Precision Higgs Physics at LHC and future Higgs Factories

Li Lin Yang Peking University

The topic

- The "God" particle
> Discovered in 2012 at LHC
> Electroweak symmetry breaking
- Quark masses and lepton masses

A key quest of LHC: Higgs properties

Future plans

LHC / HL-LHC Plan

Future plans

Future plans

What do we expect to gain?

The Higgs potential

Key to electroweak phase transition, vacuum stability, etc. But: LHC (currently) can only tell us very limited information!

The Higgs potential

Key to electroweak phase transition, vacuum stability, etc.
But: LHC (currently) can only tell us very limited information!

$$
\left.V(h)=\frac{m_{h}^{2}}{2} h^{2} \right\rvert\,+\cdots
$$

What LHC can tell us now

What's the global picture?

Higgs potential: alternatives

The SM assumes $V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\frac{\lambda}{2}\left(\Phi^{\dagger} \Phi\right)^{2}$

Higgs potential: alternatives

The SM assumes $V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\frac{\lambda}{2}\left(\Phi^{\dagger} \Phi\right)^{2}$

Not the only option!

Higgs potential: alternatives

The SM assumes $V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\frac{\lambda}{2}\left(\Phi^{\dagger} \Phi\right)^{2}$

Not the only option!

Coleman-Weinberg?

Higgs potential: alternatives

The SM assumes $V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\frac{\lambda}{2}\left(\Phi^{\dagger} \Phi\right)^{2}$

Not the only option!

Coleman-Weinberg?

Not fundamental?

Higgs potential: alternatives

The SM assumes $V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\frac{\lambda}{2}\left(\Phi^{\dagger} \Phi\right)^{2}$ Not the only option!

Not fundamental?

Higgs self-coupling

May test the next term in the Taylor expansion of the potential around our vacuum

$$
V(h)=\frac{m_{h}^{2}}{2} h^{2}+\lambda_{3} h^{3}+\lambda_{4} h^{4}+\cdots
$$

Higgs pair production

Sounds good...

Not that simple!

$$
\begin{aligned}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}} & +\frac{c_{H}}{2 \Lambda^{2}}\left(\partial^{\mu}|H|^{2}\right)^{2}-\frac{c_{6}}{\Lambda^{2}} \lambda|H|^{6} \\
& -\left(\frac{c_{t}}{\Lambda^{2}} y_{t}|H|^{2} \bar{Q}_{L} H^{c^{\prime}} t_{R}+\frac{c_{b}}{\Lambda^{2}} y_{b}|H|^{2} \bar{Q}_{L} H b_{R}+\frac{c_{\tau}}{\Lambda^{2}} y_{\tau}|H|^{2} \bar{L}_{L} H \tau_{R}+\text { h.c. }\right) \\
& +\frac{\alpha_{s} c_{g}}{4 \pi \Lambda^{2}}|H|^{2} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\frac{\alpha^{\prime} c_{\gamma}}{4 \pi \Lambda^{2}}|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
& +\frac{i g c_{H W}}{16 \pi^{2} \Lambda^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma_{k}\left(D^{\nu} H\right) W_{\mu \nu}^{k}+\frac{i g^{\prime} c_{H B}}{16 \pi^{2} \Lambda^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu} \\
& +\frac{i g c_{W}}{2 \Lambda^{2}}\left(H^{\dagger} \sigma_{k} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{k}+\frac{i g^{\prime} c_{B}}{2 \Lambda^{2}}\left(H^{\dagger} \overleftrightarrow{D}^{\mu} H\right) \partial^{\nu} B_{\mu \nu} \\
& +\mathcal{L}_{\mathrm{CP}}+\mathcal{L}_{4 \mathrm{f}}
\end{aligned}
$$

Goertz, Papaefstathiou, LLY, Zurita: 1410.3471
New physics effects may enter through multiple effective operators
(1E)

Not that simple!

(1A)
(1B)
$\mathrm{hh} @ 14 \mathrm{TeV}, \mathrm{L}=3000 \mathrm{fb}^{-1}, f_{\mathrm{th}}=0.0$

$\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{c_{H}}{2 \Lambda^{2}}\left(\partial^{\mu}|H|^{2}\right)^{2}-\frac{c_{6}}{\Lambda^{2}} \lambda|H|^{6}$
$-\left(\frac{c_{t}}{\Lambda^{2}} y_{t}|H|^{2} \bar{Q}_{L} H^{c} t_{R}+\frac{c_{b}}{\Lambda^{2}} y_{b}|H|^{2} \bar{Q}_{L} H b_{R}+\frac{c_{\tau}}{\Lambda^{2}} y_{\tau}|H|^{2} \bar{L}_{L} H \tau_{R}+\right.$ h.c. $)$

$$
+\frac{\alpha_{s} c_{g}}{4 \pi \Lambda^{2}}|H|^{2} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\frac{\alpha^{\prime} c_{\gamma}}{4 \pi \Lambda^{2}}|H|^{2} B_{\mu \nu} B^{\mu \nu}
$$

$$
+\frac{i g c_{H W}}{16 \pi^{2} \Lambda^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma_{k}\left(D^{\nu} H\right) W_{\mu \nu}^{k}+\frac{i g^{\prime} c_{H B}}{16 \pi^{2} \Lambda^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}
$$

$$
+\frac{i g c_{W}}{2 \Lambda^{2}}\left(H^{\dagger} \sigma_{k} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{k}+\frac{i g^{\prime} c_{B}}{2 \Lambda^{2}}\left(H^{\dagger} \overleftrightarrow{D}^{\mu} H\right) \partial^{\nu} B_{\mu \nu}
$$

$$
+\mathcal{L}_{\mathrm{CP}}+\mathcal{L}_{4 \mathrm{f}}
$$

rtz, Papaefstathiou, LLY, Zurita: 1410.3471
hysics effects may enter through le effective operators

Requires a global analysis

Not that simple!

(1A)
(1B)
$\mathrm{hh}^{\prime} 14 \mathrm{TeV}, \mathrm{L}=3000 \mathrm{fb}^{-1}, f_{\mathrm{th}}=0.0$

$\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{c_{H}}{2 \Lambda^{2}}\left(\partial^{\mu}|H|^{2}\right)^{2}-\frac{c_{6}}{\Lambda^{2}} \lambda|H|^{6}$
$-\left(\frac{c_{t}}{\Lambda^{2}} y_{t}|H|^{2} \bar{Q}_{L} H^{c} t_{R}+\frac{c_{b}}{\Lambda^{2}} y_{b}|H|^{2} \bar{Q}_{L} H b_{R}+\frac{c_{\tau}}{\Lambda^{2}} y_{\tau}|H|^{2} \bar{L}_{L} H \tau_{R}+\right.$ h.c. $)$

$$
+\frac{\alpha_{s} c_{g}}{4 \pi \Lambda^{2}}|H|^{2} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\frac{\alpha^{\prime} c_{\gamma}}{4 \pi \Lambda^{2}}|H|^{2} B_{\mu \nu} B^{\mu \nu}
$$

$$
+\frac{i g c_{H W}}{16 \pi^{2} \Lambda^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma_{k}\left(D^{\nu} H\right) W_{\mu \nu}^{k}+\frac{i g^{\prime} c_{H B}}{16 \pi^{2} \Lambda^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}
$$

$$
+\frac{i g c_{W}}{2 \Lambda^{2}}\left(H^{\dagger} \sigma_{k} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{k}+\frac{i g^{\prime} c_{B}}{2 \Lambda^{2}}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu}
$$

$$
+\mathcal{L}_{\mathrm{CP}}+\mathcal{L}_{4 \mathrm{f}}
$$

rtz, Papaefstathiou, LLY, Zurita: 1410.3471 0.9
${ }_{0.7}^{0.8}$ hysics effects may enter through ${ }^{6} 6$ le effective operators

Requires a global analysis

See also: Azatov, Contino, Panico, Son: 1502.00539

Yukawa couplings

Origin of quark masses and lepton masses

Heavy quark Yukawa couplings: everywhere in Higgs physics

Precise knowledge highly-wanted!

Yukawa couplings

Origin of quark masses and lepton masses

Heavy quark Yukawa couplings: everywhere in Higgs physics

j-wanted!
Light quark Yukawa couplings: are they really that small?
Is the mass difference between proton and neutron a pure accident?

Gauge coupling

Key quantity for electroweak symmetry breaking

Relevant for unitarity

Modified by $\sim v^{2} / \Lambda^{2}$ if, e.g., Higgs has inner structure Sub-percent effect if new physics enters at a few TeV !

Precision experiments meet precision calculations

Future facilities will dramatically improve the experimental precisions of various observables

Precision experiments meet precision calculations

Future facilities will dramatically improve the experimental precisions of various observables

In order to extract the Higgs properties from these precision measurements, we need equally precision theoretical calculations!

An example: gluon fusion

LO already loop-induced

An example: gluon fusion

LO already loop-induced

For better precision, need to calculate higher-order quantum effects

NNLO QCD in the heavy top limit

An example: gluon fusion

LO already loop-induced

For better precision, need to calculate higher-order quantum effects

NNLO QCD in the heavy top limit

Do we really need such high precision? The answer is yes!

LO is not enough!

Measured cross section

LO is not enough!

Measured cross section
Theoretical value (with higherorder perturbative calculations)

LO is not enough!

Measured cross section
Theoretical value (with higherorder perturbative calculations)

LO is not enough!

Measured cross section
Theoretical value (with higherorder perturbative calculations)

 higher-order calculations

Note: origin of large higher-order corrections explained in

HL-LHC demands more theoretical inputs

Challenges from experiments: reducing the theoretical uncertainties!

Perturbative calculations

Generic procedure for a perturbative calculation

tree amplitudes

Need to combine them to get rid of infrared divergences

We already have rather good understanding of tree-level amplitudes in gauge theories

Tree-level amplitudes

- Spinor helicity
> Little group scaling
- On-shell recursion
- Hints from N=4 SUSY
- Collinear limit
> Soft limit
>...
See, e.g.,
Dixon: hep-ph/9601359
Elvang, Huang: 1308.1697
Dixon: 1310.5353

We also have some techniques to simplify the integrands for loop-level amplitudes

Loop integrands

- Unitarity cuts
- Integration-by-parts
- Color-kinematics duality

$$
0=\int \frac{d^{D} k}{i \pi^{D / 2}} \frac{\partial}{\partial k^{\mu}}\left(k^{\mu} \frac{1}{\left(-k^{2}+m^{2}\right)^{a_{1}}\left(-(k+p)^{2}+m^{2}\right)^{a_{2}}}\right)
$$

We also have some techniques to simplify the integrands for loop-level amplitudes

Loop integrands

- Unitarity cuts
- Integration-by-parts
- Color-kinematics duality

$$
0=\int \frac{d^{D} k}{i \pi^{D / 2}} \frac{\partial}{\partial k^{\mu}}\left(k^{\mu} \frac{1}{\left(-k^{2}+m^{2}\right)^{a_{1}}\left(-(k+p)^{2}+m^{2}\right)^{a_{2}}}\right)
$$

But: we have much less information about the results of these loop integrals!

Loop integrals

What we really need are results of integrals

$$
I=\int\left(\prod_{j=1}^{L} \mu^{2 \epsilon} e^{\epsilon \gamma_{E}} \frac{d^{4-2 \epsilon} k_{j}}{i \pi^{2-\epsilon}}\right) \prod_{i=1}^{n} \frac{1}{\left(q_{i}^{2}-m_{i}^{2}\right)^{a_{i}}}
$$

Loop integrals

What we really need are results of integrals

$$
I=\int\left(\prod_{j=1}^{L} \mu^{2 \epsilon} e^{\epsilon \gamma_{E}} \frac{d^{4-2 \epsilon} k_{j}}{i \pi^{2-\epsilon}}\right) \prod_{i=1}^{n} \frac{1}{\left(q_{i}^{2}-m_{i}^{2}\right)^{a_{i}}}
$$

Usually interested in the coefficients of its Laurent expansion

$$
I=\sum_{j=-2 L}^{\infty} \epsilon^{j} c_{j} \longrightarrow \longrightarrow \begin{aligned}
& \text { (Often complicated) functions of } \\
& \text { kinematic invariants }
\end{aligned}
$$

Loop integrals

What we really need are results of integrals

$$
I=\int\left(\prod_{j=1}^{L} \mu^{2 \epsilon} e^{\epsilon \gamma_{E}} \frac{d^{4-2 \epsilon} k_{j}}{i \pi^{2-\epsilon}}\right) \prod_{i=1}^{n} \frac{1}{\left(q_{i}^{2}-m_{i}^{2}\right)^{a_{i}}}
$$

Usually interested in the coefficients of its Laurent expansion

$$
I=\sum_{j=-2 L}^{\infty} \epsilon^{j} c_{j} \longrightarrow \longrightarrow \begin{gathered}
\text { kinematic invariants }
\end{gathered}
$$

How complicated can they be?

Loop integrals

From experience, one encounters logarithms, polylogarithms and Riemann zeta values in the results for loop integrals

$$
\begin{aligned}
& \operatorname{Li}_{1}(z)=-\log (1-z) \\
& \operatorname{Li}_{n}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}}=\int_{0}^{z} \frac{d t}{t} \operatorname{Li}_{n-1}(t) \\
& \zeta_{n}=\sum_{k=1}^{\infty} \frac{1}{k^{n}}=\operatorname{Li}_{n}(1) \quad(n>1)
\end{aligned}
$$

Multiple polylogarithms

Generalizations of polylogarithms

$$
\begin{gathered}
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \\
G(; z)=1 \quad G\left(\overrightarrow{0}_{n} ; z\right)=\frac{1}{n!} \log ^{n} z
\end{gathered}
$$

Multiple polylogarithms

Generalizations of polylogarithms

$$
\begin{gathered}
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \\
G(; z)=1 \quad G\left(\overrightarrow{0}_{n} ; z\right)=\frac{1}{n!} \log ^{n} z
\end{gathered}
$$

Special cases $G\left(\overrightarrow{0}_{n-1}, 1 ; z\right)=-\operatorname{Li}_{n}(z)$

Multiple polylogarithms

Generalizations of polylogarithms

$$
\begin{gathered}
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \\
G(; z)=1 \quad G\left(\overrightarrow{0}_{n} ; z\right)=\frac{1}{n!} \log ^{n} z
\end{gathered}
$$

Special cases $\quad G\left(\overrightarrow{0}_{n-1}, 1 ; z\right)=-\operatorname{Li}_{n}(z)$
Naturally arise as solutions of differential equations

$$
\frac{\partial}{\partial x} \vec{f}(\epsilon, x)=\epsilon \underbrace{A(x) \vec{f}(\epsilon, x)} \text { Matrix of rational functions }
$$

Multiple polylogarithms

A good set of functions

Multiple polylogarithms

A good set of functions

Numerical evaluation of multiple polylogarithms

Jens Vollinga and Stefan Weinzierl
hep-ph/0410259
Institut für Physik, Universität Mainz,
D-55099 Mainz, Germany

Multiple polylogarithms

A good set of functions

Numerical evaluation of multiple polylogarithms

Fast numerics

Jens Vollinga and Stefan Weinzierl
hep-ph/0410259
Institut für Physik, Universität Mainz,
D-55099 Mainz, Germany

Good analytic and algebraic properties, e.g.,
$G(a, b ; z) G(c ; z)=G(a, b, c ; z)+G(a, c, b ; z)+G(c, a, b ; z)$

More: Hopf algebra

Iterated integrals and symbols

MPLs are iterated integrals

$$
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} d \log \left(t_{1}-a_{1}\right) \int_{0}^{t_{1}} d \log \left(t_{2}-a_{2}\right) \cdots \int_{0}^{t_{n-1}} d \log \left(t_{n}-a_{n}\right)
$$

Iterated integrals and symbols

MPLs are iterated integrals

$$
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} d \log \left(t_{1}-a_{1}\right) \int_{0}^{t_{1}} d \log \left(t_{2}-a_{2}\right) \cdots \int_{0}^{t_{n-1}} d \log \left(t_{n}-a_{n}\right)
$$

Symbol representation

$$
\left(z-a_{n}\right) \otimes \cdots \otimes\left(z-a_{2}\right) \otimes\left(z-a_{1}\right)
$$

Encodes algebraic properties of MPLs!

Iterated integrals and symbols

MPLs are iterated integrals

$$
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} d \log \left(t_{1}-a_{1}\right) \int_{0}^{t_{1}} d \log \left(t_{2}-a_{2}\right) \cdots \int_{0}^{t_{n-1}} d \log \left(t_{n}-a_{n}\right)
$$

Symbol representation

$$
\left(z-a_{n}\right) \otimes \cdots \otimes\left(z-a_{2}\right) \otimes\left(z-a_{1}\right)
$$

Encodes algebraic properties of MPLs!
Iterated integrals can be more generic and complicated

$$
\int_{0}^{z} d \log R_{1}\left(t_{1}\right) \cdots \int_{0}^{t_{n-1}} d \log R_{n}\left(t_{n}\right)
$$

May contain algebraic functions, e.g., square roots

There are more!

$$
\int d x \frac{\log (R(x))}{\sqrt{Q(x)}} \quad \text { Elliptic integrals }
$$

There are more!

There are more!

Extremely difficult integrals in Higgs physics: massive particles flowing around!

There are more!

Extremely difficult integrals in Higgs physics: massive particles flowing around!

We either spend time with purely numeric methods, or we need clever approximations...

Outline

- A new approximation for Higgs pair production at NLO
- Approximate and exact NNLO results for HZV vertex
- Approximate result for ttH production beyond NLO
- Thrust distribution in Higgs hadronic decays

Higgs pair production at NLO (two loops)

Purely numerical computation using sector decomposition (resource demanding)

Borowka et al.: $1604.06447,1608.04798$

Approximations

$1 / \mathrm{mt}$ expansion (only valid for low energy region)

$$
m_{t}^{2} \gg|s|,|t|, m_{h}^{2}
$$

Approximations

$1 / \mathrm{mt}$ expansion (only valid for low energy region)

$$
m_{t}^{2} \gg|s|,|t|, m_{h}^{2}
$$

Grigo, Hoff, Melnikov, Steinhauser: 1305.7340
p_{T}^{2} / s expansion (valid for not so high energy!)

$$
|s|, m_{t}^{2} \gg|t|, m_{h}^{2} \quad \text { Bonciani, Degrassi, Giardino, Gröber: } 1806.11564
$$

Approximations

$1 / \mathrm{mt}$ expansion (only valid for low energy region)

$$
m_{t}^{2} \gg|s|,|t|, m_{h}^{2}
$$

p_{T}^{2} / s expansion (valid for not so high energy!)

$$
|s|, m_{t}^{2} \gg|t|, m_{h}^{2} \quad \text { Bonciani, Degrassi, Giardino, Gröber: } 1806.11564
$$

Large energy expansion

$$
|s|,|t| \gg m_{t}^{2} \gg m_{h}^{2} \quad \text { Davies, Mishima, Steinhauser, Wellmann: } 1801.09696
$$

Tricky: singular behavior for $\mathrm{m}_{\mathrm{t}} \rightarrow 0$

Small Higgs mass expansion

A novel approximation method

$$
I\left(s, t, m_{t}^{2}, m_{h}^{2}, \epsilon\right)=\sum_{n=0}^{\infty} \frac{m_{h}^{2 n}}{n!} I^{(n)}\left(s, t, m_{t}^{2}, \epsilon\right)
$$

Taylor expansion: no singularity in the $\mathrm{m}_{\mathrm{h}} \rightarrow 0$ limit

Small Higgs mass expansion

A novel approximation method

$$
I\left(s, t, m_{t}^{2}, m_{h}^{2}, \epsilon\right)=\sum_{n=0}^{\infty} \frac{m_{h}^{2 n}}{n!} I^{(n)}\left(s, t, m_{t}^{2}, \epsilon\right)
$$

Taylor expansion: no singularity in the $\mathrm{m}_{\mathrm{h}} \rightarrow 0$ limit

One loop example:

$$
\begin{array}{r}
I_{1,1,1,1}=\tilde{I}_{1,1,1,1}+\frac{m_{h}^{2}}{s+t}\left[-t \tilde{I}_{1,1,1,2}-\left(2 \tilde{I}_{1,1,0,2}-\tilde{I}_{1,0,1,2}-\tilde{I}_{1,1,1,1}\right)\right]+\mathcal{O}\left(m_{h}^{4}\right) \\
\tilde{I}_{a_{1}, a_{2}, a_{3}, a_{4}}\left(s, t, m_{t}^{2}, \epsilon\right)=\lim _{m_{h}^{2} \rightarrow 0} I_{a_{1}, a_{2}, a_{3}, a_{4}}\left(s, t, m_{t}^{2}, m_{h}^{2}, \epsilon\right)
\end{array}
$$

Comparing approximations at one-loop

Xu, LLY: 1810.12002

Our method is valid in the entire phase space

Expansion at two-loop

Difficult part: two non-planar topologies

Master integrals

Solve the master integrals using the method of differential equations

Analytic results

Weight-2 functions reconstructed from symbols

$$
\begin{aligned}
& \frac{\sqrt{\beta_{i}+1}-1}{\sqrt{\beta_{i}+1}+1} \otimes \beta_{i} \rightarrow 2 \mathrm{Li}_{2}\left(1-z_{i}\right)+\frac{1}{2} \log ^{2}\left(z_{i}\right), \\
& \frac{\sqrt{\beta_{i}+1}-1}{\sqrt{\beta_{i}+1}+1} \otimes\left(\beta_{i}+1\right) \rightarrow 2 \operatorname{Li}_{2}\left(1-z_{i}\right)+2 \operatorname{Li}_{2}\left(-z_{i}\right)+2 \log \left(z_{i}\right) \log \left(z_{i}+1\right)+\frac{\pi^{2}}{6}, \\
& \frac{\sqrt{\beta_{i}+1}-1}{\sqrt{\beta_{i}+1}+1} \otimes \frac{\sqrt{\beta_{i}+1}-\sqrt{\beta_{i}+\beta_{j}+1}}{\sqrt{\beta_{i}+1}+\sqrt{\beta_{i}+\beta_{j}+1}}+\left(\beta_{i} \leftrightarrow \beta_{j}\right) \\
& \quad \rightarrow 2 \mathrm{Li}_{2}\left(-x_{i j}\right)-2 \mathrm{Li}_{2}\left(x_{i j}\right)-\log \left(x_{i j}\right) \log \frac{1-y_{i j}}{1+y_{i j}}-\log \left(x_{i j}\right) \log \frac{1-x_{i j}}{1+x_{i j}} \\
& \quad-2 \operatorname{Li}_{2}\left(-y_{i j}\right)+2 \mathrm{Li}_{2}\left(y_{i j}\right)+\log \left(y_{i j}\right) \log \frac{1-y_{i j}}{1+y_{i j}}+\log \left(y_{i j}\right) \log \frac{1-x_{i j}}{1+x_{i j}} .
\end{aligned}
$$

More complicated functions at higher transcendental weights!

Numeric results

Phenomenological applications upcoming!
Can also be applied to other processes (ZH, Hj, etc.)

Higgs production at CEPC

> Expected to be measured with an uncertainty less than 0.5%

Higgs production at CEPC

Expected to be measured with an uncertainty less than 0.5%

NNLO calculations demanded!

Higgs production at CEPC

Expected to be measured with an uncertainty less than 0.5%

NNLO calculations demanded!

HZV vertex

$$
H \rightarrow 4 l
$$

Relevant to

$$
e^{+} e^{-} \rightarrow Z H
$$

Looks simple, difficult to calculate
Involves 4 scales: m_{t}, m_{H}, m_{Z}, Q

HZV vertex

$$
H \rightarrow 4 l
$$

Relevant to

$$
e^{+} e^{-} \rightarrow Z H
$$

Looks simple, difficult to calculate Involves 4 scales: m_{t}, m_{H}, m_{Z}, Q

Numeric integration using sector decomposition
Gong, Li, Xu, LLY, Zhao: 1609.03955
Sun, Feng, Jia, Sang: 1609.03995
Time-consuming, especially for bottom quark loops and for high energies (above the top quark pair threshold)

HZV vertex: $1 / m_{t}$ expansion

Gong, Li, Xu, LLY, Zhao: 1609.03955
Taylor series in $\frac{s, m_{H}^{2}, m_{Z}^{2}}{m_{t}^{2}}$
Can be done at the level of integrands (with top quark loop only)

$$
\begin{aligned}
\sigma^{\alpha \alpha_{s}}\left(\sqrt{s}, m_{H}, m_{Z}, m_{t}\right) & =m_{t}^{2} c_{2}\left(\sqrt{s}, m_{H}, m_{Z}\right) \\
& +m_{t}^{0} c_{0}\left(\sqrt{s}, m_{H}, m_{Z}\right) \\
& +m_{t}^{-2} c_{-2}\left(\sqrt{s}, m_{H}, m_{Z}\right) \\
& +\cdots
\end{aligned}
$$

Simple analytic expressions

HZV vertex: $1 / m_{t}$ expansion

Gong, Li, Xu, LLY, Zhao: 1609.03955
Good convergence for optimal energies of Higgs factories

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{O}\left(m_{t}^{2}\right)$	$\mathcal{O}\left(m_{t}^{0}\right)$	$\mathcal{O}\left(m_{t}^{-2}\right)$	$\mathcal{O}\left(m_{t}^{-4}\right)$
240	81.8%	16.2%	1.4%	0.4%
250	81.7%	16.1%	1.5%	0.5%

HZV vertex: $1 / m_{t}$ expansion

Gong, Li, Xu, LLY, Zhao: 1609.03955
Good convergence for optimal energies of Higgs factories

HZV vertex: $1 / m_{t}$ expansion

Gong, Li, Xu, LLY, Zhao: 1609.03955
Good convergence for optimal energies of Higgs factories

But note: expansion not working at high energies (neither for bottom quark loops)

HZV vertex: analytic result

To deal with the difficulties, exact analytic result necessary!

0°
0

4

$x, y, z<$

\cdots
4
4

$\underset{\sim}{x, y, z}$
41 master integrals

HZV vertex: analytic result

To deal with the difficulties, exact analytic result necessary!

4

 ∞

 $+$

x, y, z
$\cdots \cdots$
41 master integrals

4 kinds of square roots appear in the differential equations

$$
\begin{array}{r}
R_{1}(x)=\sqrt{x(x+1)}, \quad R_{1}(y)=\sqrt{y(y+1)}, \quad R_{1}(z)=\sqrt{z(z+1)} \\
R_{2}(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x} \\
x=-\frac{Q^{2}}{4 m_{t}^{2}}, \quad y=-\frac{m_{Z}^{2}}{4 m_{t}^{2}}, \quad z=-\frac{m_{H}^{2}}{4 m_{t}^{2}}
\end{array}
$$

HZV vertex: analytic result

Explicit analytic expressions can be reconstructed from the symbol representation (up to weight 3)

Tricky: rationalization of square roots via change of variables

$$
\begin{aligned}
& \beta(x) \otimes \frac{x(x-y-z)-R_{1}(x) R_{2}}{x(x-y-z)+R_{1}(x) R_{2}}+(x \leftrightarrow y)+(x \leftrightarrow z) \\
& \rightarrow G\left(\frac{2 R_{2}}{R_{2}+x-y-z}, 1 ; 1-\beta(x)\right)-G\left(\frac{2 R_{2}}{R_{2}-x+y+z}, 1 ; 1-\beta(x)\right) \\
& +G\left(\frac{2 R_{2}}{R_{2}+y-x-z}, 1 ; 1-\beta(y)\right)-G\left(\frac{2 R_{2}}{R_{2}-y+x+z}, 1 ; 1-\beta(y)\right) \\
& +G\left(\frac{2 R_{2}}{R_{2}+z-y-x}, 1 ; 1-\beta(z)\right)-G\left(\frac{2 R_{2}}{R_{2}-z+y+x}, 1 ; 1-\beta(z)\right) .
\end{aligned}
$$

Allows fast numerics for all phase-space points!

HZV vertex: numeric results

Applied to $e^{+} e^{-} \rightarrow Z H$

HZV vertex: numeric results

Can also be applied to $H \rightarrow Z Z^{*}$

Higgs hadronic decay

Probing Hgg coupling...
and anomalous Yukawa couplings

An important observable: thrust

$$
T \equiv 1-\tau \equiv \max _{\vec{n}} \frac{\sum_{i}\left|\vec{n} \cdot \vec{p}_{i}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

Thrust distribution at NLO

Thrust distribution at NLO

Thrust distribution at NLO

LO bands underestimate the uncertainties

Thrust distribution at NLO

LO bands underestimate the uncertainties
NNLO calculation necessary!

Approximate NNLO

It is possible to reconstruct the logarithmically enhanced terms at NNLO and beyond

$$
\begin{aligned}
& \Delta_{g}^{(3)}\left(\tau, m_{H}\right)=\left[\left(\frac{256}{9} n_{f}^{2}-368 n_{f}-1672\right) L_{H T}+\left(\frac{800}{81}-\frac{80 \pi^{2}}{81}\right) n_{f}^{3}\right. \\
& \quad+\left(\frac{1304 \pi^{2}}{27}-\frac{992 \zeta_{3}}{3}-\frac{31081}{27}\right) n_{f}^{2}+\left(\frac{742121}{27}-\frac{4276 \pi^{2}}{9}+7552 \zeta_{3}-\frac{176 \pi^{4}}{15}\right) n_{f} \\
& \left.\quad-37152 \zeta_{5}+3456 \pi^{2} \zeta_{3}-20904 \zeta_{3}+\frac{968 \pi^{4}}{5}-\frac{698 \pi^{2}}{3}-\frac{1610351}{9}\right] \frac{1}{\tau} \\
& \quad+\left[-\left(512 n_{f}+1824\right) L_{H T}-\frac{320}{27} n_{f}^{3}+\left(\frac{352 \pi^{2}}{9}+\frac{5512}{9}\right) n_{f}^{2}\right. \\
& \left.\quad+\left(7072 \zeta_{3}-896 \pi^{2}-\frac{2044}{3}\right) n_{f}-90288 \zeta_{3}-\frac{72 \pi^{4}}{5}-568 \pi^{2}-\frac{205012}{3}\right] \frac{\ln (\tau)}{\tau} \\
& \quad+\left[\frac{32}{9} n_{f}^{3}+144 n_{f}^{2}-\left(624 \pi^{2}+11616\right) n_{f}-26784 \zeta_{3}+10296 \pi^{2}+126876\right] \frac{\ln ^{2}(\tau)}{\tau} \\
& \quad+\left[-\frac{1184}{9} n_{f}^{2}+\frac{9184}{3} n_{f}+2304 \pi^{2}-3752\right] \frac{\ln ^{3}(\tau)}{\tau}+\left(960 n_{f}-15840\right) \frac{\ln ^{4}(\tau)}{\tau} \\
& \quad-1728 \frac{\ln ^{5}(\tau)}{\tau},
\end{aligned}
$$

The theoretical tool is factorization

$$
\begin{aligned}
\frac{d \Gamma^{i}}{d \tau}=\Gamma_{0}^{i}(\mu)\left|C_{t}^{i}\left(m_{t}, \mu\right)\right|^{2}\left|C_{S}^{i}\left(m_{H}, \mu\right)\right|^{2} \int d p_{n}^{2} d p_{\bar{n}}^{2} d k & \delta\left(\tau-\frac{p_{n}^{2}+p_{\bar{n}}^{2}}{m_{H}^{2}}-\frac{k}{m_{H}}\right) \\
& \times J_{n}^{i}\left(p_{n}^{2}, \mu\right) J_{\bar{n}}^{i}\left(p_{\bar{n}}^{2}, \mu\right) S^{i}(k, \mu)
\end{aligned}
$$

Approximate NNLO

NNLO corrections still large, but overlap with the NLO bands (finally)

Approximate NNLO

NNLO corrections still large, but overlap with the NLO bands (finally)

Back-to-back region, requires resummation (to appear)

Higgs and top quark pair

Probing the Yukawa coupling of the top quark

Higgs and top quark pair

Probing the Yukawa coupling of the top quark

NLO QCD known since 2001
Beenakker et al.: hep-ph/0107081, hep-ph/0211352 Reina, Dawson: hep-ph/0107101
Reina, Dawson, Wackeroth: hep-ph/0109066

Higgs and top quark pair

Probing the Yukawa coupling of the top quark

NLO QCD known since 2001
Beenakker et al.: hep-ph/0107081, hep-ph/0211352 Reina, Dawson: hep-ph/0107101
Reina, Dawson, Wackeroth: hep-ph/0109066

(a)

(b)

NNLO extremely difficult
(two-loop integrals with 7 scales)

Beyond NLO

Construct logarithmically enhanced terms beyond NLO for the differential cross section

$$
\left[\frac{1}{(1-z)} \ln ^{n}\left(\frac{M^{2}(1-z)^{2}}{\mu^{2} z}\right)\right]_{+}
$$

Using factorization

$$
\begin{aligned}
\sigma\left(s, m_{t}, m_{H}\right)= & \frac{1}{2 s} \int_{\tau_{\min }}^{1} d \tau \int_{\tau}^{1} \frac{d z}{\sqrt{z}} \sum_{i j} f_{i j}\left(\frac{\tau}{z}, \mu\right) \\
& \times \int d \mathrm{PS}_{t \bar{t} H} \operatorname{Tr}\left[\mathbf{H}_{i j}(\{p\}, \mu) \mathbf{S}_{i j}\left(\frac{M(1-z)}{\sqrt{z}},\{p\}, \mu\right)\right]
\end{aligned}
$$

valid in the limit $z \equiv \frac{M_{t t h h}^{2}}{\hat{s}} \rightarrow 1$

Beyond NLO

State-of-the-art QCD predictions for this process

Higher order effect important at high energies

Threshold for the total cross section

Consider the threshold region

$$
\begin{aligned}
& \sqrt{\hat{s}} \rightarrow 2 m_{t}+m_{H} \\
& \beta=\sqrt{1-\frac{\left(2 m_{t}+m_{H}\right)^{2}}{s}} \rightarrow 0
\end{aligned}
$$

Sudakov and Sommerfeld corrections

Threshold for the total cross section

Consider the threshold region

$$
\begin{aligned}
& \sqrt{\hat{s}} \rightarrow 2 m_{t}+m_{H} \\
& \beta=\sqrt{1-\frac{\left(2 m_{t}+m_{H}\right)^{2}}{s}} \rightarrow 0
\end{aligned}
$$

Sudakov and Sommerfeld corrections

Combination of SCET and pNRQCD

Threshold for the total cross section

Ju, LLY: 1904.08744
Factorization up to next-to-leading power (NLP)

$$
\hat{\sigma}_{i j}=\sum_{\alpha} \frac{1}{2 \hat{s}} \int d \Phi_{h} d \omega H_{i j}^{\alpha}(\mu) J^{\alpha}\left(E_{J}-\frac{\omega}{2}, \vec{p}_{J}\right) \underbrace{S_{i j}^{\alpha}(\omega, \mu)}_{\text {potential modes modes }}
$$

Threshold for the total cross section

Ju, LLY: 1904.08744
Factorization up to next-to-leading power (NLP)

$$
\hat{\sigma}_{i j}=\sum_{\alpha} \frac{1}{2 \hat{s}} \int d \Phi_{h} d \omega H_{i j}^{\alpha}(\mu) J^{\alpha}\left(E_{J}-\frac{\omega}{2}, \vec{p}_{J}\right) S_{\text {potential modes }}^{S_{i j}^{\alpha}(\omega, \mu)}
$$

pote

$$
\begin{aligned}
\hat{\sigma}_{i j}^{\mathrm{NLL}^{\prime}} \sim \alpha_{s}^{0}\{1, \beta\} & +\alpha_{s}\left\{\ln ^{2} \beta, \ln \beta, 1, \frac{1}{\beta}, \beta \ln ^{2} \beta, \beta \ln \beta\right\} \\
& +\alpha_{s}^{2}\left\{\ln ^{4} \beta, \ln ^{3} \beta, \ln ^{2} \beta, \frac{1}{\beta^{2}}, \frac{1}{\beta}, \frac{\ln ^{2} \beta}{\beta}, \frac{\ln \beta}{\beta}, \beta \ln ^{4} \beta, \beta \ln ^{3} \beta\right\}+\cdots
\end{aligned}
$$

	13 TeV LHC (pb)	$14 \mathrm{TeV} \mathrm{LHC} \mathrm{(pb)}$
NLO	$0.493_{-9.2 \%}^{+5.8 \%}$	$0.597_{-9.2 \%}^{+6.1 \%}$
$\mathrm{NLL}^{\prime}+\mathrm{NLO}$	$0.521_{-2.6 \%}^{+1.9 \%}$	$0.630_{-2.6 \%}^{+2.3 \%}$
K-factor	1.06	1.06

Summary

> To fully exploit the capability of future experimental facilities, we need precision theoretical calculations
> For that purpose, we need better understanding of multi-loop integrals

- Talked about several examples in Higgs physics
> Higgs boson pair production at LHC
> HZV vertex and ZH production at Higgs factories
> Thrust distribution in Higgs hadronic decays
> Higgs production associated with a top quark pair

Summary

> To fully exploit the capability of future experimental facilities, we need precision theoretical calculations
> For that purpose, we need better understanding of multi-loop integrals

- Talked about several examples in Higgs physics
> Higgs boson pair production at LHC
- HZV vertex and ZH production at Higgs factories
- Thrust distribution in Higgs hadronic decays
- Higgs production associated with a top quark pair

