# Distributed quantum information and the structure of spacetime 

Vijay Balasubramanian<br>University of Pennsylvania

## Classical Information



- System A contains information about System $B=$ measuring $A$ tells you about B
- Equivalently, $A$ and $B$ are correlated
- "Information" is a way of quantifying this correlation
- "A contains N bits of information about $\mathrm{B} "=$ measuring A allows us to distinguish between $2^{\mathrm{N}}$ possible configurations of $B$.


## Quantum Information



- Quantum systems, unlike classical ones, can be in a "superposition" of states
- Measurement "collapses" the superposition
- Because of this there is a new kind of correlation, entanglement
- If System $A$ is entangled with System B, measuring A can collapse $B$, even though you have have not touched it
- So entanglement also means that measuring A tells you about B


## Entanglement Entropy



- Suppose $A$ and $B$ are entangled and you only measure $A$
- To predict the result you must sum over all the possibilities for $B$ that are quantumly superposed
- This leaves A in a "mixed state" which is classically uncertain. The uncertainty is quantified by entanglement entropy (S)
- Similarly, mutual information quantifies how well we can predict $B$ if we only measure $A$.

Entanglement Entropy


$$
\begin{aligned}
& |\psi\rangle=\left|\uparrow_{A} \uparrow_{B}\right\rangle \\
& \rho=|\psi\rangle\langle\psi| \\
& =\left|\tau_{A} \uparrow_{B}\right\rangle\left\langle\uparrow_{A} \uparrow_{B}\right| \\
& =\left[\begin{array}{cccc}
\uparrow & \uparrow \uparrow & \downarrow \uparrow & \downarrow \downarrow \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \uparrow \uparrow \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]_{\downarrow \downarrow} \downarrow \tau \\
& S=-T_{n}[\rho \log \rho]=0
\end{aligned}
$$

vol Neumann entropy of pure states vanishes


$$
\begin{aligned}
& |\psi\rangle=\left|T_{A} \uparrow_{0}\right\rangle \\
& \rho=|\psi\rangle\langle\psi|=\left|T_{A} \uparrow_{0}\right\rangle\left\langle\hat{T}_{A} T_{B}\right. \\
& \rho_{A}=\operatorname{Tn}(\rho)_{B}=\left|T_{A}\right\rangle\left\langle T_{A}\right|=\left[\begin{array}{ll}
1 & 0 \\
0 & ]_{1}
\end{array}\right]^{\top} \\
& S_{A}=-\operatorname{Tn}\left(\rho_{A} \ln \rho_{A}\right)=0
\end{aligned}
$$

vo Neumann entropy of subsystems vanishes in pure product (disentangled) states

Multi-party entanglement


$$
\begin{aligned}
& |\psi\rangle=\frac{\left|\uparrow_{A} \uparrow_{B}\right\rangle+\left|\psi_{A} \nu_{B}\right\rangle}{\sqrt{2}} \\
& \left.\rho=|\psi\rangle\langle\psi|=\begin{array}{cccc}
\uparrow \uparrow \\
\uparrow \downarrow \\
\psi \uparrow \\
\psi \downarrow
\end{array} \begin{array}{cccc}
\uparrow \uparrow & \uparrow \downarrow & \psi \tau & \downarrow \downarrow \\
\frac{1}{2} & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & 1 / 2
\end{array}\right] \\
& \rho_{A}=\operatorname{Tr}(\rho)_{B}=\sum_{S_{B}}\left|S_{A} S_{B}\right\rangle\left\langle S_{A}^{\prime} S_{B}\right| \\
& =\left[\begin{array}{ll}
1 / 2 & 0 \\
0 & 1 / 2 \\
1 & \downarrow
\end{array}\right]_{\downarrow}^{\top} \\
& S_{A}=-T_{7}\left(\rho_{A} \log _{2} \rho_{A}\right)=1 \text { bit }
\end{aligned}
$$

Qubit A is in a "mixed" state
Mutual information quantifies classical and quantum correlation between $A$ and $B$


$$
I(A, B)=S(A)+S(B)-S(A \cup B)
$$

Tripartite Information quantifies extensivity of mutual information

$I_{3}(A, B, C)=I(A, B)+I(A, C)-I(A, B \cup C)$

Interactions produce entanglement

$$
\begin{aligned}
& H=H_{A} \otimes H_{B} \\
& H_{0}=H_{A}+H_{B} \\
& \Rightarrow|\psi\rangle_{G N O}=\left|\psi_{A}\right\rangle \otimes\left|\Psi_{B}\right\rangle
\end{aligned}
$$

$$
\begin{gathered}
H=H_{A}+H_{B}+H_{A B} \\
\Rightarrow|\psi\rangle_{G N O} \neq\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
\end{gathered}
$$



Interactions between degrees of freedom entangle their wavefunctions


## Information, matter, spacetime and forces

Application to the fundamental theory of matter and forces


- The topology of quantum entanglement
- Quantum information as a probe of microscopic physics
- Thermalization and chaos as quantum entangling processes.
- Information recovery from black holes through inside-outside entanglement.
- Entanglement knitting spacetime

The topology of entanglement

## The topology of entanglement


$|G H Z\rangle=\frac{|000\rangle+|111\rangle}{\sqrt{2}}$
$|W\rangle=\frac{|100\rangle+|010\rangle+|001\rangle}{\sqrt{3}}$

- Entanglement is a property that implies that a many body system cannot be separated smoothly into pieces
- Thus, it concerns the topology of the quantum states
- GHZ-like states: partial traces leave a separable state (entanglement is intrinsically multi-party)
- W-like states: partial traces leave an entangled state (all parties are robustly entangled)
- What "topological" classes of entanglement arise naturally in quantum field theory?


## Information and topology of manifolds

Links



Chern-Simons theory on the sphere with a link drilled out
quantum wavefunction ~ colored Jones polynomials

- link topology controls entanglement
- entanglement entropy classifies types of links
- To separate local deformations from global topology, consider a Topological Field Theory
- Example: Chern-Simons theory in 2+I dimensions.
$A=A_{\mu} d x^{\mu}$ $S_{C S}[A]=\frac{k}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)$


The wavefunction on the equal time surface (multiple copies of a torus) is calculated by the Euclidean path integral on a 3-manfold with this boundary.

## Information and topology of manifolds

Links


Chern-Simons theory on the sphere with a link drilled out
quantum wavefunction $=$ Jones polynomial of link

- link topology controls entanglement
- entanglement entropy classifies types of links
- $\mathrm{U}(\mathrm{I})$ Chern-Simons theory: entanglement entropy between sublinks vanishes if and only if they have zero Gauss linking number
- All torus links (links that can be drawn on a torus) have GHZ-like entanglement.
- Hyperbolic links (whose link complement admits a hyperbolic structure) have $\mathbf{W}$-like entanglement
- A direct connection between topology of manifolds and the topology of quantum entanglement


## Quantum entanglement as a probe

## Cosequences of entanglement



## Entanglement as a probe of microscopic physics



- The entangled systems A \& B need not be spatially separated.
- They can be:
- microscopic vs. macroscopic
- visible (standard model) vs. hidden (dark matter)
- Can such information be used to probe microscopic physics or dark matter that cannot be directly measured?


## Example: a generic model in string theory



- A visible sector (us) interacts with messengers, which interact with hidden (dark?) matter
- The messengers "freeze" and their frozen values $M$ determine the "couplings" of nature, i.e. the strengths of the forces.
- The messengers are entangled with the hidden sector.
- The hidden sector is not measured
- So: the messengers should be in a mixed state, giving statistically distributed couplings


## Example: a generic model in string theory



- Can we use such entanglement as a probe to extend the reach of high energy experiments?
- Idea: each time an interaction occurs, the coupling is statistically sampled
- Strategy: treat the coupling as statistically distributed and fit it with a mean and a variance
- Perhaps this strategy can exploit entanglement to extend the reach of experiments.


## Quantum entanglement, thermalization, and chaos

## Information and thermalization


every subsystem is maximally entangled


- Colliding heavy ions and black holes seem to thermalize, so that any subsystem is randomly organized with maximum entropy.
- How can isolated systems thermalize when physics specifies deterministic evolution?
- Information perspective: each subsystem becomes maximally entangled with everything else.
- If we observe only the subsystem it has entanglement entropy and is statistically distributed.


## Information spread during thermalization


von Neumann entropy of intervals of different length after a quantum quench in a two-dimensional conformal field theory

- Inject energy uniformly into the ground state of a field theory
- After a while the system thermalizes
- Track the von Neumann (entanglement) entropy of a subsytem
- The entropy grows and sharply reaches the expected thermal value


## Information, complexity and chaos


measuring complexity:
(a) number of operations?
(b) geometry of functions?

- Some thermalizing systems (e.g. heavy ion collisions \& possibly black holes) thermalize at speeds approaching a physical bound, and may be maximally chaotic.
- Classical chaos = extreme sensitivity to initial conditions in nonlinear dynamics
- What is quantum chaos? Quantum mechanics is linear in the state! Random energy spectrum.
- An information perspective:
- multiparty information over time
- complexity of states


## Information, complexity and chaos



- Quantifying complexity: how "hard" is it to construct the time evolution from "easy" gates

$$
U(t)=e^{-i \int d t H(t)}=g_{1} g_{2} g_{3}
$$

- Continuous version: find the length of the shortest geodesic in the unitary group manifold between the identity and $U(\mathrm{t})$, with a metric that is small in the "easy" (local) directions and big in the "hard" (nonlocal) directions.


## Information, complexity and chaos



- Chaotic theories: expect linear growth of complexity for exponential time
- Integrable theories: expect oscillation of complexity in polynomial time


## Eigenstate complexity hypothesis

$R_{m n}=\frac{\left.\sum_{\alpha}\left|\langle m| T_{\alpha}\right| n\right\rangle\left.\right|^{2}}{\left.\left.\sum_{\alpha}\left|\langle m| T_{\alpha}\right| n\right\rangle\left.\right|^{2}+\sum_{\dot{\alpha}}\left|\langle m| T_{\dot{\alpha}}\right| n\right\rangle\left.\right|^{2}}$
$T_{\alpha}$ local Lie algebra generators
$T_{\dot{\alpha} \dot{c}}$ nonlocal Lie algebra generators
${ }^{|m\rangle}$ energy eigenstates

The Hamiltonian and the gate set satisfy the Eigenstate Complexity Hypothesis (ECH) if $R_{m n}=e^{-2 S}$ poly $(S) r_{m n}$ for any m and n with $E_{m} \neq E_{n}$ and $S=\log$ (dimension of Hilbert space),
$r_{m n}=O(1)$

If a theory satisfies ECH , can prove that complexity grows linearly for exp. time.
Hypothesis: all chaotic theories satisfy ECH because of nonlocal, multiparty entanglement in the energy eigenstates.

## Quantum entanglement and spacetime architecture

## Black holes


horizon area = entropy
surface gravity = temperature

- Classically, things enter black holes horizons and never leave
- But black holes evaporate away due to quantum mechanics.
- The radiation looks thermal (totally random) = destruction of information. PARADOX!
- What are the quantum microstates that give rise to the entropy?
- How do we recover information about the microstate?


## Information recovery from black holes



- IDEA: The emitted radiation and the internal microstates are quantum mechanically entangled.
- So, measuring the radiation gives you information about the microstate. The general theory of quantum communication then predicts:
- the identity of the microstate is concealed until the half-way point of evaporation
- after that the information is recovered very rapidly


## Does gravity geometrize information?



- Horizon area ~ entropy. Why?
- In many theories, entanglement entropy of a region is proportional to the area of the boundary
- Is horizon area $=$ inside/outside entanglement entropy?
- Need:
- enough microstates from quantum gravity/string theory
- a mechanism for entanglement


## A dream

All of geometry \& gravity from information?

## Geometry = Information?



- Toy model: gravity in universes with negative curvature (negative dark energy) = "AdS space"
- Area of minimal surfaces in AdS = entanglement entropy of subtended region in the boundary
- Area of general surfaces AdS ~ differential entropy in boundary (macro-micro entanglement)
- First law of entanglement = Einstein's equation in an order by order expansion

Is spacetime emergent from information?

## Information knits spacetime: It from bit?


$S=$ large

$S=$ small


- Two regions of space $A$ and $B$ are connected if they are entangled
- The area of the boundary between $A \& B$ is related to their entanglement entropy
- Evidence in AdS space: many examples where increasing/ decreasing entanglement between subregions increases/decreases area of the interface


## Entanglement and wormholes



$$
|\psi\rangle=\sum_{a, b, c} c_{a b c}|a\rangle \otimes|b\rangle \otimes|c\rangle
$$

- Test: entanglement between distant regions A \& B should create a wormhole.
- Examples in the AdS/CFT correspondence: entangling distinct boundary field theories produces wormholes in the corresponding gravity description
- So maybe spacetime connectedness
= entanglement of the underlying quantum "atoms of spacetime"


## Many questions to think about



- How to measure entanglement/ information across time?
- How to characterize information shared by many parties?
- How to measure the complexity of chaotic states?
- Is there a topology of entanglement?
- Can entanglement be used to probe microscopic, hidden physics?
- Does entanglement rescue information from black holes?
- Does entanglement create wormholes/spacetime connection?
- Does It come from Bit?


## The End

