tree}}$ consist of $Y_{n,k}$ only. one example $R_{n,1}^{\text{tree}} = \sum_{1 < i < j} [1, i, i+1, j, j+1]$
- $Y_{n,k}$ are determined by Yangian symmetries only. (Independent of loop-integral)

¹Objects are invariant under both superconformal and dual superconformal symmetries.

In general, the BDS-normalized amplitudes $R_{n,k}$ can be written as

$$R_{n,k}^{(L)} = \sum_{\alpha} Y_{n,k}^{\alpha} F_{\alpha}^{(2L)}$$

where $Y_{n,k}$ are Yangian invariants¹ (which means $\bar{Q}Y_{n,k} = 0$)

- $Y_{n,k}$ bear the pole structure of amplitudes
- Tree amplitudes $R_{n,k}^{\text{tree}}$ consist of $Y_{n,k}$ only. one example $R_{n,1}^{\text{tree}} = \sum_{1 < i < j} [1, i, i+1, j, j+1]$
- $Y_{n,k}$ are determined by Yangian symmetries only. (Independent of loop-integral)

$$Y_{n,0} = 1, Y_{n,1} := \{[i, j, k, l, m]\}$$

¹Objects are invariant under both superconformal and dual superconformal symmetries.

In general, the BDS-normalized amplitudes $R_{n,k}$ can be written as

$$R_{n,k}^{(L)} = \sum_{\alpha} Y_{n,k}^{\alpha} F_{\alpha}^{(2L)}$$

where $Y_{n,k}$ are Yangian invariantsObjects are invariant under both superconformal and dual superconformal symmetries. (which means $\bar{Q}Y_{n,k}=0$)

- $Y_{n,k}$ bear the pole structure of amplitudes
- Tree amplitudes $R_{n,k}^{\text{tree}}$ consist of $Y_{n,k}$ only. one example $R_{n,1}^{\text{tree}} = \sum_{1 < i < j} [1, i, i+1, j, j+1]$
- $Y_{n,k}$ are determined by Yangian symmetries only. (Independent of loop-integral)

$$Y_{n,0} = 1, Y_{n,1} := \{[i, j, k, l, m]\}$$

F are transcendental functions which bear the cut structure of amplitudes and are expected to be generalized polylogarithms of weight 2L at L-loop level for MHV and NMHV cases.

\bar{Q} as Differenial

Due to dual conformal invariance(DCI), *F* are functions of cross ratios of Plücker coordinates. Since *F* are expected to be generalized polylogarithms, they satisfy

$$dF^{(2L)} = \sum_{\beta} F_{\beta}^{(2L-1)} d \log S_{\beta} \qquad \left(d := \sum_{i} dZ_{i} \frac{\partial}{\partial Z_{i}}\right)$$

\bar{Q} as Differenial

Due to dual conformal invariance(DCI), *F* are functions of cross ratios of Plücker coordinates. Since *F* are expected to be generalized polylogarithms, they satisfy

$$dF^{(2L)} = \sum_{\beta} F_{\beta}^{(2L-1)} d \log s_{\beta} \qquad \left(d := \sum_{i} dZ_{i} \frac{\partial}{\partial Z_{i}}\right)$$

Thus, the action of \bar{Q} on $R_{n,k}^{(L)}$ gives

$$\bar{Q}R_{n,k}^{(L)} = \sum_{\alpha,\beta} Y_{n,k}^{\alpha} F_{\alpha,\beta}^{(2L-1)} \bar{Q} \log s_{\alpha,\beta} \qquad \left(\bar{Q} := \sum_{i} \chi_{i} \frac{\partial}{\partial Z_{i}}\right)$$

where $s_{\alpha,\beta}$ are some DCI of Plücker coordinates and referred to the last entries of amplitudes

Kernel of \bar{Q}

 \bar{Q} -equation can not determine N²MHV amplitudes on its own due to the non-trivial dependence of its kernel on k:

• For k = 0, the kernel of \bar{Q} is trivial

Kernel of \bar{Q}

 \bar{Q} -equation can not determine N²MHV amplitudes on its own due to the non-trivial dependence of its kernel on k:

- For k = 0, the kernel of \bar{Q} is trivial
- For k = 1, it's non-trivial, since

$$\bar{Q}[1,2,3,4,5] \log \frac{\langle 1234 \rangle}{\langle 2345 \rangle} = [1,2,3,4,5] \bar{Q} \log \frac{\langle 1234 \rangle}{\langle 2345 \rangle}
= (\bar{3})_a [1,2,3,4,5] \frac{\langle 1234 \rangle \chi_5^A + \text{cyclic}}{\langle 2345 \rangle \langle 2341 \rangle}$$

Kernel of \bar{Q}

 \bar{Q} -equation can not determine N²MHV amplitudes on its own due to the non-trivial dependence of its kernel on k:

- For k = 0, the kernel of \bar{Q} is trivial
- For k = 1, it's non-trivial, but has no space of DCI functions
- For $k \ge 2$, it's non-trivial, and it indeed contain DCI functions.

Now let us consider the RHS of \bar{Q} equation:

$$\int_{\tau=0}^{\tau=\infty} \oint_{\epsilon=0} \left(\mathrm{d}^{2|3}\mathcal{Z}_{n+1}\right)_a^A \left[R_{n+1,k+1}^{(L-1)} - \underbrace{R_{n,k}^{(L-1)}R_{n+1,1}^{\text{tree}}}_{n+1,1}\right] + \text{cyclic}$$

Now let us consider the RHS of \bar{Q} equation:

$$\int_{\tau=0}^{\tau=\infty} \oint_{\epsilon=0} \left(\mathrm{d}^{2|3}\mathcal{Z}_{n+1}\right)_a^A \left[R_{n+1,k+1}^{(L-1)} - \underbrace{R_{n,k}^{(L-1)}R_{n+1,1}^{\text{tree}}}_{\text{trivial}}\right] + \text{cyclic}$$

The first step:

$$R_{n+1,k+1}^{(L-1)} \begin{cases} Y_{n+1,k+1} \\ F^{(2L-2)} \end{cases}$$

Now let us consider the RHS of \bar{Q} equation:

$$\int_{\tau=0}^{\tau=\infty} \oint_{\epsilon=0} \left(\mathrm{d}^{2|3} \mathcal{Z}_{n+1} \right)_a^A \left[R_{n+1,k+1}^{(L-1)} - \underbrace{R_{n,k}^{(L-1)} R_{n+1,1}^{\text{tree}}}_{\text{trivial}} \right] + \text{cyclic}$$

The first step:

$$R_{n+1,k+1}^{(L-1)} \begin{cases} Y_{n+1,k+1} & \xrightarrow{C(\bar{n})_a \oint_{\epsilon=0} \epsilon \mathrm{d}\epsilon \mathrm{d}^3 \chi_{n+1}} \sum_{I,J} Y_{n,k}^{I,J} \bar{Q} \log \frac{\langle \bar{n}I \rangle}{\langle \bar{n}J \rangle} \mathrm{d} \log f_{I,J}(\tau) \\ F^{(2L-2)} & \end{cases}$$

Now let us consider the RHS of \bar{Q} equation:

$$\int_{\tau=0}^{\tau=\infty} \oint_{\epsilon=0} \left(\mathrm{d}^{2|3} \mathcal{Z}_{n+1} \right)_a^A \left[R_{n+1,k+1}^{(L-1)} - \underbrace{R_{n,k}^{(L-1)} R_{n+1,1}^{\text{tree}}}_{\text{trivial}} \right] + \text{cyclic}$$

The first step:

$$R_{n+1,k+1}^{(L-1)} \begin{cases} Y_{n+1,k+1} & \xrightarrow{C(\bar{n})_a \oint_{\epsilon=0} \epsilon \operatorname{d}\epsilon \operatorname{d}^3 \chi_{n+1}} \sum_{l,l} Y_{n,k}^{l,l} \bar{Q} \log \frac{\langle \bar{n} l \rangle}{\langle \bar{n} l \rangle} \operatorname{d} \log f_{l,l}(\tau) \\ F^{(2L-2)} & \xrightarrow{Z_{n+1} \to Z_n - \epsilon Z_{n-1} + \cdots} F^{(2L-2)}(\tau, \epsilon \to 0) \end{cases}$$

Now let us consider the RHS of \bar{Q} equation:

$$\int_{\tau=0}^{\tau=\infty} \oint_{\epsilon=0} \left(\mathrm{d}^{2|3} \mathcal{Z}_{n+1} \right)_a^A \left[R_{n+1,k+1}^{(L-1)} - \underbrace{R_{n,k}^{(L-1)} R_{n+1,1}^{\text{tree}}}_{\text{trivial}} \right] + \text{cyclic}$$

The first step:

$$R_{n+1,k+1}^{(L-1)} \begin{cases} Y_{n+1,k+1} & \xrightarrow{C(\bar{n})_a \oint_{\epsilon=0} \epsilon \operatorname{d}\epsilon \operatorname{d}^3 \chi_{n+1}} \sum_{I,J} Y_{n,k}^{I,J} \bar{Q} \log \frac{\langle \bar{n}I \rangle}{\langle \bar{n}J \rangle} \operatorname{d} \log f_{I,J}(\tau) \\ F^{(2L-2)} & \xrightarrow{Z_{n+1} \to Z_n - \epsilon Z_{n-1} + \cdots} F^{(2L-2)}(\tau, \epsilon \to 0) \end{cases}$$

The second step:

$$\int_0^\infty \mathrm{d} \log f_{l,l}(\tau) F^{(2L-2)}(\tau,\epsilon \to 0) = F^{(2L-1)}$$

where $f_{l,l}(\tau)$ are rational functions of τ (with some exceptions discussed later)

Now let us consider the RHS of \bar{Q} equation:

$$\int_{\tau=0}^{\tau=\infty} \oint_{\epsilon=0} \left(\mathrm{d}^{2|3} \mathcal{Z}_{n+1} \right)_a^A \left[R_{n+1,k+1}^{(L-1)} - \underbrace{R_{n,k}^{(L-1)} R_{n+1,1}^{\text{tree}}}_{\text{trivial}} \right] + \text{cyclic}$$

The first step:

$$R_{n+1,k+1}^{(L-1)} \begin{cases} Y_{n+1,k+1} & \xrightarrow{C(\bar{n})_a \oint_{\epsilon=0} \epsilon \operatorname{d}\epsilon \operatorname{d}^3 \chi_{n+1}} \sum_{l,l} Y_{n,k}^{l,l} \bar{Q} \log \frac{\langle \bar{n}l \rangle}{\langle \bar{n}l \rangle} \operatorname{d} \log f_{l,l}(\tau) \\ F^{(2L-2)} & \xrightarrow{Z_{n+1} \to Z_n - \epsilon Z_{n-1} + \cdots} F^{(2L-2)}(\tau, \epsilon \to 0) \end{cases}$$

The operation $C(\bar{n})_a \oint_{\epsilon=0} \epsilon d\epsilon d^3 \chi_{n+1}$ is independent of loop order which gives last entry conditions on amplitudes

Last entry conditions

For NMHV yangian invariants [ijklm], the operation gives either 0 or

$$\bar{Q}\log\frac{\langle\bar{n}i\rangle}{\langle\bar{n}j\rangle}$$

Then cyclic permutations gives the well-known MHV last entries $\langle \bar{\imath} j \rangle$ [Caron-Huot]

Last entry conditions

The N²MHV Yangian invariants have already classified. [Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka]

They are

$$\begin{array}{lll} Y_{1}^{(2)} = [1,2,(23) \cap (456),(234) \cap (56),6][2,3,4,5,6] & Y_{8}^{(2)} = [1,2,3,4,(456) \cap (78)][4,5,6,7,8] \\ Y_{2}^{(2)} = [1,2,(34) \cap (567),(345) \cap (67),7][3,4,5,6,7] & Y_{9}^{(2)} = [1,2,3,4,9][5,6,7,8,9] \\ Y_{3}^{(2)} = [1,2,3,(345) \cap (67),7][3,4,5,6,7] & Y_{10}^{(2)} = [1,2,3,4,(567) \cap (89)][5,6,7,8,9] \\ Y_{4}^{(2)} = [1,2,3,(456) \cap (78),8][4,5,6,7,8] & Y_{11}^{(2)} = [1,2,3,4,(56) \cap (789)][5,6,7,8,9] \\ Y_{5}^{(2)} = [1,2,3,4,8][4,5,6,7,8] & Y_{12}^{(2)} = [1,2,3,4,(56) \cap (789)][(45) \cap (789)][(45) \cap (123),(46) \cap (123),7,8,9] \\ Y_{6}^{(2)} = [1,2,3,(45) \cap (678),8][4,5,6,7,8] & Y_{12}^{(2)} = [1,2,3,4,5][6,7,8,9,10] \\ Y_{7}^{(2)} = [1,2,3,(45) \cap (678),(456) \cap (78)][4,5,6,7,8] & Y_{14}^{(2)} = \psi[4,1,2,3,4][8,5,6,7,8] \\ \end{array}$$

where

$$(ij) \cap (klm) = \mathcal{Z}_i \langle j \, k \, l \, m \rangle - \mathcal{Z}_j \langle i \, k \, l \, m \rangle$$

Last entry conditions

For NMHV yangian invariants [ijklm], the operation gives either 0 or

$$\bar{Q}\log\frac{\langle\bar{n}i\rangle}{\langle\bar{n}j\rangle}$$

Then cyclic permutations gives the well-known MHV last entries $\langle \bar{\imath} j \rangle$ [Caron-Huot]

For N²MHV yangian invariants, this operation gives

$$[ijklm]\bar{Q}\log\frac{\langle\bar{n}I\rangle}{\langle\bar{n}J\rangle}$$

where I, J can generally be intersections of momentum twistors of the form $(ij) \cap (klm)$

Two-loop NMHV octagons

To compute the 2-loop NMHV octagon, we need the input of the one-loop N²MHV BDS-normalized amplitude $R_{9,2}^{(1)}$, which can be obtained from the chiral box expansion [Bourjaily, Caron-Huot, Trnka]:

$$R_{n+1,2}^{(1)} = \sum_{a < b < c < d} (f_{a,b,c,d} - R_{n+1,2}^{\text{tree}} f_{a,b,c,d}^{\text{MHV}}) \mathcal{I}_{a,b,c,d}^{\text{fin}}$$

where

- $f_{a,b,c,d}$ are linear combinations of N²MHV yangian invariants
- $f_{a,b,c,d}^{MHV}$ are either 1 or 0
- \cdot $\mathcal{I}_{a,b,c,d}^{\mathit{fin}}$ denote the finite part of DCI-regulated box integrals

Four-mass box

The most generic term in chiral box expansion arise form four-mass

box:
$$d = \begin{cases} a - 1a \\ d - 1 \end{cases}$$

$$d = \begin{cases} x_{ab}^2 := \frac{\langle a - 1ab - 1b \rangle}{\langle a - 1a \rangle \langle b - 1b \rangle} = (p_a + \dots + p_{b-1})^2, \\ u = \frac{x_{ad}^2 x_{bc}^2}{x_{ac}^2 x_{bd}^2} = z\overline{z}, \quad v = \frac{x_{ab}^2 x_{cd}^2}{x_{ac}^2 x_{bd}^2} = (1 - z)(1 - \overline{z}), \\ \Delta_{abcd} = \sqrt{(1 - u - v)^2 - 4uv} \end{cases}$$

For such a box,

$$\begin{split} f_{a,b,c,d} &= \frac{1 - u - v \pm \Delta}{2\Delta} [\alpha_{\pm}, b - 1, b, c - 1, c] [\delta_{\pm}, d - 1, d, a - 1, a] \\ \mathcal{I}_{a,b,c,d}^{\text{fin}} &= \text{Li}_2(z) - \text{Li}_2(\overline{z}) + \frac{1}{2} \log(z\overline{z}) \log \frac{1 - z}{1 - \overline{z}} \end{split}$$

where α_{\pm} and δ_{\pm} are two solutions of Schubert problem $\alpha=(a-1a)\cap(d\,d-1\gamma),\,\gamma=(c-1c)\cap(b\,b-1\alpha)$

Four-mass box

The most generic term in chiral box expansion arise form four-mass

box:
$$d = \frac{a - 1a}{d - 1} \cdot b - 1$$

$$d = \frac{x_{ab}^2 := \frac{\langle a - 1ab - 1b \rangle}{\langle a - 1a \rangle \langle b - 1b \rangle} = (p_a + \dots + p_{b-1})^2,$$

$$u = \frac{x_{ad}^2 x_{bc}^2}{x_{ac}^2 x_{bd}^2} = z\overline{z}, \quad v = \frac{x_{ab}^2 x_{cd}^2}{x_{ac}^2 x_{bd}^2} = (1 - z)(1 - \overline{z}),$$

$$\Delta_{abcd} = \sqrt{(1 - u - v)^2 - 4uv}$$

For such a box,

$$f_{a,b,c,d} = \frac{1 - u - v \pm \Delta}{2\Delta} [\alpha_{\pm}, b - 1, b, c - 1, c] [\delta_{\pm}, d - 1, d, a - 1, a]$$

$$\mathcal{I}_{a,b,c,d}^{fin} = \text{Li}_{2}(z) - \text{Li}_{2}(\bar{z}) + \frac{1}{2} \log(z\bar{z}) \log \frac{1 - z}{1 - \bar{z}}$$

where α_{\pm} and δ_{\pm} are two solutions of Schubert problem $\alpha=(a-1a)\cap(d\,d-1\gamma),\,\gamma=(c-1c)\cap(b\,b-1\alpha)$

The square root will disappear when one mass corner become massless, e.g. b = a+1

Now it is difficult to perform τ -integral for four-mass box coefficients $f_{a,b,c,d}$ due to the appearance of square root Δ whose collinear limit $\Delta(\tau)$ may be not a rational function.

Now it is difficult to perform τ -integral for four-mass box coefficients $f_{a,b,c,d}$ due to the appearance of square root Δ whose collinear limit $\Delta(\tau)$ may be not a rational function.

However, $\Delta(\tau)$ can be rationlized by a variable substitution, since Δ^2 is only a quadratic polynomial of τ .

Now it is difficult to perform τ -integral for four-mass box coefficients $f_{a,b,c,d}$ due to the appearance of square root Δ whose collinear limit $\Delta(\tau)$ may be not a rational function.

However, $\Delta(\tau)$ can be rationlized by a variable substitution, since Δ^2 is only a quadratic polynomial of τ .

This is just the classic problem to find a rational parameterization of a quadratic curve $y^2 = x^2 + ax + b$, the key point is to find rational points of the quadratic.

Now it is difficult to perform τ -integral for four-mass box coefficients $f_{a,b,c,d}$ due to the appearance of square root Δ whose collinear limit $\Delta(\tau)$ may be not a rational function.

However, $\Delta(\tau)$ can be rationlized by a variable substitution, since Δ^2 is only a quadratic polynomial of τ .

This is just the classic problem to find a rational parameterization of a quadratic curve $y^2 = x^2 + ax + b$, the key point is to find rational points of the quadratic.

Example: For the quadratic $y^2 = x^2 + 1$, the rational parameterization

$$(x,y) = \left(\frac{2t}{1-t^2}, \frac{1+t^2}{1-t^2}\right)$$

is obtained by inserting y - 1 = (x - 0)t.

Example: *f*_{2,4,6,9}

Let's focus on the octagon (n=8), for which nine 9-point four-mass boxes is needed. It is easy to see only

$$f_{2,4,7,9}, \qquad f_{2,5,7,9}, \qquad f_{2,4,6,9}, \qquad f_{3,5,7,9}$$

can potentially contribute square root. Where $f_{2,4,6,9}$ and $f_{3,5,7,9}$ indeed contribute two square roots $\Delta_{1,3,5,7}$ and $\Delta_{2,4,6,8}$ respectively.

 $\Delta_{2,4,6,9}(au)$ owns $au=\infty$ as its rational point. Thus, we can find the following substitution

$$\tau = \frac{\rho(t - Z_{2,4,6,8})(t - \bar{Z}_{2,4,6,8})}{t - \sigma}$$

where ρ and σ are some cross ratios of Plücker coordinates.

The square root in $z_{2,4,6,8}$ enters the final result via the limit of integration $\int_0^\infty \mathrm{d}\tau \to \int_z^\infty \mathrm{d}t\,\mathrm{d}\tau/\mathrm{d}t$

Symbol alphabet for 2-loop NMHV octagons

At the end, we obtain the symbol of 2-loop NMHV octagons as

$$S(R_{8,1}^{(2)}) = \sum_{1 \le i < j < k < l < 8} [i, j, k, l, 8] S_{i,j,k,l}$$

where $S_{i,j,k,l}$ are symbols of weight 4. We find 18 algebraic letters which are generated by cyclic shifts the following 7 seeds

$$\frac{X_* - Z}{X_* - \bar{Z}} \begin{cases} X_a = \frac{\langle 1(52)(34)(78)\rangle \langle 3456\rangle}{\langle 1345\rangle \langle 1256\rangle \langle 3478\rangle}, & X_b = X_a|_{5 \leftrightarrow 6}, \\ X_c = \frac{\langle 1378\rangle \langle 3456\rangle}{\langle 1356\rangle \langle 3478\rangle}, & X_d = X_c|_{3 \leftrightarrow 4}, & X_e = \frac{\langle 187(34) \cap (256)\rangle}{\langle 1256\rangle \langle 3478\rangle} \\ X_f = 1, & X_g = 0, & Z = Z_{2,4,6,8} \end{cases}$$

Further more, all algebraic letters always enter the symbol in the following combinations

$$\underbrace{\left(u \otimes \frac{1-z}{1-\overline{z}} + v \otimes \frac{\overline{z}}{z}\right)}_{\text{symbol of 4-mass box}} \otimes \frac{X_* - z}{X_* - \overline{z}}$$

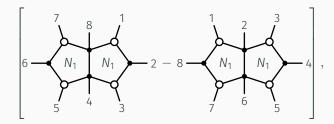
New kind of cuts

Besides 18 algebraic ones, we find 180 rational letters which are contained in the prediction from Laudau equations [Prlina, Spradlin, Stankowicz, Stanojevic].

The algebraic letters can be rewritten as $(a\pm\sqrt{a^2-4b})$, where (a,b) are polynomials of Plücker coordinates. Such letters indicate two kinds of cuts. One arise from the discriminant a^2-4b , which are square root branch points from Landau equations. The other arise from $b\to 0$ which is the same as the cut of $\log b$. Thus the branch points b=0 correspond to zero locus of some rational letters.

Comparison with Feynman integral computation

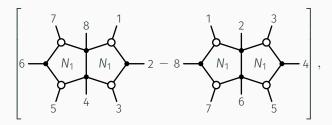
The component $\chi_1\chi_3\chi_5\chi_7$ of two-loop NMHV octagon is completely free of algebraic letters, which is given by the coefficient of [1,3,5,7,8] in our basis. This component correspond to the difference of two Feynman integrals [Bourjaily, et al]



each of which depend on many algebraic roots.

Comparison with Feynman integral computation

The component $\chi_1\chi_3\chi_5\chi_7$ of two-loop NMHV octagon is completely free of algebraic letters, which is given by the coefficient of [1,3,5,7,8] in our basis. This component correspond to the difference of two Feynman integrals [Bourjaily, et al]



each of which depend on many algebraic roots.

The symbol size $\sim 2.8 \times 10^4$ terms

Outlook

Summary

- Three-loop MHV octagon.
- · The connection to cluster algebra, tropical Grassmannian
- \cdot \bar{Q} equations for individual integral and other theories.

Thank You

Questions?