Precision Higgs Physics at LHC and future Higgs Factories

Li Lin Yang Peking University

The topic

- ► The "God" particle
- Discovered in 2012 at LHC
- Electroweak symmetry breaking
- Quark masses and lepton masses

A key quest of LHC: Higgs properties

Future plans

LHC / HL-LHC Plan

Future plans

Future plans

What do we expect to gain?

The Higgs potential

Key to electroweak phase transition, vacuum stability, etc.

But: LHC (currently) can only tell us very limited information!

The Higgs potential

Key to electroweak phase transition, vacuum stability, etc.

But: LHC (currently) can only tell us very limited information!

The SM assumes $V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2$

The SM assumes $V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2$

Not the only option!

The SM assumes $V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2$

Not the only option!

The SM assumes $V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2$

Not the only option!

Not fundamental?

The SM assumes $V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2$

Not the only option!

Higgs self-coupling

May test the next term in the Taylor expansion of the potential around our vacuum

Sounds good...

Not that simple!

(1B)

(1D)

2000000

0000000

(1A)

(**1C**)

$$\begin{split} \mathcal{L} = \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \\ &- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right) \\ &+ \frac{\alpha_s c_g}{4\pi \Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi \Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{ig c_{HW}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} \sigma_k (D^{\nu} H) W^k_{\mu\nu} + \frac{ig' c_{HB}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{ig c_W}{2\Lambda^2} (H^{\dagger} \sigma_k \overleftarrow{D}^{\mu} H) D^{\nu} W^k_{\mu\nu} + \frac{ig' c_B}{2\Lambda^2} (H^{\dagger} \overleftarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu} \\ &+ \mathcal{L}_{\rm CP} + \mathcal{L}_{\rm 4f} \,, \end{split}$$

Goertz, Papaefstathiou, LLY, Zurita: 1410.3471

New physics effects may enter through multiple effective operators

Not that simple!

Not that simple!

Yukawa couplings

Origin of quark masses and lepton masses

Heavy quark Yukawa couplings: everywhere in Higgs physics

Precise knowledge highly-wanted!

Yukawa couplings

Origin of quark masses and lepton masses

Heavy quark Yukawa couplings: everywhere in Higgs physics

Light quark Yukawa couplings: are they really **that** small? Is the mass difference between proton and neutron a pure accident?

Gauge coupling

Key quantity for electroweak symmetry breaking

Relevant for unitarity

Modified by $\sim v^2/\Lambda^2$ if, e.g., Higgs has inner structure **Sub-percent effect if new physics enters at a few TeV!**

Precision experiments meet precision calculations

Future facilities will dramatically improve the experimental precisions of various observables

Precision experiments meet precision calculations

Future facilities will dramatically improve the experimental precisions of various observables

In order to extract the Higgs properties from these precision measurements, we need equally precision theoretical calculations!

An example: gluon fusion

LO already loop-induced

An example: gluon fusion

LO already loop-induced

For better precision, need to calculate higher-order quantum effects NNLO QCD in the heavy top limit

An example: gluon fusion

LO already loop-induced

For better precision, need to calculate higher-order quantum effects NNLO QCD in the heavy top limit

Do we really need such high precision? The answer is yes!

Ahrens, Becher, Neubert, LLY: 0808.3008

HL-LHC demands more theoretical inputs

Challenges from experiments: reducing the theoretical uncertainties!

Perturbative calculations

Generic procedure for a perturbative calculation

Need to combine them to get rid of infrared divergences

We already have rather good understanding of tree-level amplitudes in gauge theories

Tree-level amplitudes

- ► Spinor helicity
- ► Little group scaling
- On-shell recursion
- ► Hints from N=4 SUSY
- ► Collinear limit
- ► Soft limit

See, e.g., Dixon: hep-ph/9601359 Elvang, Huang: 1308.1697 Dixon: 1310.5353 We also have some techniques to simplify the integrands for loop-level amplitudes

Loop integrands

- ► Unitarity cuts
- ► Integration-by-parts
- Color-kinematics duality

$$0 = \int \frac{d^D k}{i\pi^{D/2}} \frac{\partial}{\partial k^{\mu}} \left(k^{\mu} \frac{1}{(-k^2 + m^2)^{a_1} (-(k+p)^2 + m^2)^{a_2}} \right)$$

We also have some techniques to simplify the integrands for loop-level amplitudes

Loop integrands

- ► Unitarity cuts
- ► Integration-by-parts
- Color-kinematics duality

$$0 = \int \frac{d^D k}{i\pi^{D/2}} \frac{\partial}{\partial k^{\mu}} \left(k^{\mu} \frac{1}{(-k^2 + m^2)^{a_1} (-(k+p)^2 + m^2)^{a_2}} \right)$$

But: we have much less information about the results of these loop integrals!

Loop integrals

What we really need are results of integrals

$$I = \int \left(\prod_{j=1}^{L} \mu^{2\epsilon} e^{\epsilon \gamma_E} \frac{d^{4-2\epsilon} k_j}{i\pi^{2-\epsilon}} \right) \prod_{i=1}^{n} \frac{1}{\left(q_i^2 - m_i^2\right)^{a_i}}$$

Loop integrals

What we really need are results of integrals

$$I = \int \left(\prod_{j=1}^{L} \mu^{2\epsilon} e^{\epsilon \gamma_E} \frac{d^{4-2\epsilon} k_j}{i\pi^{2-\epsilon}} \right) \prod_{i=1}^{n} \frac{1}{\left(q_i^2 - m_i^2\right)^{a_i}}$$

Usually interested in the coefficients of its Laurent expansion

 $I = \sum_{j=-2L}^{\infty} \epsilon^j c_j$ (Often complicated) functions of kinematic invariants
Loop integrals

What we really need are results of integrals

$$I = \int \left(\prod_{j=1}^{L} \mu^{2\epsilon} e^{\epsilon \gamma_E} \frac{d^{4-2\epsilon} k_j}{i\pi^{2-\epsilon}} \right) \prod_{i=1}^{n} \frac{1}{\left(q_i^2 - m_i^2\right)^{a_i}}$$

Usually interested in the coefficients of its Laurent expansion

Loop integrals

From experience, one encounters logarithms, polylogarithms and Riemann zeta values in the results for loop integrals

$$\operatorname{Li}_{1}(z) = -\log(1-z)$$

$$\operatorname{Li}_{n}(z) = \sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}} = \int_{0}^{z} \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$

$$\zeta_{n} = \sum_{k=1}^{\infty} \frac{1}{k^{n}} = \operatorname{Li}_{n}(1) \quad (n > 1)$$

There are more!

Goncharov (1998)

Generalizations of polylogarithms

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t)$$

$$G(;z) = 1$$
 $G(\vec{0}_n;z) = \frac{1}{n!} \log^n z$

Goncharov (1998)

Generalizations of polylogarithms

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t)$$

$$G(;z) = 1$$
 $G(\vec{0}_n;z) = \frac{1}{n!} \log^n z$

Special cases $G(\vec{0}_{n-1}, 1; z) = -\text{Li}_n(z)$

Goncharov (1998)

Generalizations of polylogarithms

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t)$$

$$G(;z) = 1$$
 $G(\vec{0}_n;z) = \frac{1}{n!} \log^n z$

Special cases $G(\vec{0}_{n-1}, 1; z) = -\text{Li}_n(z)$

Naturally arise as solutions of differential equations

$$\frac{\partial}{\partial x}\vec{f}(\epsilon,x) = \epsilon A(x)\vec{f}(\epsilon,x)$$

• Matrix of rational functions

A good set of functions

A good set of functions

Numerical evaluation of multiple polylogarithms

Fast numerics

Jens Vollinga and Stefan Weinzierl

hep-ph/0410259

Institut für Physik, Universität Mainz, D - 55099 Mainz, Germany

A good set of functions

Numerical evaluation of multiple polylogarithms

Fast numerics

Jens Vollinga and Stefan Weinzierl

hep-ph/0410259

Institut für Physik, Universität Mainz, D - 55099 Mainz, Germany

Good analytic and algebraic properties, e.g.,

G(a, b; z)G(c; z) = G(a, b, c; z) + G(a, c, b; z) + G(c, a, b; z)

More: Hopf algebra

Iterated integrals and symbols

MPLs are iterated integrals

$$G(a_1, \dots, a_n; z) = \int_0^z d\log(t_1 - a_1) \int_0^{t_1} d\log(t_2 - a_2) \cdots \int_0^{t_{n-1}} d\log(t_n - a_n)$$

Iterated integrals and symbols

MPLs are iterated integrals

$$G(a_1, \dots, a_n; z) = \int_0^z d\log(t_1 - a_1) \int_0^{t_1} d\log(t_2 - a_2) \cdots \int_0^{t_{n-1}} d\log(t_n - a_n)$$

Symbol representation

$$(z-a_n)\otimes\cdots\otimes(z-a_2)\otimes(z-a_1)$$

Encodes algebraic properties of MPLs!

Iterated integrals and symbols

MPLs are iterated integrals

$$G(a_1, \dots, a_n; z) = \int_0^z d\log(t_1 - a_1) \int_0^{t_1} d\log(t_2 - a_2) \cdots \int_0^{t_{n-1}} d\log(t_n - a_n)$$

Symbol representation

$$(z-a_n)\otimes\cdots\otimes(z-a_2)\otimes(z-a_1)$$

Encodes algebraic properties of MPLs!

Iterated integrals can be more generic and complicated

$$\int_0^z d\log R_1(t_1) \cdots \int_0^{t_{n-1}} d\log R_n(t_n)$$

May contain algebraic functions, e.g., square roots

More than elliptic integrals?

Extremely difficult integrals in Higgs physics: massive particles flowing around!

More than elliptic integrals?

Elliptic integrals

Extremely difficult integrals in Higgs physics: massive particles flowing around!

We either spend time with purely numeric methods, or we need clever approximations...

Outline

- ► A new approximation for Higgs pair production at NLO
- Approximate and exact NNLO results for HZV vertex
- Approximate result for ttH production beyond NLO
- Thrust distribution in Higgs hadronic decays

Higgs pair production at NLO (two loops)

4 scales: s, t, m_t, m_h

Purely numerical computation using sector decomposition (resource demanding)

Borowka et al.: 1604.06447, 1608.04798

Approximations

1/mt expansion (only valid for low energy region)

 $m_t^2 \gg |s|, |t|, m_h^2$ Grigo, Hoff, Melnikov, Steinhauser: 1305.7340

Approximations

1/mt expansion (only valid for low energy region)

 $m_t^2 \gg |s|, |t|, m_h^2$ Grigo, Hoff, Melnikov, Steinhauser: 1305.7340

 p_T^2/s expansion (valid for not so high energy!) $|s|, m_t^2 \gg |t|, m_h^2$ Bonciani, Degrassi, Giardino, Gröber: 1806.11564

Approximations

1/mt expansion (only valid for low energy region)

 $m_t^2 \gg |s|, |t|, m_h^2$ Grigo, Hoff, Melnikov, Steinhauser: 1305.7340

 p_T^2/s expansion (valid for not so high energy!) $|s|, m_t^2 \gg |t|, m_h^2$ Bonciani, Degrassi, Giardino, Gröber: 1806.11564

Large energy expansion

 $|s|, |t| \gg m_t^2 \gg m_h^2$ Davies, Mishima, Steinhauser, Wellmann: 1801.09696 Tricky: singular behavior for $m_t \rightarrow 0$

Small Higgs mass expansion

A novel approximation method

$$I(s, t, m_t^2, m_h^2, \epsilon) = \sum_{n=0}^{\infty} \frac{m_h^{2n}}{n!} I^{(n)}(s, t, m_t^2, \epsilon)$$

Taylor expansion: no singularity in the $m_h \rightarrow 0$ limit

Small Higgs mass expansion

A novel approximation method

$$I(s, t, m_t^2, m_h^2, \epsilon) = \sum_{n=0}^{\infty} \frac{m_h^{2n}}{n!} I^{(n)}(s, t, m_t^2, \epsilon)$$

Taylor expansion: no singularity in the $m_h \rightarrow 0$ limit

Comparing approximations at one-loop

Xu, **LLY**: 1810.12002

Our method is valid in the entire phase space

Expansion at two-loop

Xu, **LLY**: 1810.12002

Difficult part: two non-planar topologies

Master integrals

Xu, LLY: 1810.12002

Solve the master integrals using the method of differential equations

Analytic results

Xu, **LLY**: 1810.12002

Weight-2 functions reconstructed from symbols

$$\begin{split} \frac{\sqrt{\beta_i + 1} - 1}{\sqrt{\beta_i + 1} + 1} &\otimes \beta_i \to 2\text{Li}_2(1 - z_i) + \frac{1}{2}\log^2(z_i) \,, \\ \frac{\sqrt{\beta_i + 1} - 1}{\sqrt{\beta_i + 1} + 1} &\otimes (\beta_i + 1) \to 2\text{Li}_2(1 - z_i) + 2\text{Li}_2(-z_i) + 2\log(z_i)\log(z_i + 1) + \frac{\pi^2}{6} \,, \\ \frac{\sqrt{\beta_i + 1} - 1}{\sqrt{\beta_i + 1} + 1} &\otimes \frac{\sqrt{\beta_i + 1} - \sqrt{\beta_i + \beta_j + 1}}{\sqrt{\beta_i + 1} + \sqrt{\beta_i + \beta_j + 1}} + (\beta_i \leftrightarrow \beta_j) \\ &\to 2\text{Li}_2(-x_{ij}) - 2\text{Li}_2(x_{ij}) - \log(x_{ij})\log\frac{1 - y_{ij}}{1 + y_{ij}} - \log(x_{ij})\log\frac{1 - x_{ij}}{1 + x_{ij}} \\ &- 2\text{Li}_2(-y_{ij}) + 2\text{Li}_2(y_{ij}) + \log(y_{ij})\log\frac{1 - y_{ij}}{1 + y_{ij}} + \log(y_{ij})\log\frac{1 - x_{ij}}{1 + x_{ij}} \,. \end{split}$$

More complicated functions at higher transcendental weights!

Numeric results

0.016

0.014

0.012

0.010

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

0

Error

Higgs production at CEPC

Higgs production at CEPC

NNLO calculations demanded!

Higgs production at CEPC

NNLO calculations demanded!

HZV vertex

Looks simple, difficult to calculate Involves 4 scales: m_t, m_H, m_Z, Q

HZV vertex

 $\begin{array}{c} H \rightarrow 4l \\ \mbox{Relevant to} \\ e^+e^- \rightarrow ZH \end{array}$

Looks simple, difficult to calculate

Involves 4 scales: m_t, m_H, m_Z, Q

Numeric integration using sector decomposition

Gong, Li, Xu, **LLY**, Zhao: 1609.03955 Sun, Feng, Jia, Sang: 1609.03995

Time-consuming, especially for bottom quark loops and for high energies (above the top quark pair threshold)

Gong, Li, Xu, LLY, Zhao: 1609.03955

Taylor series in

$$\frac{s, m_H^2, m_Z^2}{m_t^2}$$

Can be done at the level of integrands (with top quark loop only)

$$\sigma^{\alpha\alpha_s}(\sqrt{s}, m_H, m_Z, m_t) = m_t^2 c_2(\sqrt{s}, m_H, m_Z) + m_t^0 c_0(\sqrt{s}, m_H, m_Z) + m_t^{-2} c_{-2}(\sqrt{s}, m_H, m_Z) + \cdots$$

Simple analytic expressions

Gong, Li, Xu, LLY, Zhao: 1609.03955

Good convergence for optimal energies of Higgs factories

	$\sqrt{s} \; ({\rm GeV})$	$\mathcal{O}(m_t^2)$	$\mathcal{O}(m_t^0)$	$\mathcal{O}(m_t^{-2})$	$\mathcal{O}(m_t^{-4})$
	240	81.8%	16.2%	1.4%	0.4%
	250	81.7%	16.1%	1.5%	0.5%
$rac{m_t^2}{\sigma^{lpha lpha}}$	$\frac{c_2}{a_s}$				I

Gong, Li, Xu, LLY, Zhao: 1609.03955

Good convergence for optimal energies of Higgs factories

No difference between exact and expanded results (4 digits)

Gong, Li, Xu, LLY, Zhao: 1609.03955

Good convergence for optimal energies of Higgs factories

No difference between exact and expanded results (4 digits)

But note: expansion not working at high energies (neither for bottom quark loops)
HZV vertex: analytic result

Wang, Xu, LLY: 1905.11463

To deal with the difficulties, exact analytic result necessary!

HZV vertex: analytic result

Wang, Xu, **LLY**: 1905.11463

To deal with the difficulties, exact analytic result necessary!

4 kinds of square roots appear in the differential equations

$$R_1(x) = \sqrt{x(x+1)}, \quad R_1(y) = \sqrt{y(y+1)}, \quad R_1(z) = \sqrt{z(z+1)}$$
$$R_2(x, y, z) = \sqrt{x^2 + y^2 + z^2 - 2xy - 2yz - 2zx}$$

$$x = -\frac{Q^2}{4m_t^2}, \quad y = -\frac{m_Z^2}{4m_t^2}, \quad z = -\frac{m_H^2}{4m_t^2}$$

HZV vertex: analytic result

Explicit analytic expressions can be reconstructed from the symbol representation (up to weight 3)

Tricky: rationalization of square roots via change of variables

$$\begin{split} \beta(x) & \otimes \frac{x(x-y-z) - R_1(x)R_2}{x(x-y-z) + R_1(x)R_2} + (x \leftrightarrow y) + (x \leftrightarrow z) \\ & \to G\bigg(\frac{2R_2}{R_2 + x - y - z}, 1; 1 - \beta(x)\bigg) - G\bigg(\frac{2R_2}{R_2 - x + y + z}, 1; 1 - \beta(x)\bigg) \\ & + G\bigg(\frac{2R_2}{R_2 + y - x - z}, 1; 1 - \beta(y)\bigg) - G\bigg(\frac{2R_2}{R_2 - y + x + z}, 1; 1 - \beta(y)\bigg) \\ & + G\bigg(\frac{2R_2}{R_2 + z - y - x}, 1; 1 - \beta(z)\bigg) - G\bigg(\frac{2R_2}{R_2 - z + y + x}, 1; 1 - \beta(z)\bigg). \end{split}$$

Allows fast numerics for all phase-space points!

HZV vertex: numeric results

Wang, Xu, LLY: 1905.11463

Applied to $e^+e^- \rightarrow ZH$

HZV vertex: numeric results

Wang, Xu, LLY: 1905.11463

Can also be applied to $H \to ZZ^*$

Higgs hadronic decay

An important observable: thrust

$$T \equiv 1 - \tau \equiv \max_{\vec{n}} \frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{\sum_{i} |\vec{p_i}|}$$

Gao, Gong, Ju, LLY: 1901.02253

NNLO calculation necessary!

Approximate NNLO

Gao, Gong, Ju, LLY: 1901.02253

It is possible to reconstruct the logarithmically enhanced terms at NNLO and beyond

$$\begin{split} \Delta_{g}^{(3)}(\tau, m_{H}) &= \left[\left(\frac{256}{9} n_{f}^{2} - 368n_{f} - 1672 \right) L_{HT} + \left(\frac{800}{81} - \frac{80\pi^{2}}{81} \right) n_{f}^{3} \\ &+ \left(\frac{1304\pi^{2}}{27} - \frac{992\zeta_{3}}{3} - \frac{31081}{27} \right) n_{f}^{2} + \left(\frac{742121}{27} - \frac{4276\pi^{2}}{9} + 7552\zeta_{3} - \frac{176\pi^{4}}{15} \right) n_{f} \\ &- 37152\zeta_{5} + 3456\pi^{2}\zeta_{3} - 20904\zeta_{3} + \frac{968\pi^{4}}{5} - \frac{698\pi^{2}}{3} - \frac{1610351}{9} \right] \frac{1}{\tau} \\ &+ \left[- (512n_{f} + 1824) L_{HT} - \frac{320}{27} n_{f}^{3} + \left(\frac{352\pi^{2}}{9} + \frac{5512}{9} \right) n_{f}^{2} \right. \\ &+ \left(7072\zeta_{3} - 896\pi^{2} - \frac{2044}{3} \right) n_{f} - 90288\zeta_{3} - \frac{72\pi^{4}}{5} - 568\pi^{2} - \frac{205012}{3} \right] \frac{\ln(\tau)}{\tau} \\ &+ \left[\frac{32}{9} n_{f}^{3} + 144n_{f}^{2} - (624\pi^{2} + 11616) n_{f} - 26784\zeta_{3} + 10296\pi^{2} + 126876 \right] \frac{\ln^{2}(\tau)}{\tau} \\ &+ \left[-\frac{1184}{9} n_{f}^{2} + \frac{9184}{3} n_{f} + 2304\pi^{2} - 3752 \right] \frac{\ln^{3}(\tau)}{\tau} + (960n_{f} - 15840) \frac{\ln^{4}(\tau)}{\tau} \\ &- 1728 \frac{\ln^{5}(\tau)}{\tau} \,, \end{split}$$
(C.3)

The theoretical tool is factorization

$$\frac{d\Gamma^{i}}{d\tau} = \Gamma^{i}_{0}(\mu) |C^{i}_{t}(m_{t},\mu)|^{2} |C^{i}_{S}(m_{H},\mu)|^{2} \int dp_{n}^{2} dp_{\bar{n}}^{2} dk \,\delta\left(\tau - \frac{p_{n}^{2} + p_{\bar{n}}^{2}}{m_{H}^{2}} - \frac{k}{m_{H}}\right) \\ \times J^{i}_{n}(p_{n}^{2},\mu) J^{i}_{\bar{n}}(p_{\bar{n}}^{2},\mu) S^{i}(k,\mu)$$

valid in the limit $T \rightarrow 1$

Approximate NNLO

Gao, Gong, Ju, LLY: 1901.02253

NNLO corrections still large, but overlap with the NLO bands (finally)

Approximate NNLO

Gao, Gong, Ju, LLY: 1901.02253

NNLO corrections still large, but overlap with the NLO bands (finally)

Back-to-back region, requires resummation (to appear)

Higgs and top quark pair

Higgs and top quark pair

Higgs and top quark pair

(a)

(d)

(e)

(f)

NNLO extremely difficult

(two-loop integrals with 7 scales)

Beyond NLO

Broggio, Ferroglia, Pecjak, LLY: 1611.00049

Construct logarithmically enhanced terms beyond NLO for the differential cross section

$$\left[\frac{1}{(1-z)}\ln^n\left(\frac{M^2(1-z)^2}{\mu^2 z}\right)\right]_+$$

Using factorization

$$\sigma\left(s, m_{t}, m_{H}\right) = \frac{1}{2s} \int_{\tau_{\min}}^{1} d\tau \int_{\tau}^{1} \frac{dz}{\sqrt{z}} \sum_{ij} f_{ij}\left(\frac{\tau}{z}, \mu\right)$$
$$\times \int d\mathrm{PS}_{t\bar{t}H} \mathrm{Tr}\left[\mathbf{H}_{ij}\left(\{p\}, \mu\right) \mathbf{S}_{ij}\left(\frac{M(1-z)}{\sqrt{z}}, \{p\}, \mu\right)\right]$$

valid in the limit
$$z \equiv \frac{M_{t \overline{t} h}^2}{\hat{s}} \to 1$$

Beyond NLO

Broggio, Ferroglia, Pecjak, LLY: 1611.00049

State-of-the-art QCD predictions for this process

Ju, LLY: 1904.08744

Consider the threshold region

$$\sqrt{\hat{s}} \to 2m_t + m_H$$
$$\beta = \sqrt{1 - \frac{(2m_t + m_H)^2}{s}} \to 0$$

Sudakov and Sommerfeld corrections

Ju, LLY: 1904.08744

Consider the threshold region

$$\sqrt{\hat{s}} \to 2m_t + m_H$$
$$\beta = \sqrt{1 - \frac{(2m_t + m_H)^2}{s}} \to 0$$

Sudakov and Sommerfeld corrections

Combination of SCET and pNRQCD

hard : $k^{\mu} \sim \sqrt{\hat{s}}$, soft : $k^{\mu} \sim \sqrt{\hat{s}}\beta$, potential : $k^{0} \sim \sqrt{\hat{s}}\beta^{2}$, $\vec{k} \sim \sqrt{\hat{s}}\beta$, ultrasoft : $k^{\mu} \sim \sqrt{\hat{s}}\beta^{2}$, collinear : $(k_{+}, k_{-}, k_{\perp}) \sim \sqrt{\hat{s}}(1, \beta^{2}, \beta)$, anticollinear : $(k_{+}, k_{-}, k_{\perp}) \sim \sqrt{\hat{s}}(\beta^{2}, 1, \beta)$.

Ju, LLY: 1904.08744

Factorization up to next-to-leading power (NLP)

$$\hat{\sigma}_{ij} = \sum_{\alpha} \frac{1}{2\hat{s}} \int d\Phi_h d\omega \ H_{ij}^{\alpha}(\mu) \ J^{\alpha} \left(E_J - \frac{\omega}{2}, \vec{p}_J \right) S_{ij}^{\alpha}(\omega, \mu)$$

hard modes potential modes ultrasoft modes

$$\begin{split} \hat{\sigma}_{ij}^{\text{NLL}'} &\sim \alpha_s^0 \Big\{ 1, \beta \Big\} + \alpha_s \Big\{ \ln^2 \beta, \ln \beta, 1, \frac{1}{\beta}, \beta \ln^2 \beta, \beta \ln^2 \beta, \beta \ln \beta \Big\} \\ &+ \alpha_s^2 \Big\{ \ln^4 \beta, \ln^3 \beta, \ln^2 \beta, \frac{1}{\beta^2}, \frac{1}{\beta}, \frac{\ln^2 \beta}{\beta}, \frac{\ln \beta}{\beta}, \beta \ln^4 \beta, \beta \ln^3 \beta \Big\} + \cdots \end{split}$$

	13 TeV LHC (pb)	14 TeV LHC (pb)
NLO	$0.493^{+5.8\%}_{-9.2\%}$	$0.597^{+6.1\%}_{-9.2\%}$
NLL'+NLO	$0.521^{+1.9\%}_{-2.6\%}$	$0.630^{+2.3\%}_{-2.6\%}$
K-factor	1.06	1.06

Summary

- To fully exploit the capability of future experimental facilities, we need precision theoretical calculations
- For that purpose, we need better understanding of multi-loop integrals
- ➤ Talked about several examples in Higgs physics
 - ► Higgs boson pair production at LHC
 - ► HZV vertex and ZH production at Higgs factories
 - Thrust distribution in Higgs hadronic decays
 - ► Higgs production associated with a top quark pair

Summary

- To fully exploit the capability of future experimental facilities, we need precision theoretical calculations
- For that purpose, we need better understanding of multi-loop integrals
- ➤ Talked about several examples in Higgs physics
 - ► Higgs boson pair production at LHC
 - ► HZV vertex and ZH production at Higgs factories
 - Thrust distribution in Higgs hadronic decays
 - ► Higgs production associated with a top quark pair

Thank you!