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Classical Information

• System A contains information 
about System B = measuring A 
tells you about B

• Equivalently,  A and B are 
correlated

• “Information” is a way of 
quantifying this correlation

• “A contains N bits of 
information about B” = 
measuring A allows us to 
distinguish between 2N possible 
configurations of B. 
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Quantum Information

• Quantum systems, unlike 
classical ones, can be in a 
“superposition” of states

• Measurement “collapses” the 
superposition

• Because of this there is a new 
kind of correlation, entanglement

• If System A is entangled with 
System B, measuring A can 
collapse B, even though you have 
have not touched it

• So entanglement also means that 
measuring A tells you about B
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Entanglement Entropy

• Suppose A and B are entangled 
and you only measure A

• To predict the result you must 
sum over all the possibilities for 
B that are quantumly 
superposed

• This leaves A in a “mixed state” 
which is classically uncertain. The 
uncertainty is quantified by 
entanglement entropy (S)

• Similarly, mutual information 
quantifies how well we can 
predict B if we only measure A.
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Entanglement Entropy

A B

von Neumann entropy of 
subsystems vanishes in pure 
product (disentangled) 
states

von Neumann entropy of 
pure states vanishes
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Multi-party entanglement
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Tripartite Information quantifies 
extensivity of mutual information 

Mutual information quantifies 
classical and quantum correlation 
between A and B

Qubit A is in a “mixed” state



Interactions produce entanglement

Interactions between degrees 
of freedom entangle their 
wavefunctions



Information, matter, spacetime and forces

• The topology of quantum 
entanglement

• Quantum information as a probe of 
microscopic physics

• Thermalization and chaos as quantum 
entangling processes.

• Information recovery from black holes 
through inside-outside entanglement.

• Entanglement knitting spacetime

Application to the fundamental theory of matter and forces 



The topology of entanglement



The topology of entanglement

• Entanglement is a property that 
implies that a many body system 
cannot be separated smoothly into 
pieces

• Thus, it concerns the topology of the 
quantum states

• GHZ-like states: partial traces leave 
a separable state (entanglement is 
intrinsically multi-party)

• W-like states: partial traces leave an 
entangled state (all parties are 
robustly entangled)

• What “topological” classes of 
entanglement arise naturally in 
quantum field theory?

A B C



Information and topology of manifolds

•  To separate local deformations 
from global topology, consider a 
Topological Field Theory

• Example: Chern-Simons theory in 
2+1 dimensions.Chern-Simons 

theory on the 
sphere with a 
link drilled out

Links

quantum wavefunction ~
colored Jones polynomials

•link topology controls  
entanglement

•entanglement entropy 
classifies types of links

M3

T 2

Figure 2. The spatial manifold ⌃n for n = 3 is the disjoint union of three tori. Mn is a 3-manifold such

that @Mn = ⌃n.

of Mn matters. However, there are many topologically distinct Euclidean 3-manifolds with

the same boundary, and the path integrals on these manifolds will construct di↵erent states

on ⌃n. Following [9], we will focus on a class of such 3-manifolds called link complements,

which we now briefly describe.

We start by considering an n-component link in the 3-sphere S3 (more generally, any

connected, closed 3-manifold would do). An n-component link in S3 is an embedding of

n (non-intersecting) circles in S3. (Note that 1-component links are conventionally called

knots.) We will often denote a generic n-component link as Ln, when we do not need to

choose a particular link. We will label the n circles which constitute the link as L1, . . . , Ln,

so Ln = L1 [ L2 [ · · · [ Ln. Now in order to construct the desired 3-manifold Mn, we remove

a tubular neighbourhood N(Ln) of the link from inside S3. In other words, we take Mn to

be S3 � N(Ln), i.e., the complement of Ln in S3 (Fig. 3). Since Ln is an n-component link,

its link complement Mn is a manifold with n torus boundaries,

@Mn = [n
i=1T

2, (2.3)

which is precisely what we desired. We can therefore perform the path integral of Chern

Simons theory on Mn, and obtain a state on ⌃n. In other words, for any given link Ln in S3,

the path integral of Chern Simons theory on the link complement Mn = S3�N(Ln) produces

a state |Lni in the n-fold tensor product of the torus Hilbert space H⌦n.

The discussion above was a bit abstract, but we can give a much more concrete expression

for these states in terms of a particular basis for the torus Hilbert space, which we will denote

{|ji}. In order to construct the basis state |ji, think of the torus as the boundary of a solid

torus, and insert a Wilson line in the core of the solid torus along its non-contractible cycle

in the representation Rj . For compact gauge groups, we need only consider a finite number
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results on multi-boundary entanglement in U(1) Chern-Simons theory may be rewritten from

the point of view of stabilizer groups. In Sec. 3, we will prove that the entanglement entropy

between any two sub-links of an arbitrary link gives a lower bound on the minimal-genus

Heegaard splitting which separates the two sub-links. In Sec. 4, we show that in U(1) and

SU(2) Chern-Simons theory all torus links (which can be drawn on the surface of a torus),

have a GHZ-like entanglement structure, in that partial traces lead to a separable state.

This provides a sharp quantum-information theoretic characterization of the colored Jones

polynomial for torus links. By explicit computation, we also show that many hyperbolic links

(whose link complements admit a hyperbolic structure) have W-like entanglement, in that

partial traces do not lead to separable states. In Sec. 5, we further study hyperbolic links

in the complexified SL(2,C) Chern-Simons theory, which is of interest because of its close

connection to Einstein gravity with a negative cosmological constant. In an asymptotic limit

(where one of the levels � ! 1, corresponding to small Newton constant) we discuss how the

entanglement structure is controlled by the Neumann-Zagier potential on the moduli space

of (generically incomplete) hyperbolic structures on the link complement.

2 Setup

2.1 Link Complements and the Colored Jones Polynomial

In this section, we briefly review the construction of [9]. Consider Chern Simons theory with

gauge group G at level k. The action of the theory on a 3-manifold M is given by

SCS [A] =
k

4⇡

Z

M
Tr

✓
A ^ dA +

2

3
A ^ A ^ A

◆
, (2.1)

where A = Aµdxµ is a gauge field (or equivalently, a connection on a principal G-bundle over

M). Recall from our discussion in the previous section, that we are interested in considering

disconnected spatial slices and the entanglement structure of the corresponding states. For

simplicity, we consider states defined on n copies of T 2, namely on the spatial slice (Fig. 2)

⌃n = [n
i=1T

2. (2.2)

The corresponding Hilbert space is the n-fold tensor product H⌦n, where H = H(T 2; G, k)

is the Hilbert space of Chern Simons theory on a torus (for the group G at level k). A

natural way to construct states in a quantum field theory is by performing the Euclidean

path integral of the theory on a 3-manifold Mn whose boundary is @Mn = ⌃n. In a general

field theory the state constructed in this way will depend on the detailed geometry of Mn,

for instance the choice of metric on Mn; in our situation (i.e., for a TQFT) only the topology
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The wavefunction on the equal time 
surface (multiple copies of a torus) is 
calculated by the Euclidean path integral 
on a 3-manfold with this boundary.



Information and topology of manifolds

Chern-Simons 
theory on the 
sphere with a 
link drilled out

Links

quantum wavefunction =
Jones polynomial of link

•link topology controls  
entanglement

•entanglement entropy 
classifies types of links

• U(1) Chern-Simons theory: 
entanglement entropy between 
sublinks vanishes if and only if they 
have zero Gauss linking number

• All torus links (links that can be drawn 
on a torus) have GHZ-like 
entanglement.

• Hyperbolic links (whose link 
complement admits a hyperbolic 
structure) have W-like entanglement 

• A direct connection between 
topology of manifolds and the 
topology of quantum entanglement



Quantum entanglement as a probe



Cosequences of entanglement

• Suppose A and B are entangled 
and you only measure A. This 
measurement  can collapse B, 
even though you have have not 
touched it

• So measuring A tells you 
something about B

• Not measuring B leaves A in a 
classically uncertain “mixed 
state”, quantified by entanglement 
entropy (S)

A B

A
=

p 1-p

A



Entanglement as a probe of microscopic physics

• The entangled systems A & B 
need not be spatially separated.

• They can be:  
microscopic vs. macroscopic
visible (standard model) vs. 
hidden (dark matter)

• Can such information be used to 
probe microscopic physics or 
dark matter that cannot be 
directly measured?

A B

A B

A B



Example: a generic model in string theory

• A visible sector (us) interacts 
with messengers, which interact 
with hidden (dark?) matter

• The messengers “freeze” and 
their frozen values M determine 
the “couplings” of nature, i.e. the 
strengths of the forces. 

• The messengers are entangled 
with the hidden sector.  

• The hidden sector is not 
measured

• So: the messengers should be in 
a mixed state, giving statistically 
distributed couplings 

V M H

visible hiddenmessenger

V M

visible messenger

=
M

Pr(M)
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Example: a generic model in string theory

• Can we use such entanglement 
as a probe to extend the reach 
of high energy experiments?

• Idea: each time an interaction 
occurs, the coupling is 
statistically sampled

• Strategy: treat the coupling as 
statistically distributed and fit it 
with a mean and a variance

• Perhaps this strategy can exploit 
entanglement to extend the 
reach of experiments.

V M H

visible hiddenmessenger

V M

visible messenger

=
M

Pr(M)
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Quantum entanglement, thermalization, and chaos



Information and thermalization

• Colliding heavy ions and black 
holes seem to thermalize, so that 
any subsystem is randomly 
organized with maximum entropy.

• How can isolated systems 
thermalize when physics specifies 
deterministic evolution?

• Information perspective: each sub-
system becomes maximally 
entangled with everything else.  

• If we observe only the sub-
system it has entanglement 
entropy and is statistically 
distributed.

every 
subsystem is 
maximally
entangled

=
x,p

Pr(x,p)



Information spread during thermalization 2
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FIG. 1: �L̃ � �L̃thermal (L̃ ⌘ L/`) as a function of boundary

time t0 for d = 2, 3, 4 (left,right, middle) for a thin shell (v0 =

0.01). The boundary separations are ` = 1, 2, 3, 4 (top to

bottom curve). All quantities are given in units of M . These

numerical results match analytical results for d = 2 as v0 ! 0.

AdS radius to 1. The boundary is at z = 0, where v
coincides with the observer time t. The mass function of
the infalling shell is

m(v) = (M/2) (1 + tanh(v/v0)) , (2)

where v0 determines the thickness of a shell falling along
v = 0. The metric interpolates between vacuum AdS
inside the shell and an AdS black brane geometry with
Hawking temperature T = dM1/d/4⇡ outside the shell.
2-point functions agree with those of a boundary field
theory at thermal equilibrium only if they are dominated
by geodesics that stay outside the shell.

The geodesic length L diverges due to contributions
near the AdS boundary. We introduce an ultraviolet
cut-o↵ z0 and define a renormalized correlator �L =
L+2 ln(z0/2) by removing the divergent part of the cor-
relator in the vacuum state (pure AdS). The renormal-
ized equal-time 2-point function is hO(x, t)O(0, t)iren ⇠

exp[�� �L(x, t)]. We compute the renormalized correla-
tor as a function of x and t in a state evolving towards
thermal equilibrium and compare it to the corresponding
thermal correlator. In the bulk, this amounts to comput-
ing geodesic lengths in a collapsing shell geometry and
comparing them to geodesic lengths in the black brane
geometry (�Lthermal) resulting from the collapse.

We study geodesics with boundary separation ` in
the x direction in AdS3, AdS4 and AdS5 modified by
the infalling shell. The endpoint locations are denoted
as (v, z, x) = (t0, z0,±`/2), where z0 is the UV cut-
o↵. The lowest point of the geodesic in the bulk is
the midpoint located at (v, z, x) = (v⇤, z⇤, 0). Geodesics
are obtained by solving di↵erential equations for the
functions v(x) and z(x) with these boundary conditions
and are unique in the infalling shell background. The

length of the geodesics is L(`, t0) = 2
R `/2
0 dx z⇤ z(x)�2. In

empty AdS, this gives the renormalized geodesic length
�LAdS = 2 ln(`/2).

A numerical solution for the length of geodesics cross-
ing the shell in the d = 2 (AdS3) case was obtained in [9].
We checked that physical results do not depend signifi-
cantly on the shell thickness when v0 is small, and then
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FIG. 2: Thermalization times (⌧dur, top line; ⌧max, middle

line; ⌧1/2, bottom line) as a function of spatial scale for d = 2

(left), d = 3 (middle) and d = 4 (right) for a thin shell (v0 =

0.01). All thermalization time scales are linear in ` for d = 2,

and deviate from linearity for d = 3, 4.

derived an analytical solution in the v0 ! 0 limit:

�L(`, t0) = 2 ln

"
sinh(

p
Mt0)

p
Ms(`, t0)

#
, (3)

where s(`, t0) 2 [0, 1] is parametrically defined by:

` =
1

p
M


2c

s⇢
+ ln

✓
2(1 + c)⇢2 + 2s⇢� c

2(1 + c)⇢2 � 2s⇢� c

◆�
,

2⇢ = coth(
p

Mt0) +

r
coth2(

p

Mt0)�
2c

c+ 1
, (4)

with c =
p
1� s2 and ⇢ = (

p
Mzc)�1. Here zc is the

radial location of the intersection between the geodesic
and the shell. For any given `, at su�ciently late times,
the geodesic lies entirely in the black brane background
outside the shell. In this case the length is

�Lthermal(`) = 2 ln
h
(1/

p

M) sinh
⇣p

M`/2
⌘i

, (5)

representing the result for thermal equilibrium.
We use these analytic relations in d = 2 and find

�L(`, t0) in d = 3, 4 by numerical integration. We mea-
sure the approach to thermal equilibrium by comparing
�L at any given time with the late time thermal result
(see Fig. 1). In any dimension, this compares the loga-
rithm of the 2-point correlator at di↵erent spatial scales
with the logarithm of the thermal correlator. For d = 2,
the same quantity measures by how much the entangle-
ment entropy at a given spatial scale di↵ers from the
entropy at thermal equilibrium.
Various thermalization times can be extracted from

Fig. 1. For any spatial scale we can ask for: (a) the time
⌧dur until full thermalization (measured as the time when
the geodesic between two boundary point just grazes
the infalling shell), (b) the half-thermalization time ⌧1/2,
which measures the duration for the curves to reach half
of their equilibrium value, (c) the time ⌧max at which
thermalization proceeds most rapidly, namely the time
for which the curves in Fig. 1 are steepest. These are
plotted in Fig. 2. In d = 2 we can analytically derive the
linear relation ⌧dur ⌘ `/2, as also observed in [9].
The linearity of ⌧dur(`) in 2d is expected from general

arguments in conformal field theory [7], and the coef-
ficient is as small as possible under the constraints of

S 
- 

S t
he

rm
al

von Neumann entropy of 
intervals of different length 
after a quantum quench in a 
two-dimensional conformal 
field theory

• Inject energy uniformly into the 
ground state of a field theory

• After a while the system 
thermalizes

• Track the von Neumann 
(entanglement) entropy of a 
subsytem 

• The entropy grows and sharply 
reaches the expected thermal 
value



Information, complexity and chaos

• Some thermalizing systems (e.g. 
heavy ion collisions & possibly 
black holes) thermalize at speeds 
approaching a physical bound, and 
may be maximally chaotic.

• Classical chaos = extreme 
sensitivity to initial conditions in 
nonlinear dynamics

• What is quantum chaos?   
Quantum mechanics is linear in 
the state!  Random energy  
spectrum.

• An information perspective: 
multiparty information over time  
complexity of states

simple 
state

complex
entangled
state

measuring complexity:
(a) number of operations?
(b) geometry of functions?



Information, complexity and chaos

• Quantifying complexity: how 
“hard” is it to construct the time 
evolution from “easy” gates

a1

a2

a3

Figure 3: A sample piece of a unitary quantum circuit. The red lines denote the subsystem A and the

blue lines denote the subsystem B. We have “cut” all the two-party gates acting across the bipartition

by using their operator Schmidt decomposition into sums of products of one-party operators.

on A (or B) will be upper bounded by JnAB
G

. Therefore, the entanglement entropy between

A and B satisfies the upper bound5

SA  ln(JG) nAB. (2.8)

While this upper bound is satisfied by every quantum circuit which constructs  from the

given gate set G, the bound will be the tightest for the circuit which minimizes nAB. Therefore,

we conclude that

SA  ln(JG) Cb(A, B), (2.9)

or equivalently

Cb(A, B) � 1

ln(JG)
SA. (2.10)

This bound shows that the binding complexity of the state with respect to a bipartition is

lower bounded by the entanglement entropy. Intuitively this is clear, because if we are to

build a state with a certain amount of entanglement, then we will need su�ciently many gates

to achieve this.

We can easily generalize this bound to multipartite systems. Consider for example a

tripartite system HA ⌦HB ⌦HC consisting of NA, NB, and NC qubits respectively. Then by

cutting arguments similar to those used above, we obtain

SA  ln(JG) (nAB + nAC), SB  ln(JG) (nBA + nBC), SC  ln(JG) (nCB + nCA), (2.11)

which gives

(SA + SB + SC)  2 ln(JG)(nAB + nBC + nCA). (2.12)

5There is of course the trivial bound on this entropy SA  lnmin(dimHA, dimHB). However, in general

this bound scales with the system size, and will be much weaker than the one in terms of the number of cuts

in the quantum circuit.
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t

Figure 1: Schematic of the unitary manifold (gray disk). A geodesic path (black) is depicted

from the identity to some target unitary U . The red straight lines represent construction of

a circuit using some elementary gates gi, and the final unitary is U = g3g2g1. The geodesic

approximates the circuit smoothly by varying a control velocity V (s), analogous to an in-

finitesimal elementary gate, where s parametrizes the curve.

which attempted to deal with the global structure of the unitary group relied on toy models

[4, 36] of Lie group geometry. These models were constructed using metrics of strictly negative

sectional curvature (or a discretization thereof, in the case of [36]) in order to ensure chaotic

behavior of geodesics on the unitary manifold [4]. Here, we approach the problem of circuit

complexity by studying aspects of geodesics on the complete group manifold SU(2N/2), which

is the unitary group acting on the Hilbert space of N/2 qubits. Our primary motivation is

to study complexity growth in chaotic quantum systems as opposed to free field theories. To

this end, we will use the (generalized) Sachdev-Ye-Kitaev (SYK) model as a specific example

of a chaotic Hamiltonian, although most of our arguments are general and should apply to

any chaotic system.

Recall that the SYK model is a quantum-mechanical system comprising N Majorana

– 3 –

• Continuous version: find the 
length of the shortest geodesic in 
the unitary group manifold 
between the identity and U(t), 
with a metric that is small in the 
“easy” (local) directions and big in 
the “hard” (nonlocal) directions.



Information, complexity and chaos

fermions  i with the Hamiltonian

H =
X

i1<···<iq

Ji1...iq i1 . . . iq , (1.1)

where the couplings Ji1...iq are drawn at random from a Gaussian distribution with mean zero

and variance �2

�2 =
(q � 1)!J 2

N q�1
, (1.2)

where J is a parameter setting the variance [37]. This model is expected to be chaotic and

holographically dual to 2D quantum gravity [38–41] (see also [42] for a review and additional

references). From the SYK perspective, the group SU(2N/2) is the group of unitary operations

(modulo an overall phase) acting on the Hilbert space of the N Majorana fermions (with N

even)  i. Our main tool in studying the complexity in this model will be the Euler-Arnold

equation [19, 43, 44], which was also used in a simpler setting in [45].

t ⇠ eN t ⇠ eeN
t

C

Cmax

Figure 2: The complexity in chaotic systems is conjectured [4] to grow linearly in time until a time

of order eN , after which it saturates to (and fluctuates around) its maximum value of Cmax. At doubly

exponential time, the complexity is expected to exhibit recurrences. .

From physical considerations and holographic as well as complexity-theoretic arguments,

the complexity in chaotic systems has been conjectured [4] to grow linearly in time until a

time of order eN , after which it is expected to saturate to (and fluctuate around) its maximum

value of Cmax ⇠ poly(N)eN (see Fig. 2), where by poly(N) we mean N↵ for some ↵ � 0.

Here N is the number of fermions in the SYK model, but more generally it should be taken

to be log of the dimension of the Hilbert space. The motivation of the present work is to

better understand the origin of this behavior and the various time scales involved from a

field theory perspective, within the geodesic complexity framework. One of our main results

will be to establish the existence and local minimality of a geodesic between the identity and

– 4 –

Expected complexity growth
in chaotic theories

• Chaotic theories: expect linear 
growth of complexity for exponential 
time

• Integrable theories: expect oscillation 
of complexity in polynomial time

Eigenstate complexity hypothesis

e�iHt whose length grows linearly with time t. The existence of such a geodesic only relies

on general features such as the Hamiltonian being local (i.e., it should be built from easy

generators), and uniformity of the cost factor in the easy directions. However, this is not the

whole story – the linear geodesic is not guaranteed to be a local minimum of the distance

function (i.e., it could be a saddle point), much less a global minimum. As such, it may not be

the relevant geodesic for complexity. In this paper, we will investigate in depth the question

of local minimality of the linear geodesic by studying conjugate points along it. Roughly, we

say that we have a conjugate point at time t if we can deviate infinitesimally from the linear

geodesic at time t = 0 (i.e., deform the initial velocity infinitesimally) and return to it at time

t along an infinitesimally nearby curve which satisfies the geodesic equation linearized to first

order. The original geodesic stops being minimizing past the first conjugate point (i.e., it

is a saddle point thereafter), and so for the physical considerations explained in Fig. 2 to

be correct, it is necessary (but not su�cient) that the first conjugate point along the linear

geodesic appears at times exponential in N . We will show that this is indeed the case for

“su�ciently chaotic” Hamiltonians (such as the SYK model) and for an appropriate choice

of the cost factors. Therefore, the linear geodesic is at least locally minimizing for times

exponential in N , consistent with the expectations in Fig. 2. Our proof will involve a new

criterion on the Hamiltonian from the vantage point of circuit complexity which we will call

the eigenstate complexity hypothesis (ECH):

Eigenstate Complexity Hypothesis (ECH): Let H be the Hamiltonian with energy

eigenstates |mi, |ni etc., T↵ be the local generators in the Lie algebra, and T↵̇ be the non-

local generators. Define

Rmn =

P
↵

|hm|T↵|ni|2P
↵

|hm|T↵|ni|2 +
P

↵̇
|hm|T↵̇|ni|2 . (1.3)

We will say that the Hamiltonian and the gate set satisfy the eigenstate complexity hypothesis,

if for Em 6= En in the large-N limit,

Rmn = e�2Spoly(S) rmn, (1.4)

where S is the log dimension of the Hilbert space (i.e., N

2 ln 2 for the SYK model) and rmn

are O(1) numbers which do not scale with S.

In words, ECH is the condition that o↵-diagonal eigenstate projectors of the form |mihn|
which map one energy eigenstate of the Hamiltonian to a di↵erent eigenstate should have e�S

suppressed overlaps with the easy/local/simple directions in the gate set, or equivalently, such

o↵-diagonal energy eigenstate projectors must necessarily be “complex” (i.e., complicated).2

2We discuss the relationship with the well-known Eigenstate Thermalization Hypothesis (ETH) [46, 47] in

the main text.
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local Lie algebra generators

nonlocal Lie algebra generators

The Hamiltonian and the gate set satisfy 
the Eigenstate Complexity Hypothesis 
(ECH) if
for any m and n with
and S = log(dimension of Hilbert space), 
rmn = O(1)energy eigenstates

If a theory satisfies ECH, can prove that complexity grows linearly for exp. time.

Hypothesis: all chaotic theories satisfy ECH because of nonlocal, multiparty 
entanglement in the energy eigenstates.



Quantum entanglement and spacetime architecture



Black holes

• Classically, things enter black 
holes horizons and never leave

• But black holes evaporate away 
due to quantum mechanics.

• The radiation looks thermal 
(totally random) = destruction of 
information.   PARADOX!

• What are the quantum microstates 
that give rise to the entropy?

• How do we recover information 
about the microstate?

formation
•mass
• charge
• angular mom.

horizon area = entropy
surface gravity = temperature

evaporation
quantum pair 
production



Information recovery from black holes

• IDEA:  The emitted radiation and 
the internal microstates are 
quantum mechanically entangled.

• So, measuring the radiation gives 
you information about the 
microstate. The general theory of 
quantum communication then 
predicts:

the identity of the microstate is 
concealed until the half-way 
point of evaporation
after that the information is 
recovered very rapidly

or ?

evaporation

formation

inside outside

entangled



Does gravity geometrize information?

• Horizon area ~ entropy.  Why?

• In many theories, entanglement 
entropy of a region is 
proportional to the area of the 
boundary

• Is horizon area = inside/outside 
entanglement entropy?

• Need:
enough microstates from 
quantum gravity/string theory
a mechanism for entanglement

  A dream
All of geometry & gravity from 
information?

accelerated 
observers see a
horizon and
Area ~ Entropy

Unruh radiation: the analog of 
for accelerated observers of 
Hawking radiation

Empty flat space



Geometry = Information?

• Toy model: gravity in universes with 
negative curvature (negative dark 
energy) = “AdS space”

• Area of minimal surfaces in AdS = 
entanglement entropy of 
subtended region in the boundary

• Area of general surfaces AdS ~ 
differential entropy in boundary 
(macro-micro entanglement)

• First law of entanglement = 
Einstein’s equation in an order by 
order expansion

Anti-de Sitter space

AdS
Quantum gravity in AdS

=
Boundary “field theory”

A

B
s

Equal time slice

t

s = minimal surface

s s = general surface

Is spacetime emergent 
from information?



Information knits spacetime: It from bit?

• Two regions of space A and B are 
connected if they are entangled

• The area of the boundary 
between A & B is related to their 
entanglement entropy

• Evidence in AdS space: many 
examples where increasing/
decreasing entanglement between 
subregions increases/decreases 
area of the interface

A B

A B



Entanglement and wormholes

• Test: entanglement between 
distant regions A & B should 
create a wormhole.  

• Examples in the AdS/CFT 
correspondence:  entangling 
distinct boundary field theories 
produces wormholes in the 
corresponding gravity description

• So maybe spacetime connectedness 
= entanglement of the underlying 
quantum “atoms of spacetime”

A

B

C

A B



Many questions to think about

• How to measure entanglement/
information across time?

• How to characterize information 
shared by many parties?

• How to measure the complexity of 
chaotic states?

• Is there a topology of 
entanglement?

• Can entanglement be used to probe 
microscopic, hidden physics?

• Does entanglement rescue 
information from black holes?

• Does entanglement create 
wormholes/spacetime connection?

• Does It come from Bit?

vi
si

bl
e

hi
dd

en

messenger

A B



The End


