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Active  neutrinos  have  small  mass,  they  
mix  with  each  other
There  may  be  additional  light  sterile  
neutrinos
Electrically  neutral,  has  the  possibility  of  
being  its  own  anti-­particle,  Majorana  
particle.  Dirac  or  Majorana  particle?
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I. INTRODUCTION
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Note that in the most general case, because non-zero Majorana

phases, the parameters a, b̃, c, d, � and � are all complex.
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One has the degrees of freedom to redefine the neutrino fields phases

the most general form of the above mass matrix can be rewritten as
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where the phases p
i

are arbitrary. One can choose some particular values for p
i

to obtain forms
of m

⌫

for convenience of analysis. For example the “-” sign for the “13” and “31” entries can be
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To  have  Dirac  mass,  need  to  introduce  right  handed  neutrinos  νR:  (1,1)(0)
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As the general model is expected to be able to fit data, it may be more instructive to analyse
some simplified versions than just providing with numbers. We provide more details of Model A
and Model B discussed earlier next to see how additional assumptions restrict the level of model
agreement with data.

B. Model A predictions

Type-III: Introduce triplet lepton representations ⌃: (1,3,0) )

(Foot, Lew, He and Joshi, 1989).
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The predictions for � and ✓23 are ±⇡/2 and ✓23 = ⇡/4,

Additional information for fixing the sign of �
CP

. Since � should be close to �⇡/2, should take
c2 > s2.

s13 = (1� 2cs)1/2/
p
3 is not predicted.

Fix cs = 0.497± 0.018 to predict s212 = 0.334± 0.004 for both NH and IH cases.

Note that V 2
e2 = (s12c13)2 = 1/3.

The s13 and |V
e2| agree with data within 1�.

But s23 outside 1�, can be consistent with data at 2 � level.

It is remarkable that neutrino mixing matrix in this model with just one free parameter can be
in reasonable agreement with data. This may be a hint that it is the form for mixing matrix, at
least as the lowest order approximation, that a underlying theory is producing. One should take
this mass matrix seriously in theoretical model buildings.

If the parameters in the set P are complex,

therefore a new phase ⇢ appears in the model.

⇢ can be used to improve agreement of the model with data.

In both NH and IH cases,

fixing cs and cos ⇢ to be 0.468 and 0.992, respectively.

s23 and � are determined to:

0.534 and 1.426⇡, respectively.

These values are in agreement with data at 1� level.

For the case with c = s, the model is more restrictive. In this case sin � = 0. With more precise
data on the CP violating angle �, this may rule out this simple case with high confidence level. If
⇢ = 0, the model is already ruled out at high precision from s13 measurement. However, with a
non-zero ⇢, the mixing angles can still be made to in agreement at 2� level. In Figure.(??) we show
s12, s23, s13 as functions of ⇢. When chose cos⇢ = 0.93, we can get s12 = 0.58, s23 = 0.78, s13 = 0.15
which agree with the experimental data within 2� range.

More precise experimental data are required to distinguish the model with complex model pa-
rameters from that with the real parameters and other models, or to rule out the above simples
completely.
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Table 14.7: The best-fit values and 3σ allowed ranges of the 3-neutrino
oscillation parameters, derived from a global fit of the current neutrino oscillation
data (from [174]) . The values (values in brackets) correspond to m1 < m2 < m3
(m3 < m1 < m2). The definition of ∆m2 used is: ∆m2 = m2

3 − (m2
2 +m2

1)/2. Thus,
∆m2 = ∆m2

31 − ∆m2
21/2 > 0, if m1 < m2 < m3, and ∆m2 = ∆m2

32 + ∆m2
21/2 < 0

for m3 < m1 < m2.

Parameter best-fit (±1σ) 3σ

∆m2
21 [10−5 eV 2] 7.54+0.26

−0.22 6.99 − 8.18

|∆m2| [10−3 eV 2] 2.43 ± 0.06 (2.38 ± 0.06) 2.23 − 2.61 (2.19 − 2.56)

sin2 θ12 0.308 ± 0.017 0.259 − 0.359

sin2 θ23, ∆m2 > 0 0.437+0.033
−0.023 0.374 − 0.628

sin2 θ23, ∆m2 < 0 0.455+0.039
−0.031, 0.380 − 0.641

sin2 θ13, ∆m2 > 0 0.0234+0.0020
−0.0019 0.0176− 0.0295

sin2 θ13, ∆m2 < 0 0.0240+0.0019
−0.0022 0.0178− 0.0298

δ/π (2σ range quoted) 1.39+0.38
−0.27 (1.31+0.29

−0.33) (0.00 − 0.16) ⊕ (0.86 − 2.00)

((0.00− 0.02) ⊕ (0.70 − 2.00))

phases in the neutrino mixing matrix is available. Thus, the status of CP symmetry in
the lepton sector is unknown. With θ13 ̸= 0, the Dirac phase δ can generate CP violation
effects in neutrino oscillations [43,55,56]. The magnitude of CP violation in νl → νl′ and
ν̄l → ν̄l′ oscillations, l ̸= l′ = e, µ, τ , is determined, as we have seen, by the rephasing
invariant JCP (see Eq. (14.19)), which in the “standard” parametrisation of the neutrino
mixing matrix (Eq. (14.78)) has the form:

JCP ≡ Im (Uµ3 U∗
e3 Ue2 U∗

µ2) =
1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ . (14.79)

Thus, given the fact that sin 2θ12, sin 2θ23 and sin 2θ13 have been determined
experimentally with a relatively good precision, the size of CP violation effects in
neutrino oscillations depends essentially only on the magnitude of the currently not well
determined value of the Dirac phase δ. The current data implies |JCP |! 0.040 | sin δ|,
where we have used the 3σ ranges of sin2 θ12, sin2 θ23 and sin2 θ13 given in Table 14.7.
For the best fit values of sin2 θ12, sin2 θ23 and sin2 θ13 and δ we find in the case of
∆m2

31(2) > 0 (∆m2
31(2) < 0): JCP

∼= − 0.032 (− 0.029). Thus, if the indication that

δ ∼= 3π/2 is confirmed by future more precise data, the CP violation effects in neutrino
oscillations would be relatively large.

As we have indicated, the existing data do not allow one to determine the sign of
∆m2

A = ∆m2
31(2). In the case of 3-neutrino mixing, the two possible signs of ∆m2

31(2)
correspond to two types of neutrino mass spectrum. In the widely used conventions of
numbering the neutrinos with definite mass in the two cases, the two spectra read:

August 29, 2014 14:37

Where  have  we  come  from  and  where  will  we  go?Where  have  we  come  from  and  where  will  we  go?



VCKM ~VCKM ~

Very  different  quark  and  lepton  mixing  patterns

Mixing  pattern  in  quark  sector

Very  different  quark  and  lepton  mixing  patterns

Mixing  pattern  in  quark  sector

Mixing  pattern  in  lepton  sectorMixing  pattern  in  lepton  sector



Experimental  discovery  of  neutrino  mixingExperimental  discovery  of  neutrino  mixing



Abundant  data  show  that  neutrinos  have  
non-­zero  masses  and  mix  with  each  other.
Solar  neutrino  oscillation:    Homestake,  Sage+Gallex/GNO,    
Super-­K,  SNO,Borexino  …

Atmospherical  neutrino  oscillation:  Super-­Kamokande,  …  

Accelerator  neutrino  source:  K2K,  Minos  ,  Nova …

Reactor  neutrino  source:  Kamland,  T2K,  Chooz,  Daya-­Bay,  Reno…

have  observed  neutrino  oscillation  phenomenon.

LSND  and  Miniboon…?
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We present an analysis of atmospheric neutrino data from a 33.0 kton yr (535-day) exposure of the Super-Kamiokande detector.
The data exhibit a zenith angle dependent deficit of muon neutrinos which is inconsistent with expectations based on
calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross
sections are unable to explain our observation. The data are consistent, however, with two-flavor  oscillations with 
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ABSTRACT

We present an analysis of atmospheric neutrino data from a 33.0 kton yr (535-day) exposure of the Super-Kamiokande detector.
The data exhibit a zenith angle dependent deficit of muon neutrinos which is inconsistent with expectations based on
calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross
sections are unable to explain our observation. The data are consistent, however, with two-flavor  oscillations with 

 and  at 90% confidence level.
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Simultaneous solutions to the solar and atmospheric neutrino problems via Fritzsch-type
lepton mass matrices

A. J. Davies* and Xiao-Gang He
Research Centre for High Energy Physics, School of Physics, University ofMelbourne, Parkville 3052, A ustralia

(Received 11 June 1992)

We present a simultaneous solution for the solar and atmospheric neutrino problems by constructing a
left-right-symmetric model which yields Fritzsch-type leptonic mass matrices. Requiring the two neutri-
no problems to be solved simultaneously fixes the parameters of the model and leads to a prediction of an
expected observation of solar neutrinos at the level of 50 to 120 solar neutrino units in the "Ga detectors
in the GALLEX and SAGE experiments. Our predictions are consistent with results from both experi-
ments, particularly the measured flux and the allowed mixing parameter values recently reported from
GALLEX.

PACS number(s): 12.15.Ff, 13.15.—f, 14.60.Gh, 96.60.Kx

The well-known discrepancy between the expected [I]
and observed cruxes of solar neutrinos at various detec-
tors [2,3] has recently been joined by an apparent prob-
lem with the neutrino flux from cosmic rays [4]—so-
called "atmospheric neutrinos. " The observed ratio [4]
of the number of atmospheric muon neutrinos to electron
neutrinos compared to the expected ratio [5] is

(v /v, ),„' '" =O.6+'"+O.OS .

space for 5m, „and sin 20„, from the solution to the solar
neutrino problem are shown in Fig. 1.
It is not difticult to find appropriate values of the four

parameters 5m, „,sin 28„„5m,„,and sin 26)„,if we allow
the lepton mass matrices to take on their most general
forms, but such arbitrariness leaves us with no predictive
power. If we have a more restrictive form of the lepton
mass matrices, we may be able to derive predictions. One
of such form is the Fritzsch type, i.e., matrices of the gen-
eric form [8]

These discrepancies may be due to problems in the stan-
dard solar model and the theory of neutrino fiuxes in the
atmosphere, or it may be indicative of a hitherto unseen
property of the neutrinos themselves. For example, neu-
trino flavor oscillations [4,6] or fast decays of some neu-
trino type(s) [7] may be responsible. In this paper we
pursue the former explanation for a simultaneous solu-
tion to these two problems, in the context of a model
which has a restricted form of the leptonic mass
matrices —Fritzsch mass matrices [8], as originally pro-
posed for the quark sector.
If there is oscillation between only two types of neutri-

nos, for example v, —v„oscillation, it is not possible to
have simultaneous solutions to both the solar and the at-
mospheric neutrino problems. There must be three types
of neutrinos with appropriate mixing angles and mass
differences. In the following we will assume that the so-
lar neutrino problem is solved by v, —v„oscillation. In
this case the solution to the atmospheric neutrino prob-
lern must be due to v„—v, oscillation. The required mix-
ing and mass difference between v„and v, to solve the at-
mospheric neutrino problem are sin 20„,-0.4 to 1.0, and
5m,„—10 to 0.3 eV [4], and the allowed parameter
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FIG. 1. The figure shows (boldly outlined) the two regions in
sin'20» —6m» space allowed to solve the solar neutrino prob-
lem. The solid contour lines are the v, flux from the Sun as re-
ceived at the Earth in units of SNUs expected in 'Ga detectors.
The hatched areas are those which correspond to simultaneous
solution of the atmospheric neutrino problem and solar neutri-
no problem within our model. Adapted from Ref. [11].
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with  RG  effects!
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FIG. 1: Left panels: regions allowed by the LBL experiments
T2K and NOνA and by the θ13-sensitive reactor experiments
for normal hierarchy (upper panel) and inverted hierarchy
(lower panel). Right panels: regions allowed by their com-
bination. The mixing angle θ23 is marginalized away. The
confidence levels refer to 1 d.o.f. (∆χ2 = 1.0, 2.71).

A. Results of the 3-flavor analysis

In the 3-flavor analysis, the two mixing angles (θ13,
θ23) and the CP-phase δ13 are treated as free parame-
ters, taking into account the external prior sin2 θ23 =
0.51± 0.05 provided by the νµ → νµ disappearance mea-
surement [38] performed by T2K. For the atmospheric
mass splitting we use the best fit value |∆m2

13| = 2.4 ×
10−3 eV2 obtained in the same analysis. The solar mass-
mixing parameters are fixed at the best fit value obtained
in the global analysis [5].
Figure 1 shows the results of the analysis for the two

cases of NH (upper panels) and IH (lower panels) in the
plane spanned by the two variables [sin2 2θ13, δ13], the
atmospheric mixing angle θ23 having been marginalized
away. The left panels report the regions allowed by the
combination of T2K (νe and ν̄e) and NOνA (νe) for the
confidence levels 68% and 90% (1 d.o.f.). When pos-
sible [T2K (νe) and NOνA (νe)], we have verified that
the results of our analysis obtained for the single ex-
periments in each channel return basically the contour
plots presented by the collaborations. The narrow ver-
tical band displayed in both panels represents the range
allowed at 68% C.L. for θ13 by the reactor experiments.
It is interesting to note that at the 68% C.L., the con-
tours determined by the combination of T2K and NOνA
are closed regions around the best fit value δ13 ≃ −π/2.
This means, that thanks to the information coming from
the two channels (νµ → νe and ν̄µ → ν̄e) the LBL ex-
periments are starting to probe the CP symmetry in a
direct way. This situation is qualitatively different from
the preexisting one, where the extraction of the informa-

tion on δ13 was indirect, i.e. not based upon a manifest
observation of CPV. In fact, the previous hints in favor
of δ13 ≃ −π/2 derived from the combination of T2K (νe)
and reactor data.
Fig. 1 shows appreciable differences between the two

cases of NH and IH, which can be traced to the presence
of the matter effects. As discussed in Sec. II, these tend to
increase (decrease) the theoretically expected νe rate in
the case of NH (IH). The opposite is true for ν̄e’s but their
weight in the analysis is lower, so the neutrino datasets
dominate. In addition, as discussed in Sec. II, the NOνA
νe data are more sensitive than the T2K νe data to the
matter effects. Therefore, the neutrino datasets are far
more relevant for what concern the sensitivity to NMH.
More specifically, the following differences among the two
hierarchies emerge, which will persist also in the 4-flavor
analysis. The regions obtained for the case of IH: i) are
shifted towards larger values of θ13. ii) are slightly wider
in the variable θ13 with respect to those obtained in the
NH case, and iii) tend to prefer (reject) values of sin δ13 <
0 (sin δ13 > 0) in a more pronounced way.
The two right panels of Fig. 1 show that the combi-

nation of the reactor experiments with LBLs tends to
further reinforce the preference for values of δ ∼ −π/2,
disfavoring the case of no CPV (δ13 = 0,π) at roughly the
90% C.L. In addition, we note that the weak preference
for the case of normal hierarchy tends to consolidate, be-
ing χ2

NH − χ2
IH ≃ −1.3, to be compared with the result

χ2
NH − χ2

IH = −0.8 obtained in our previous work [8].
However, the statistical significance of the indication is
still low and below the 90% C.L.
A final remark is in order concerning the two events

selection methods used by NOνA. As already stressed
above, we have conservatively adopted the results ob-
tained with the primary selector (LID). By adopting the
results obtained by the second selector (LEM), which
identifies a relatively larger number of νe events (11 vs 6),
we find that both the indication on the CP-phase δ13 and
that on the NMH are slightly enhanced. More precisely,
the rejection of the CP-conservation cases (δ13 = 0,π)
and the rejection of the inverted hierarchy both rise, re-
spectively, at about the 2σ level and 1.5σ level. A com-
bination of the results obtained with the two events se-
lection methods is not trivial because they are strongly
correlated. However, one can guess that such a combined
analysis would provide results which are intermediate be-
tween those obtained using the two methods.

B. Results of the 4-flavor analysis

Figure 2 displays the results of the 4-flavor analysis for
the case of NH. The four panels represent the regions al-
lowed by T2K + NOνA in the usual plane [sin2 θ13, δ13]
for four different choices of the new CP-phase δ14. We
have fixed the four-flavor parameters at the following
values: s214 = s224 = 0.025, s234 = 0, δ34 = 0 and
∆m2

14 = 1 eV2. As a benchmark we also report the
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Result using LEM selector 

FD selection: 11 𝜈e candidates 
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Note that in the most general case, because non-zero Majorana

phases, the parameters a, b̃, c, d, � and � are all complex.
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One has the degrees of freedom to redefine the neutrino fields phases and the most general form
of the above mass matrix can be rewritten as
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where the phases p
i

are arbitrary. One can choose some particular values for p
i

to obtain forms
of m

⌫

for convenience of analysis. For example the “-” sign for the “13” and “31” entries can be
removed by choosing p1 = p2 = 0 and p3 = ⇡, the resultant matrix can be written in a more familiar
forms
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where b = �b̃.

If neutrinos do not have non-trivial Majorana phases,
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Replacing � = �⇡/2 by � = ⇡/2, the neutrino mass matrix is given in a similar form as that
in eq.(3), but � and � need to be multiplied by a “-” sign. This implies that without further
information given, a general mass matrix in the form given by eq.(3) can give � = ±⇡/2 and
✓23 = ⇡/4. Whether they predict +⇡/2 or �⇡/2, additional information need to be provided[11].
It has been pointed out that the general form in eq.(3) is a necessary condition for � = ±⇡/2 and
✓23 = ⇡/4, but not su�cient condition. In our later discussions, unless specified, the mass matrix
of the form in eq.(3) is always referred to a general form whose elements are not necessarily given
by those in eq.(2). While the mass matrix in the form of eq.(4) provide su�cient condition for
� = ±⇡/2 and ✓23 = ⇡/4 when s13 and sin � are not zero. The simplicity of the above mass matrix
may serve as a good starting point to understand possible underlying theory. In fact it has been
shown that the above neutrino mass matrix is a consequence of imposing a symmetry of the form
e ! e, µ and ⌧ exchange with CP conjugation discussed by Grimus and Lavoura in Ref.[8], which
we will refer to as the Grimus-Lavoura symmetry (GLS).

In this work, we study realizations of � = ±⇡/2 and ✓23 = ⇡/4 in type II seesaw model with
A4 flavor symmetry. Models based on A4 symmetry has been shown to be able to provide a good
scenario to achieve this[11, 12]. In A4 models, the charged lepton mass matrix M
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where ! = exp(i2⇡/3) and !2 = exp(i4⇡/3). U
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is a unitary matrix, but does not play a role in
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. We will not specify its form here.
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where s(a) denotes symmetric (antisymmetric) product. Let (x1, x2, x3) and (y1, y2, y3)

denote the basis vectors for two 3’s. Then

(3 ⊗ 3)3s = (x2y3 + x3y2 , x3y1 + x1y3 , x1y2 + x2y1), (A.3)

(3 ⊗ 3)3a = (x2y3 − x3y2 , x3y1 − x1y3 , x1y2 − x2y1), (A.4)

(3 ⊗ 3)1 = x1y1 + x2y2 + x3y3, (A.5)

(3 ⊗ 3)1′ = x1y1 + ω x2y2 + ω2 x3y3, (A.6)

(3 ⊗ 3)1′′ = x1y1 + ω2 x2y2 + ω x3y3, (A.7)

in an obvious notation.

B. Higgs potential

The GSM ⊗A4-invariant, renormalisable Higgs potential terms consistent with the discrete

Z2 subgroup of U(1)X are given by

V (Φ) = µ2
Φ(Φ†Φ)1 + λΦ

1 (Φ†Φ)1(Φ†Φ)1 + λΦ
2 (Φ†Φ)1′(Φ†Φ)1′′

+ λΦ
3 (Φ†Φ)3s(Φ

†Φ)3s + λΦ
4 (Φ†Φ)3a(Φ

†Φ)3a

+ iλΦ
5 (Φ†Φ)3s(Φ

†Φ)3a. (B.1)

V (χ) = µ2
χ(χχ)1 + δχ(χχχ)1 + λχ

1 (χχ)1(χχ)1 + λχ
2 (χχ)1′(χχ)1′′

+ λχ
3 (χχ)3(χχ)3. (B.2)

V (φ) = µ2
φ(φ†φ) + λφ(φ†φ)2 (B.3)

V (Φ,χ) = δΦχ
s (Φ†Φ)3sχ + iδΦχ

a (Φ†Φ)3aχ + λΦχ
1 (Φ†Φ)1(χχ)1

+ λΦχ
2 (Φ†Φ)1′(χχ)1′′ + λΦχ∗

2 (Φ†Φ)1′′(χχ)1′

+ λΦχ
3 (Φ†Φ)3s(χχ)3 + iλΦχ

4 (Φ†Φ)3a(χχ)3. (B.4)

V (Φ,φ) = λΦφ
1

(Φ†Φ)1(φ†φ) + λΦφ
2

(Φ†φ)(φ†Φ) + λΦφ
3

(Φ†φ)(Φ†φ)

+ λΦφ∗
3

(φ†Φ)(φ†Φ). (B.5)

V (φ,χ) = λφχ(φ†φ)(χχ)1. (B.6)

There is no renormalizable term simultaneously involving Φ, φ and χ allowed by the

Z2 subgroup of U(1)X , that is, V (Φ,χ,φ) = 0.

The total potential is given by

V = V (Φ) + V (χ) + V (φ) + V (Φ,χ) + V (Φ,φ) + V (φ,χ) + V (Φ,χ,φ). (B.7)

C. A supersymmetric dynamical completion

For the sake of supplying an existence theorem, we have constructed one example of such a

theory. It is rather elaborate, in that it requires an additional discrete Z12 ⊗Z2 symmetry
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A4 group is defined as the set of all twelve even permutations of four object.

It has three one-dimensional representations 1, 10 and 100

and one three-dimensional irreduciblerepresentation 3.

Multiplication rules

3⇥ 3 = 3
s

+ 3
a

+ 1 + 10 + 100

1⇥ 1
i

= 1
i

, 10 ⇥ 10 = 100, 100 ⇥ 100 = 10, 10 ⇥ 100 = 1

which can be diagonlized by unitary matrix V
⌫

, M
⌫

= V
⌫

m̂
⌫

V T

⌫

.

The mixing matrix V
PMNS

is given by

V
PMNS

= U †
l

V
⌫

. (11)

If one imposes the GLS on the neutrino mass matrix, all parameters in the set P = (w
i

, x, y, z)
are dictated to be real, and will predict[11, 12] � = ±⇡/2 and ✓23 = ⇡/4. Therefore in A4 model
building for neutrino masses with � = ±⇡/2 and ✓23 = ⇡/4, it is essentially to make sure that U

l

is of the form given by eq.(7) and require the resulting mass matrix to satisfy GLS. Note that in
this case since the parameters in set P are all real, the complexity of the mixing matrix is purely
due to the appearance of ! and !2. When the GLS is broken by allowing the parameters in P to
be complex, there are more sources for CP violation and the model does not predict � = ±⇡/2
and ✓23 = ⇡/4 automatically. This points a way to modify the predictions to fit data should future
experiments will find � and ✓23 to be deviate significantly from �⇡/2 and ⇡/4. We will study both
cases with the parameters in set P to be real and complex in the rest of the paper.

II. TYPE II SEESAW MODEL WITH A4 SYMMETRY

We now construct a type II seesaw model[13] with A4 family symmetry to realize the forms
of mass matrices in eqs.(5) and (6). A di↵erent model based on type II seesaw with A4 has
been constructed to realized tribi-maximal neutrino mixing[14]. In our model, the left-handed
lepton doublet l

L

and right-handed charged lepton singlet l
R

have the following standard SU(3)
C

⇥
SU(2)

L

⇥ U(1)
Y

gauge and A4 family symmetry properties

l
L

: (1, 2,�1)(3) , l
R

: (1, 1,�2)(1 + 100 + 10) , (12)

where the first three numbers in the first bracket indicate the SU(3)
C

, SU(2)
L

and U(1)
Y

trans-
formation properties. The numbers in the second bracket indicate the A4 representations.

To obtain desired mixing pattern, the Higgs sector is enlarged to have two types of Higgs
doublets, � and �, and two triplets, � and � for neutrino masses. They transform as

� : (1, 2,�1)(1) , � : (1, 2,�1)(3) , �0,0,00 : (1, 3,�2)(1 + 10 + 100) , � : (1, 3,�2)(3) . (13)

The Lagrangian responsible for the lepton mass matrix is

L = y
e

l̄
L

�̃l1
R

+ y
µ

l̄
L

�̃l2
R

+ y
⌧

l̄
L

�̃l3
R

+ Y 0
⌫

l̄
L

�0lc
L

+ Y
0

⌫

l̄
L

�
0
lc
L

+ Y
00

⌫

l̄
L

�
00
lc
L

+ y
⌫

l̄
L

�lc
L

+H.C. (14)

If the structure of the vacuum expectation value (vev) is of the form < �
i

>= v�
i

, < �
i

>= v�
i

,
< � >= v

�

, and < �0,0,00 >= v0,
0
,

00

� , one obtains the charged lepton and neutrino mass matrice M
l
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Assuming that the charged lepton mass matrix M
l

is diagonalized from left by U
l

,

M
l

= U
l

m̂
l

U
r

, U
l

=
1p
3

0

@
1 1 1
1 ! !2

1 !2 !

1

A , (7)

where ! = exp(i2⇡/3) and !2 = exp(i4⇡/3).

A4 models usually have the above characteristic U
i

.

U
r

is a unitary matrix, but does not play a role in determining V
PMNS

.

If neutrinos are Majorana particles, the most general mass matrix is

M
⌫

=

0

@
w1 x y
x w2 z
y z w3

1

A , (8)

In the basis where charged lepton is digonalized,

the neutrino mass matrix is of the form given by U †
l

M
⌫

U⇤
l

with

A11 =
1

3
(w1 + w2 + w3 + 2(x+ y + z)) ,

A22 =
1

3
(w1 + !w2 + !2w3 + 2(!2x+ !y + z)) ,

A33 =
1

3
(w1 + !2w2 + !w3 + 2(!x+ !2y + z)) , (9)

A12 =
1

3
(w1 + !2w2 + !w3 � !x� !2y � z) ,

A13 =
1

3
(w1 + !w2 + !2w3 � !2x� !y � z) ,

A23 =
1

3
(w1 + w2 + w3 � (x+ y + z)) .

If the parameter set P = (w1, w2, w3, x, y, z) is real, then

A11 = A⇤
11 A23 = A⇤

23

A22 = A⇤
33 A12 = A⇤

13

(10)

The mass matrix is of the form given by eq B, ✓23 = ⇡/4 and �
CP

= ±⇡/2
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Diagonalizing the mass matrices, we have

V
PMNS

=
1p
3

0

@
c+ sei⇢ 1 cei⇢ � s
c+ !sei⇢ !2 !cei⇢ � s
c+ !2sei⇢ ! !2cei⇢ � s

1

A , (30)

tan ⇢ = Im(yw⇤
1 + y⇤w3)/Re(yw⇤

1 + y⇤w3),

s = sin ✓ and c = cos ✓,

tan 2✓ =
2|yw⇤

1 + w3y
⇤|

|w1|2 � |w3|2
. (31)

Majorana phases ↵
i

of m
i

↵1,3 = Arg(w
i

(1± cos 2✓) + w2e
�i2⇢(1⌥ cos 2✓)± 2 sin 2✓ye�i⇢ , ↵2 = Arg(w2) . (32)

Translate into standard parameterization

s12 =
1p

2(1 + cs cos ⇢)1/2
, s23 =

(1 + cs cos ⇢+
p
3cs sin ⇢)1/2

p
2(1 + cs cos ⇢)

1
2

,

s13 =
(1� 2cs cos ⇢)1/2p

3
. (33)

and

sin � = (1 +
4c2s2 sin2 ⇢

(c2 � s2)2
)�1/2(1� 3c2s2 sin2 ⇢

(1 + cs cos ⇢)2
)�1/2 ⇥

⇢
�1 , if c2 > s2 ,
+1 , if s2 > c2 .

(34)

It is clearly that if sin ⇢ is not zero,

|�| and ✓23 deviate from ⇡/2 and ⇡/4, respectively.

In the limit ⇢ goes to zero, that real parameter set P

� = ±⇡/2 and ✓23 = ⇡/4.

There are two interesting features for this model worth mentioning. One of is that |V
e2| to be

1/
p
3 which agree with date. s12 is always larger or equal to 1/

p
3 which is a decisive test for this

model. Another is that although the Dirac phase � depends on the phase ⇢, the Jarlskog parameter
J which is independent of ⇢ given by J = �(c2 � s2)/6

p
3. This implies that CP violation related

to neutrino oscillation is still purely due to intrinsic CP violation. This model can be made in
agreement with data at 1� level.

If ⇢ = 0 and c = s = 1/
p
2, the mixing pattern is the tribi-maximal. However, if ⇢ is not zero,

even if c = s = 1/
p
2, s13 can be non-zero,s12 and s23 are also modified from their tribi-maximal

values

s12 =
1

(2 + cos ⇢)1/2
, s23 =

1p
2
(1 +

p
3 sin ⇢

2 + cos ⇢
)1/2 , s13 =

(1� cos ⇢)1/2p
3

. (35)

J is exactly zero which implies sin � = 0.
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