Neutrino Oscillation The 2015 Nobel Prize in Physics

Xiao-Gang He

USTC Colloquium Talk 25-3-2016

The Nobel Prize in Physics 2015 Ill. N. Elmehed. © Nobel Media AB 2015. n Pr

Share this: **⁰**

Ill. N. Elmehed. © Nobel Media AB 2015. Takaaki Kajita

Prize share: 1/2

Prize share: 1/2

Ill. N. Elmehed. © Nobel Media AB 2015.

Arthur B. McDonald

Prize share: 1/2

discovery of neutrino oscillations, which shows that neutrinos have mass"

discovery of neutrino oscillations, which shows that neutrinos have mass" The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the

Four Nobel prizes so far directly related to neutrino physics

 \mathcal{M}_max in Physics 2015. Nobel \mathcal{M}_max ab 2015. We believe in \mathcal{M}_max

Neutrinos and different types

proton

December 4, 1930

B decay

Dear radioactive ladies and gentlemen,

...I have hit upon a 'desperate remedy' to save...the law of conservation of energy. Namely the possibility that there exists in the nuclei electrically neutral particles, that I call neutrons...I agree that my remedy could seem incredible...but only the one who dare can win...

Unfortunately I cannot appear in person, since I am indispensable at a ball here in Zurich.

Your humble servant W. Pauli

Note: this was before the discovery of the real neutron

December 1933: Enrico Fermi submits a paper to Nature: "Tentativo di Una Teoria Della Emissione di raggi Beta"

It was rejected:"speculations too remote from reality to be of interest to the readers".

Eventually published in Nuovo Cimento This paper laid out the essential theory of beta decay that has survived almost unchanged until now, with "small" modifications. It predicted the spectrum, obtained the correct value for the coupling etc..

Three Types of Neutrinos

too much background. Repeated at Savannah River in 1955. [Flux: 10^{13} neutrinos/(cm² s)]

More than one kind of neutrino?

Date: 1962

Intent: Measure weak force at high energies

Expectation: Since neutrinos are created with muons and electrons, the neutrino beam should create both electrons and muons in the detector. **Result:** No electrons produced, only muons

Conclusion: There must be two kinds of neutrinos.

Observation of the third neutrino FermiLab 2000

 v_r discovery: year 2000

DONUT experiment at Fermilab

Three types of active light neutrinos

The Nobel Prize in Physics 2015 Takaaki Kajita 1**n** Ph

Share this: **⁰**

Arthur B. McDonald

Ill. N. Elmehed. © Nobel Media AB 2015. Takaaki Kajita Prize share: 1/2

Ill. N. Elmehed. © Nobel Media AB 2015.

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the

Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the* discovery of neutrino oscillations, which shows that neutrinos have mass"

Mixing and non-zero neutrino mass

$$
\begin{pmatrix}\nu_1(0) \\
\nu_2(0)\n\end{pmatrix} = \begin{pmatrix}\n\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta\n\end{pmatrix} \begin{pmatrix}\nu_{m1} \\
\nu_{m2}\n\end{pmatrix}
$$

At t=0, neutrino $\nu_1(0)$ produced, at t, the state becomes $|\nu_1(0)\rangle = \cos\theta e^{-i(Et-p_1L)}|\nu_{m1}\rangle - \sin\theta e^{-i(Et-p_2L)}|\nu_{m2}\rangle.$

Using $t \approx L$ and $E - P_i = E - \sqrt{E^2 - m_i^2} \approx m_1^2/2E$, the probability amplitude of find $\nu_2(0)$ at time t is given by

$$
\langle \nu_2(0) | \nu_1(t) \rangle = \cos \theta \sin \theta (e^{-im_1^2 L/2E} - e^{-im_2^2 L/2E})
$$
\nwhich leads to the probability of finding $\nu_2(0)$ is\n
$$
D(\omega_1 + \omega_2) = \int \langle \omega_1(0) | \omega_2(0) \rangle^{1/2} \sin^2(\Omega_0) \sin^2(\Lambda_0) \, d\Omega_0
$$

$$
P(\nu_1 \to \nu_2) = |< \nu_1(0)|\nu_2(t) > |^2 = \sin^2(2\theta)\sin^2(\Delta m_{21}^2 L/4E),
$$
\n
$$
\Delta m_{21}^2 = m_2^2 - m_1^2.
$$

Reading have small mass, they an allowing the small mass, they mix with each other **There may be additional light sterile** neutrinos **Electrically neutral, has the possibility of** being its own anti-particle, Majorana particle. Dirac or Majorana particle?

Theoretical Models for Neutrinos

In the minimal SM: Gauge group: $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$
G(8, 1) (0), W(1, 3) (0), B (1, 1)(0),
$$

\n
$$
Q_L = \begin{pmatrix} U_L \\ D_L \end{pmatrix} (3, 2)(1/6), U_R (3, 1)(2/3), D_R (3, 1)(-1/3),
$$

\n
$$
L_l = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} (1, 2)(-1/2), E_R (1, 1)(-1),
$$

\n
$$
H = \begin{pmatrix} h^+ \\ (v + h^0)/\sqrt{2} \end{pmatrix} (1, 2, 1/2), v - v \text{ev of Higgs }.
$$

Quark and charged lepton masses are from the following Yukawa coupolings $\overline{Q}_L \tilde{H} U_R$, $\overline{Q}_L H D_R$, $\overline{L}_L H E_R$.

Nothing to pair up with $L_L(\nu_L)$. In minimal SM, neutrinos are massless! Extensions needed: Give neutrino masses and small ones!

To have Dirac mass, need to introduce right handed neutrinos v_{R} : (1,1)(0)

Dirac neutrino mass term

I. INTRODUCTION

$$
L = -\bar{L}_L Y_\nu \tilde{H} \nu_R + H.C \ , \rightarrow -\bar{\nu}_L m_\nu \nu_R \ , \rightarrow m_\nu = \frac{v}{\sqrt{2}} Y_\nu
$$

 $m_{\nu_e} < 0.3 \text{ eV}, \rightarrow Y_{\nu_e}/Y_e < 10^{-5}$, very much fine tuned!

Assuming neutrinos are Majorana particles,

Some theoretical models for neutrino masses some simplified versions than just providing with numbers. We provide more details of Model A ame theoretical models tor neutrino masses

As the general model is expected to be able to fit data, it may be more instructive to analyse to analyse to an

Loop generated neutrino masses: The Zee Model(1980); Zee-Babu Model (zee 1980; Babu, 1988) [[[[[

Other loop models: Babu&He; E. Ma; Mohapatra et al; Geng et al s_{in} is that if α is the provide more details of M

Seesaw Models: $M_{\nu} = \left(\frac{0}{Y_{\nu}^{T}v/\sqrt{2}}\frac{Y_{\nu}v/\sqrt{2}}{M_{R}}\right)$

L = ¯⌫*L*(*Y*⌫*/*

$$
\text{BSaw Woods:} \quad M_{\nu} = \left(\frac{1}{Y_{\nu}^T v / \sqrt{2}} \frac{M_R}{M_R}\right) \cdot M_R \approx \frac{1}{Y_{\nu}^2 v^2 / M_R}, \quad M_N \approx M_R
$$

 $\int 0$ $Y_\nu v/\sqrt{2}$

◆

some singlet neutrinos simplified versions of the provide more details with numbers. We provide the contract of Model Andrew Versions and the contract of Model Andrew Versions and the contract of Model Andrew Versions and *c*² *> s*². **s1 introduce singlet neu**

 α (Minkowski (1977): Gell-Mann, Bamond, and Slansky (1979): Yanagida (1979): Glashow $(1080) \cdot \text{Mohandra and}$ $L = \bar{\nu}_L (Y_\nu v/\sqrt{2}) \nu_R + \bar{\nu}_R^c M_R \nu_R/2$ rowski (1977); Gell-Mann, Ramond, and Slansky (1979): Yanagida (19 $I = \frac{1}{2}$ <u>); Mohapatra and Senjanov</u>

 $\text{H} \cdot \text{Introduce triplet. Higgs representation } \Delta \cdot (1, 3, 1)$. (W. Konetschny, and W. B. Model A predictions But *s*²³ outside 1, can be consistent with data at 2 level.

*s*¹³ = (1 2*cs*)¹*/*²*/*

Type-III: Introduce triplet lepton representations $\Sigma: (1,3,0)$) (Foot, Lew, He and Joshi, 1989). \blacksquare p2)⌫*^R* + ¯⌫*^c* Additional information for fixing the sign of *CP* . Since should be close to ⇡*/*2, should take *c*² *> s*². j pc-111. Introduce the form form form form form \sum_i $(1,0,0)$

^RM⌫*^R*

1/2 跷跷板 原图 信息

^p3 is not predicted.

✓ ⁰ *^Y*⌫*v/*p²

Y ^T

Neutrino Mixing 9/28/2015 Bruno Pontecorvo 1950s3 - Bruno Pontecorvo - Wikipedia, the free encyclopedia

B. Pontecorvo (1957). "Mesonium and anti-mesonium". *Zh. Eksp. Teor. Fiz.* 33: 549–551. B. Pontecorvo (1967). "Neutrino Experiments and the Problem of Conservation of Leptonic Charge". *Zh. Eksp. Teor. Fiz.* 53: 1717

Z. Maki, M. Nakagawa, and S. Sakata (1962). "Remarks on the Unified Model of Elementary Particles". *Progress of Theoretical Physics* 28 **File: Bruno**pontecorvo 2019 Section 2050s3.jpg 1/250s3.jpg 1/25 (5): 870.

Three generation mixing in quarks and leptons

Quark mixing the Cabibbo - Kobayashi-Maskawa (CKM) matrix V_{CKM} , the Pontecorvo -Maki-Nakawaga-Sakata (PMNS) matrix U_{PMNS} lepton mixing

$$
L = -\frac{g}{\sqrt{2}} \overline{U}_L \gamma^\mu V_{\text{CKM}} D_L W_\mu^+ - \frac{g}{\sqrt{2}} \overline{E}_L \gamma^\mu U_{\text{PMNS}} N_L W_\mu^- + H.C.
$$

 $U_L = (u_L, c_L, t_L, ...)$ ^T, $D_L = (d_L, s_L, b_L, ...)$ ^T, $E_L = (e_L, \mu_L, \tau_L, ...)$ ^T, and $N_L = (\nu_1, \nu_2, \nu_3, ...)$ ^T For n-generations, $V = V_{CKM}$ or U_{PMNS} is an $n \times n$ unitary matrix.

A commonly used form of mixing matrix for three generations of fermions is given by

$$
V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}
$$

where $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \cos \theta_{ij}$ are the mixing angles and δ is the CP violating phase. If neutrinos are of Majorana type, for the PMNS matrix one should include an additional diagonal matrix with two Majorana phases diag($e^{i\alpha_1/2}, e^{i\alpha_2/2}, 1$) multiplied to the matrix from right in the above.

Where are we now? PDG2014

Table 14.7: The best-fit values and 3σ allowed ranges of the 3-neutrino oscillation parameters, derived from a global fit of the current neutrino oscillation data (from [174]). The values (values in brackets) correspond to $m_1 < m_2 < m_3$ $(m_3 < m_1 < m_2)$. The definition of Δm^2 used is: $\Delta m^2 = m_3^2 - (m_2^2 + m_1^2)/2$. Thus, $\Delta m^2 = \Delta m_{31}^2 - \Delta m_{21}^2/2 > 0$, if $m_1 < m_2 < m_3$, and $\Delta m^2 = \Delta m_{32}^2 + \Delta m_{21}^2/2 < 0$ for $m_3 < m_1 < m_2$.

phases in the neutrino mixing matrix is available. Thus, the status of CP symmetry in Where have we come from and where will we go?

effects in neutrino oscillations \mathcal{A} , \mathcal{A} violations \mathcal{A} violation in \mathcal{A}

Very different quark and lepton mixing patterns Mixing pattern in quark sector

$$
V_{CKM} \sim \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix}
$$

 0.97428 ± 0.00015 0.2253 ± 0.0007 $0.00347_{-0.00012}^{+0.00016}$ 0.2252 ± 0.0007 $0.97345^{+0.00015}_{-0.00016}$ $0.0410^{+0.0011}_{-0.0007}$ $0.00862^{+0.00026}_{-0.00020}$ $0.0403^{+0.0011}_{-0.0007}$ $0.999152_{-0.000045}^{+0.000030}$

$$
\theta_{12}^Q = 13.021^\circ \pm 0.039^\circ
$$
, $\theta_{23}^Q = 2.350^\circ \pm 0.052^\circ$,

 $\theta_{13}^Q = 0.199^\circ \pm 0.008^\circ$. $\delta^Q = 68.9^\circ$

Mixing pattern in lepton sector

$$
|U| = \left(\begin{array}{l} 0.801 \rightarrow 0.845 & 0.514 \rightarrow 0.580 & 0.137 \rightarrow 0.158 \\ 0.225 \rightarrow 0.517 & 0.441 \rightarrow 0.699 & 0.614 \rightarrow 0.793 \\ 0.246 \rightarrow 0.529 & 0.464 \rightarrow 0.713 & 0.590 \rightarrow 0.776 \end{array}\right)
$$

Experimental discovery of neutrino mixing

Homestake Gold Mine

100,000 gallons of cleaning fluid C_2Cl_4

Expected 1.5 interactions per day Measured 0.5 interactions per day

Sensitive to ⁸B solar neutrinos only

Abundant data show that neutrinos have non-zero masses and mix with each other.

Solar neutrino oscillation: Homestake, Sage+Gallex/GNO, Super-K, SNO,Borexino …

Atmospherical neutrino oscillation: Super-Kamokande, …

Accelerator neutrino source: K2K, Minos , Nova …

Reactor neutrino source: Kamland, T2K, Chooz, Daya-Bay, Reno…

have observed neutrino oscillation phenomenon.

LSND and Miniboon…?

Super-K and SNO

ABSTRACT PERYICLE Evidence for Oscillation of Atmospheric Neutrinos

REFERENCE SERES Y. Fukuda *et al.* (Super-Kamiokande Collaboration) Phys. Rev. Lett. 81, 1562 – Published 24 August 1998

Featured in Physics PRL Milestone

ABSTRACT

AUTHORS

n and the Super-Kamiokande of a series of atmospheric neutrino data from a 33.0 kton yr (535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith angle dependent deficit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross sections are unable to explain our observation. The data are consistent, however, with two-flavor $\nu_\mu \leftrightarrow \nu_\tau$ oscillations with $\nu_\mu \leftrightarrow \nu_\tau$ $\sin^2 2\theta > 0.82$ and $5 \times 10^{-4} < \Delta m^2 < 6 \times 10^{-3}$ eV 2 at 90% confidence level.

Received 6 July 1998

Measurement of the Rate of $\nu_e + d \rightarrow p + p + e^-$ Interactions Produced by ${}^{8}B$ Solar Neutrinos at the Sudbury Neutrino Observatory

-

Q. R. Ahmad et al. (SNO Collaboration) Phys. Rev. Lett. 87, 071301 - Published 25 July 2001

Solar neutrinos from ⁸B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of ν_e 's is measured by the CC reaction rate to be $\phi^{\text{CC}}(\nu_e) = 1.75 \pm 0.07 \text{(stat)}_{-0.11}^{+0.12} \text{(syst)} \pm 0.05 \text{(theor)} \times$ 10^6 cm⁻² s⁻¹. Comparison of $\phi^{\text{CC}}(\nu_e)$ to the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3 σ difference, assuming the systematic uncertainties are normally distributed, providing evidence of an active non- ν_e component in the solar flux. The total flux of active ⁸B neutrinos is determined to be 5.44 \pm 0.99 \times 10⁶ cm⁻² s⁻¹.

 $\sin^2 2\theta_{13} = 0.092 \pm 0.016(\text{stat}) \pm 0.005(\text{syst})$

Read as $\theta_{13} = 8.8^{\circ}$ with significance 5.2σ

Reno and others also confirmed Daya Bay result!

θ₁₃ has been measured

Global Picture

Breakthrough Prize

Theory for neutrino mixing PACS number(s): 12.15.Ff, 13.15.—f, 14.60.Gh, 96.60.Kx

left-right-symmetric model which yields Fritzsch-type leptonic mass matrices. Requiring the two neutri-

Early days, expecting neutrino mixing might be following a similar pattern as quarks, mixing angles are small. g neutrino mixing i called "atmospheric". of the number of the number of an nuchii as yuain neutrino problem are shown in Fig. 1. \blacksquare parameters 5m, " the lepton mass matrices to take on their most general forms, but such arbitrariness leaves us with no predictive power. If we have a more restrictive form of the lepton mass matrices, we may be able to derive predictions. One $\mathcal{S}_\mathcal{S}$ such types, i.e., $\mathcal{S}_\mathcal{S}$ the generator of the generator of the generator of the generator

For example, 1992 people are trying to produce mixing on the right atmosphere, or it may be indicative of a hitherto unseen property of the neural structure. For example, \sim trino flavor oscillations [4,6] or fast decays of some neu- $\bm{\mathsf{r}}$ na chomer explanting for $\bm{\mathsf{r}}$ tion to these two problems, in the context of a model which has a restricted form of the leptonic mass \mathcal{L} matrices —Fritzsch mass matrices [8], as originally pro-PHYSICAL REVIEW D VOLUME 46, NUMBER 7 ¹ OCTOBER 1992

Simultaneous solutions to the solar and atmospheric neutrino problems via Fritzsch-type lepton mass matrices solutions to both the solutions to both the at-

> A. J. Davies* and Xiao-Gang He^{\dagger} adiate during with the following we will assume that the so-

(Davies and He, PRD46, 3208) \blacksquare 10 0000) this case the solution to the atmospheric neutrino problern must be due to v"—v, oscillation. The required mixing and mass difference between v"and v, to solve the at-DDD 16 we present a simultaneous solution for the solar and atmospheric neutrino problems by construction \mathcal{L}

The well-known discrepancy between the expected \mathcal{I}

space for 5m, "and sin 20", from the solution to the solar

But both solar and atmospheric show large mixing angles after 1998! mnen UTSCHIUQUUR sin'20» —6m» space allowed to solve the solar neutrino problem. The solid contour lines are the v, flux from the Sun as rerde mixind The handled are those which correspond to an solution of the atmospheric neutrino problem and solar neutri- 46.8 3208 μ 992 The American Physical Society and 20.8 $m₁$ hath aalar and atmaanharia aha $m₂$ IL DL

space for 5 m, \sim 5m, \sim

posed for the quark sector.

Theory before and after Daya-Bay/Reno results

Before: popular mixing -The Tribimaximal Mixing Harrison, Perkins, Scott (2002) , Z-Z. Xing (2002), He& Zee (2003)

The mixing pattern is consistent, within 2σ , with the tri-bimaximal mixing

$$
V_{tri-bi} = \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}
$$

A4 a promising model (Ma&Ranjasekara, 2001) and realizations (Altarelli&Feruglio 2005, Babu&He 2005). Later many realizations: S4, D3, S3,D4, D7,A5,T',S4, $Δ(27, 96)$, PSL₂(7) ... discrete groups Altarelli&Feruglio for review. (H. Lam; Mohapatra et al), T. Mahanthanpa&M-C. Chen; Frampton&Kephart; Y-L Wu, ….

After: Need to have a nonzero θ_{13}

Modification to tri-bimaximal mixing pattern need to be made. (Keum&He&Volkas; He&Zee, 2006). In fact, more generically, A_4 symmetry leads to

$$
V = \begin{pmatrix} \frac{2c}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{2se^{i\delta}}{\sqrt{6}} \\ -\frac{c}{\sqrt{6}} - \frac{se^{-i\delta}}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{c}{\sqrt{2}} - \frac{se^{i\delta}}{\sqrt{6}} \\ -\frac{c}{\sqrt{6}} - \frac{se^{-i\delta}}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{c}{\sqrt{2}} - \frac{se^{i\delta}}{\sqrt{6}} \end{pmatrix}
$$

Tri-bimximal at higher scales and generate none zero θ_{13} at low energies? Baub and He, arxiv:0507217(hep-ph): A susy A4 model

$$
U_{MNS} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} P.
$$

one–loop RGE
$$
\frac{dM_{\nu}^{e}}{d\ln t} = \frac{1}{32\pi^{2}} [M_{\nu}^{e} Y_{e}^{\dagger} Y_{e} + (Y_{e}^{\dagger} Y_{e})^{T} M_{\nu}^{e}] + \dots
$$
leading to the entries $M_{13,23}(1 - \epsilon)$ and $M_{33}(1 - 2\epsilon)$

 $\epsilon \simeq Y_{\tau}^2 \ln(M_{\text{GUT}}/M_{EW})/32\pi^2$.

Inverted hierarchy **Normal hierarchy**

Susy model, $Y_t \sim O(1)$, Ue₃ for inverted hierarchy, can be as large a 0.1, with RG effects!

Many other matrix form come back

$$
U \ = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}
$$

An interesting coincidence: $\theta_{13} = \theta_c/\sqrt{2}$ $V_{PMNS} = UV_{KM}$; $V_{Tr}V_{KM}$

B-Q. Ma et al: Ramond et al.; King et al.…

Bi-Maximal Mixing (Barger, Pakvasa, Weiler, Whisnant)

The CP violating phase gradually becomes the attention of theoretical studies.

Group theoretical studies of neutrino mass matrix, correlations between mixing angle and CP violation. Ishimori&Kobayashi, Henandez & Smirnov, G-J Ding&King and etc..

SO(10)Grand Unification

SO(10) Yukawa couplings:

 $16_F(Y_{10}10_H+Y_{\overline{126}}\overline{126}_H+Y_{120}120_H)16_F$

Minimal SO(10) Model without 120

 $\mathcal{L}_{\mathsf{Yukawa}} = Y_{10} 16 16 10_H + Y_{126} 16 16 \overline{126}_H$ Two Yukawa matrices determine all fermion masses and mixings, including the neutrinos

> $M_u = \kappa_u Y_{10} + \kappa_u' Y_{126}$ $M_d = \kappa_d Y_{10} + \kappa_d' Y_{126}$ $M_{\nu}^{D} = \kappa_u Y_{10} - 3\kappa_u' Y_{126}$ $M_l = \kappa_d Y_{10} - 3\kappa_d' Y_{126}$

 $M_{\nu R}$ = $\langle \Delta_R \rangle Y_{126}$ $M_{\nu L}$ = $\langle \Delta_L \rangle Y_{126}$

Model has only 11 real parameters plus 7 phases

Babu, Mohapatra (1993) Fukuyama, Okada (2002) Bajc, Melfo, Senjanovic, Vissani (2004) Fukuyama, Ilakovac, Kikuchi, Meljanac, Okada (2004) Aulakh et al (2004)

Bertolini, Frigerio, Malinsky (2004) Babu, Macesanu (2005) Bertolini, Malinsky, Schwetz (2006) Dutta, Mimura, Mohapatra (2007) Bajc, Dorsner, Nemevsek (Jushipura, Patel (2011)

θ_{13} in Minimal SO(10)

sin² 2 θ_{13} and CP violating phase δ_N

K.S. Babu and C. Macesanu (2005)

Possible way of measuring mass hierarchy and CP phase

T2K, Nova new data fitting

bination. The mixing angle σ is matrix σ is matrix σ is matrix σ is matrix σ

 α is the level state level state levels refer to $1/2$ α β β β β β β

nation of the reactor experiments with LBLs tends to

 F_{c} \sim V; \sim 4.500, 004.40 **T2K and And and and and analysis consistent reaction** for normal hierarchy (upper panel) and inverted hierarchy (lower panels: regions allowed by the international com-

in the variable distribution of the variable dis arXiv:1509.03148 Fermilab seminar, August 6 2015 **D** Dottoreon A. Palazzo **R. Patterson**

Model Building with θ_{23} =π/4 and δ_{CP} = 3π/2(-π/2) \sim \sim \sim \sim \sim \sim θ_{22} = TT/4 and I. INTRODUCTION

*m*ˆ ⌫ = *diag*(*m*1*, m*2*, m*3) with *mⁱ* = *|mi|exp*(*i*↵*i*).

Structure of the mass matrix (charged lepton is already diagonal) (*^c ⁱ*) ˜*b d ⁱ ^L* ⁼ ¹

Assuming neutrinos are Majorana particles, **Phase** Majorana particles. ⌫¯*Lm*⌫⌫*^C*

 $c + i\beta$ $d + i\gamma$ \tilde{b}

 $m_{\nu} =$

 \overline{a}

$$
L = -\frac{1}{2}\bar{\nu}_{L}m_{\nu}V_{L}^{C}
$$
\n
$$
m_{\nu} = V_{PMNS}\hat{m}_{\nu}V_{PMNS}^{T},
$$
\n
$$
\hat{m}_{\nu} = \text{diag}(m_{1}, m_{2}, m_{3}) \text{ with } m_{i} = |m_{i}| \exp(i\alpha_{i}).
$$
\n
$$
\hat{m}_{\nu} = \frac{1}{2}(m_{1}(s_{12}^{2} + c_{12}^{2} s_{13}^{2}) + m_{2}(c_{12}^{2} + s_{12}^{2} s_{13}^{2}) - m_{3}c_{13}^{2}),
$$
\n
$$
c = -\frac{1}{\sqrt{2}}(m_{1} - m_{2})s_{12}c_{12}c_{13},
$$
\n
$$
d = \frac{1}{2}(m_{1}(s_{12}^{2} - c_{12}^{2} s_{13}^{2}) + m_{2}(c_{12}^{2} - s_{12}^{2} s_{13}^{2}) + m_{3}c_{13}^{2}),
$$
\nWith $\delta = -\pi/2$ and $\theta_{23} = \pi/4$,
\n
$$
m_{\nu}
$$
 has the following form\n
$$
\beta = \frac{1}{\sqrt{2}}s_{13}c_{13}(m_{1}c_{12}^{2} + m_{2}s_{12}^{2} + m_{3}),
$$
\n
$$
\gamma = -(m_{1} - m_{2})s_{12}c_{12}s_{13}.
$$

 $\begin{pmatrix} 0 & b \end{pmatrix}$

*eip*¹ 0 0

A *,* (1)

A *,* (1)

*eip*¹ 0 0 0 *eip*² 0 0 0 *eip*³

Note that in the most general case, because non-zero Majorana phases, the parameters
$$
a
$$
, \tilde{b} , c , d , β and γ are all complex.

 $\left(\begin{array}{cc} d+i\gamma & \tilde{b} \ \tilde{b} & d-i\gamma \end{array}\right) \;,$

 \mathbf{I}

Equavilent forms ¹ Equavilent forms

Equavilent forms

Equavilent forms

 \mathbb{R}^2

m⌫ =

where *^b* ⁼ ˜*b*.

$$
m_{\nu} = \begin{pmatrix} e^{ip_1} & 0 & 0 \\ 0 & e^{ip_2} & 0 \\ 0 & 0 & e^{ip_3} \end{pmatrix} \begin{pmatrix} a & c+i\beta & -(c-i\beta) \\ c+i\beta & d+i\gamma & \tilde{b} \\ -(c-i\beta) & \tilde{b} & d-i\gamma \end{pmatrix} \begin{pmatrix} e^{ip_1} & 0 & 0 \\ 0 & e^{ip_2} & 0 \\ 0 & 0 & e^{ip_3} \end{pmatrix},
$$

*eip*¹ 0 0

a c + *i* (*c i*)

1
|-
|

 $\frac{1}{\sqrt{2}}$

a c + *i* (*c i*)

1
1
1

0
0
0
0

0

 $\frac{1}{\sqrt{2}}$

1
1
1

 $\sum_{i=1}^{n}$

*eip*¹ 0 0

a c + *i* (*c i*)

*eip*¹ 0 0

0

1
1
1

a c + *i* (*c i*)

A *,* (2)

A *,* (3)

where the phases p_i are arbitrary. where the phases p_i are arbitrary.

0
0
0
0

*eip*¹ 0 0

For $p_1 = p_2 = 0$ and $p_3 = \pi$, For $p_1 = p_2 = 0$ and $p_3 = \pi$,

$$
m_{\nu} = \begin{pmatrix} a & c + i\beta & (c - i\beta) \\ c + i\beta & d + i\gamma & b \\ (c - i\beta) & b & d - i\gamma \end{pmatrix}, \qquad \text{CQ} \blacktriangle
$$

where
$$
b = -\tilde{b}
$$
.

m = 0.11 .
. . . al Majorans \overline{a} *C B* t **en** as and 1 *PHODOD*, ∞ , \sim , \sim , \sim If neutrinos do not have non-trivial Major If neutrinos do not have non-trivial Majorana phases, α , β , γ are real <u>0</u> *A CC*⇤ The mass matrix can be written asand

in eq.(3), but in eq.(3), but in the multiplied by a sign. This is in this implies that without further that w
This implies that with the multiplied by a "-" sign. This is in this implies that with the multiplied by a sign

$$
m_{\nu} = \begin{pmatrix} A & C & C^* \\ C & D^* & B \\ C^* & B & D \end{pmatrix} . \qquad \qquad \text{CQ} \quad B
$$

Mass matrix in forms eq A and eq B

always predict $\theta_{23} = \pi/4$ and $\delta_{CP} = 3\pi/2$? The answer is no!

- For both is change δ_{CP} =π /2, the mass matrix has the same form.
- If α, β, γ are complex, θ_{23} and δ_{CP} may not be $\pi/4$ and $\pm \pi/2$.
- This also points out a method to modify the solutions of $\theta_{23} = \pi/4$ and $\delta_{CP} = 3\pi/2$

Need to be careful!

Realization with A₄ symmetry

How to achieve in A_4 models?

 $3 \times 3 = 3_s + 3_a + 1 + 1' + 1''$ $d_1 \times 1 = 1$. $d' \times 1' = 1''$. $d'' \times 1'' = 1'$. $(\underline{\mathbf{3}} \otimes \underline{\mathbf{3}}) \underline{\mathbf{3}}_s = (x_2y_3 + x_3y_2, x_3y_1 + x_1y_3, x_1y_2 + x_2y_1)$ *A*⁴ group is defined as the set of all twelve even permutations of four object. It has three one-dimensional representations 1, $1'$ and $1''$ and one three-dimensional irreduciblerepresentation 3. Multiplication rules $1 \times 1_i = 1_i, 1' \times 1' = 1'', 1'' \times 1'' = 1', 1' \times 1'' = 1$ $(\underline{\mathbf{3}} \otimes \underline{\mathbf{3}})_{\mathbf{3s}} = (x_2y_3 + x_3y_2, x_3y_1 + x_1y_3, x_1y_2 + x_2y_1)$

$$
\begin{aligned}\n&\left(\underline{\mathbf{3}}\otimes\underline{\mathbf{3}}\right)\underline{\mathbf{3}}_a = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) \\
&\left(\underline{\mathbf{3}}\otimes\underline{\mathbf{3}}\right)\underline{\mathbf{1}} = x_1y_1 + x_2y_2 + x_3y_3, \\
&\left(\underline{\mathbf{3}}\otimes\underline{\mathbf{3}}\right)\underline{\mathbf{1}}' = x_1y_1 + \omega x_2y_2 + \omega^2 x_3y_3, \\
&\left(\underline{\mathbf{3}}\otimes\underline{\mathbf{3}}\right)\underline{\mathbf{1}}'' = x_1y_1 + \omega^2 x_2y_2 + \omega x_3y_3,\n\end{aligned}
$$

building for neutrino masses with = *±*⇡*/*2 and ✓²³ = ⇡*/*4, it is essentially to make sure that *U^l*

Some general properties (X-G He, Chin. J. Phys 53, 100101(2015); X-G He and G-N Li, Phys. Lett. **B750,620(2015); E Ma, Chin. J. Phys 53, 100101(2015); Phys. Rev. D92, 051301(2015).**

Assuming that the charged lepton mass matrix *M^l* is diagonalized from left by *U^l* ,

In the basis where charged lepton is discussed, \mathcal{L}_{max}

$$
M_l = U_l \hat{m}_l U_r , \quad U_l = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} ,
$$

where $\omega = exp(i2\pi/3)$ and $\omega^2 = exp(i4\pi/3)$. *A*⁴ models usually have the above characteristic *Ui*. *U^r* is a unitary matrix, but does not play a role in determining *VPMNS*. If neutrinos are Majorana particles, the most general mass matrix is

$$
M_{\nu} = \begin{pmatrix} w_1 & x & y \\ x & w_2 & z \\ y & z & w_3 \end{pmatrix} ,
$$

In the basis where charged lepton is digonalized, the neutrino mass matrix is of the form given by $U_l^{\dagger} M_{\nu} U_l^*$ with

@

$$
A_{11} = \frac{1}{3}(w_1 + w_2 + w_3 + 2(x + y + z)),
$$

\n
$$
A_{22} = \frac{1}{3}(w_1 + \omega w_2 + \omega^2 w_3 + 2(\omega^2 x + \omega y + z)),
$$

\n
$$
A_{33} = \frac{1}{3}(w_1 + \omega^2 w_2 + \omega w_3 + 2(\omega x + \omega^2 y + z)),
$$

\n
$$
A_{12} = \frac{1}{3}(w_1 + \omega^2 w_2 + \omega w_3 - \omega x - \omega^2 y - z),
$$

\n
$$
A_{13} = \frac{1}{3}(w_1 + \omega w_2 + \omega^2 w_3 - \omega^2 x - \omega y - z),
$$

\n
$$
A_{23} = \frac{1}{3}(w_1 + w_2 + w_3 - (x + y + z)).
$$

*yzw*³

A *,* (8)

If the parameter set $P = (w_1, w_2, w_3, x, y, z)$ is real, then

$$
A_{11} = A_{11}^* \quad A_{23} = A_{23}^*
$$

$$
A_{22} = A_{33}^* \quad A_{12} = A_{13}^*
$$

.
مواليد
مواليد

The mass matrix is of the form given by eq B, $\theta_{23} = \pi/4$ and $\delta_{CP} = \pm \pi/2$

which can be diagonlized by unitary matrix *V*⌫, *M*⌫ = *V*⌫*m*ˆ ⌫*V ^T*

^VPMNS ⁼ ¹ , Chin. J Phys. \vert *c* + *seⁱ*⇢ 1 *ceⁱ*⇢ *s c* + !²*seⁱ*⇢ ! !²*ceⁱ*⇢ *s* X-G He, Chin. J Phys. 53, 100101(2015)

Diagonalizing the mass matrices, we have

$$
V_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} c + se^{i\rho} & 1 & ce^{i\rho} - s \\ c + \omega se^{i\rho} & \omega^2 & \omega ce^{i\rho} - s \\ c + \omega^2 se^{i\rho} & \omega & \omega^2 ce^{i\rho} - s \end{pmatrix} ,
$$

$$
\tan \rho = Im(yw_1^* + y^*w_3)/Re(yw_1^* + y^*w_3),
$$

$$
s = \sin \theta \text{ and } c = \cos \theta,
$$

Translate into standard parameterization

$$
\tan 2\theta = \frac{2|yw_1^* + w_3y^*|}{|w_1|^2 - |w_3|^2}.
$$

Majorana phases α_i of m_i

$$
\alpha_{1,3} = Arg(w_i(1 \pm \cos 2\theta) + w_2 e^{-i2\rho}(1 \mp \cos 2\theta) \pm 2\sin 2\theta y e^{-i\rho}, \quad \alpha_2 = Arg(w_2)
$$

^p3 which is a decisive test for this

Translate into standard parameterization

$$
s_{12} = \frac{1}{\sqrt{2}(1 + cs\cos\rho)^{1/2}}, \ s_{23} = \frac{(1 + cs\cos\rho + \sqrt{3}cs\sin\rho)^{1/2}}{\sqrt{2}(1 + cs\cos\rho)^{\frac{1}{2}}},
$$
\n**Predictions:** $|V_{12}| = \frac{(1 - 2cs\cos\rho)^{1/2}}{\sqrt{3}}$.

and

$$
\sin \delta = (1 + \frac{4c^2 s^2 \sin^2 \rho}{(c^2 - s^2)^2})^{-1/2} (1 - \frac{3c^2 s^2 \sin^2 \rho}{(1 + cs \cos \rho)^2})^{-1/2} \times \begin{cases} -1 , & \text{if } c^2 > s^2 ,\\ +1 , & \text{if } s^2 > c^2 . \end{cases}
$$

There are two interesting features for this model worth mentioning. One of is that *|Ve*2*|* to be

= *±*⇡*/*2 and ✓²³ = ⇡*/*4.

It is clearly that if $\sin \rho$ is not zero, $|\delta|$ and θ_{23} deviate from $\pi/2$ and $\pi/4$, respectively. In the limit ρ goes to zero, that real parameter set *P* $\delta = \pm \pi/2$ and $\theta_{23} = \pi/4$. In the limit ⇢ goes to zero, that real parameter set *P*

^p3 which agree with date. *^s*¹² is always larger or equal to 1*/*

Predictions: $|V_{i2}| = 1/\sqrt{3}$ $J = Im(V_{11}V_{12}V_{21}V_{22})$ $= (s^2-c^2)/6\sqrt{3}$ $\begin{bmatrix} -1, & \text{if} & c^2 > s^2 \\ +1, & \text{if} & s^2 > c^2 \end{bmatrix}$ independent of ρ $\frac{1}{\sqrt{3}}$ **.** $\frac{1}{\sqrt{3}}$ **.** (3) α is contributed by +1 *,* if *^s*² *> c*² *.* (34)

New model building guideline 2015

First order: $\theta_{23} = \pi/4$ and $\delta_{CP} = 3\pi/2$, A non-zero θ_{13} .

A4 family symmetry model provide an example to fully realize such mixing pattern. This class of A_4 models also provide direction for modifying the pattern, with complex Yukawa coefficients.

New experimental data will provide more clue about what the mixing pattern is and how theoretical model should be constructed.

A lot more for theoretical neutrino models Neutrino mass hierarchy, (JUNO….) Dirac or Majorana (Neutrinoless double beta decay, INPAC…) Sterile neutrinos LSND&MiniBoon, seem still alive Lepton number violating FCNC connection Cosmological and Astrophysical connection Dark matter connection, Leptogenesis connection. …