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Brief introduction to jets
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Energy correlators in conformal field theory

Interplay between QCD and N=4 sYM



What are jets
e Jets are collimated spray of energetic particles

quark

?

non-perturbative

0 from G. Salam

hadronisation

Ny

e Historically, gluon was discovered in three jet events in
e+e-

Gluon discovery

Js = 27.4 GeV, in 1979




Nowadays jets are everywhere

from G. Salam
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First IR safe definition for jet
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Jet measurements at the LHC

e Since then, a significant theoretical efforts in making
precision predictions for jets production

* Resulting in the remarkable success in comparing theory
and measurements at the LHC
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What we want to learn from jets?

 \What do you expect to learn? Isn’t it just the good old
QCD?

Qo Lo frer
. W '--‘?7?."," 094 % » honperturbative hadronization: soft physics
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e I mG\ \3E \F 7 3% —=—> jet evolution: semi-hard physics

= \ ol G TS0s | =

- * e Scattering amplitudes : hard physics

* QCD in several order of magnitude
In energy

e Jet evolution is a link between hard
and soft physics




JET CALCULUS: A SIMPLE ALGORITHM FOR RESOLVING QCD JETS

K. KONISHI
Rutherford Laboratory, Chilton, Didcot, England

A. UKAWA * and G. VENEZIANO
CERN, Geneva, Switzerland

Summarizing, besides the “classical” (¢*e™ - hadrons, ep = e + X) and the “stan-
dard” (i.e., hard processes involving one large scale) applications of IPT, we can
imagine “new” applications of IPT to processes involving several large (>> 1 GeV)
mass scales. These processes cover most of phase space and involve relatively large
cross sections, hence they are phenomenologically very important. Their importance
is also theoretical though: understanding semi-hard hadron physics could provide
the long sought bridge between hard hadron physics (where parton degrees of free-
dom are relevant) and soft hadron physics (where resonances, reggeons and pomerons
become the right degrees of freedom). It could eventually lead to important hints as
to how confinement itself might originate.




* | hope | have convinced you that there is something
interesting to learn from jets

* There are many different observables “designed” to probe
the structure of jets

* In this talk, | will focus on the simplest one: the energy
correlators



Correlation functions

Correlations are the most basic observables in physics

Perhaps the most well-known example is the spin-spin
correlation in Ising model

Scattering amplitudes in QFT are related to correlation
functions through LSZ reduction

But amplitudes in gauge theory are not directly
observable beyond tree-level, due to the appearance of
IR divergences

Energy Correlators are a class of observables, which are
both physical, and infrared finite



Energy-Energy Correlator

* The simplest energy correlator is the two-point energy
correlator (EEC) N

e Consider e+e- -> anything

1

-pvévents

Z /dﬂa/deEaEbé(cosx—cos Oub)

events



* EEC was proposed 40 years ago Basham, Brown, Ellis, Love, 1978
e Since then dedicated theoretical and experimental study

e \ery accurate experimental measurement!
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Analytical calculation
beyond Leading Order



e Suppose we want to compute some physical observable
O, which is a function of final state momenta:

O = O({k:})

e Standard textbook teach us that O can be computed from
integrating the phase space of k;

d3k d3k,
dO I Z./ 27 321E1 / 2m)32F, (2m)'6™ (p1 + p2 = Zk My, ps k.. |20(0 — O({ki}))

e Complications:
 For individual n, the phase space integrals are usually not

R finite. But the sum is (KLN theorem). Regularization for
R is needed

* The observable define a very complicated codimension 1
sub-manifold in the 3n-4 dimension phase space



Previous analytical jet observable

e Historically, only very few jet observable are known even
just at leading order

* Progress is very slow in a long period

A
C-parameter No' No
Thrust Yes [De Rujula et al., 1978] No
Heavy jet mass Yes? No
EEC Yes [Basham etal., 1978] | Notuntil now

o, dC 27

(3) x3 u
l do Xs Cr f (D 4x Integral representation for C parameter@LO

x5 (C)

y 6x| C(x* + (x —2)%) = 6(1 — x)(1 + x?)

C(C+6)*(x—6/(C+E)W(6/(C+6)—x)(x; —x)(x— x5 )x

Ellis, Ross, Terrano, 1981



The methods

* Reverse unitarity (phase space becomes “loops”)
Anastasiou, Melnikov, 2002

d° k1 d*ky ) d*k; 1 1 1
— 2 — _ _
/ (2m)32F4 / (27T)4( m)o+ (k1) / (2m)* 4 (k% —10 k% + iO)

* Nonlinear (in Mandelstam variable) propagator
Pi Dy
pi - Qp; - Q)

5(1 — COS X457 —

_ pz"QPz"Q( 1 B 1 )
2mi (1 —cosxij)pi - Qpi - Q —pi-pi —i0 (1 —cosxij)pi - Qpi - @ — p; - pj + 10

* Integration-By-Parts relation  Tkachov, 1981

d

* Differential equation for Feynman integral Gehrmann, Remiddi, 1997
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Virtual corrections
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A little bit detall

 Thanks to IBP reductions, O(10000) integrals reduced to

O(40) (initially takes 3 days on 18 core server with 128G
RAM. Now takes only 1 hours)

e System of differential equations can be casted into
canonical form Henn, 2013

if(z.e) = e[y Aymar(e)| flze) == L~ cosx
k

2
e Alphabet:

&k(z) S {Z,l—z,x,l—aﬁ,y,l—y,l—l—y}

_ Wz
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The space of function

* At the NLO, EEC is fully described by the following set the
uniform weight special function

gi J=log(1—2), g5 =log(z),  ¢i¥ =2(Lia(2) + C2) + log*(1 — 2),
92 _L|2( )_LIQ( )7

g§2) = —2Liz (—v/z) + 2Li2 (Vz) + log (1 — ﬁ) log(z), gf) = (2,
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The analytical NLO results

Dixon, M.X. Luo, Shtabovenko, T.Z. Yang, HXZ, 2018
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Ratio LO/NLO
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Did we get it rlght’?

* Excellent agreement with
numerical calculation (done
some 13 years ago!)
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e Using the same method, we

also calculate the EEC
distribution in hadronic Higgs
decay

—MhX. Luo, Shtabovenko, T.Z. Yang, HXZ, 2019

e No numerical results to
compared with this time!



Back-to-back limit



Appearance of large logarithms

* One benefit of having analytical results is making
iInvestigation of the structure easy

* In QFT, one typically encounters large logarithms due to
RG running between two different scales

fa
} /

clozln’ua - coa® In? Ha ...+ ca”In -

Ho Ho Ho

* They comes from UV divergence in the theory, and are
single logarithmic. Can be resummed using RG equation

<&> v()
b



Sudakov double logarithms

* |nstead of single logarithms, we encounter double
logarithms in the back-to-back limit

1 do _ Qs In(1 — 2) 2 = L — cosx
oo dz 4w U122 L 2
5 ln(l—z) / Jn(1 — 27) 2,1
+(47T)CF( — +) Odz T (1l -2)

* They are Sudakov double logarithms. They arise from

soft-collinear radiation of massless gauge theory
D

k dE,
\' / — ~In E() In (90
2p-k 2B E;(1 —cosf)

e The proper effective theory for resumming soft/collienar
logarithms is Soft-Collinear Effective Theory (SCET)




Brief introduction to SCET

e SCET is an EFT for separating different modes with
hierarchy in virtuality (offshellness)

A1
nt = (1,7), n"=(1,—n) hard mode: prn = Q(1,1,1)
ph :%ﬁ Cpnt 4 %n . pAt collinear mode: p. = Q(l A2 N)
soft mode: QA AN
— 7p 7pJ_
collinear \\% \\/ / Weinberg’s
* factorization soft theorem
1M e R
P12 A1 9k by Eq,— >nPh
ZSpht :C 17,2 )An_1(...,P ,) eu(q )]W#H( ) O]V[ (g )zl:pnqul)_F .
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DO | Sk

n-D
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Back-to-back factorization for EEC

Moult, HXZ, 2018

hard function:
form factor for vector current

by, p,vo |1 —2z— —=
e Q?

jet function: Soft function:
N=2 moment of TMD semi-infinite light-like Wilson

fragmentation function

/ rdx




Where does the Sudakov logs come from?

* Double logs appears in hard, jet, and soft functions

* Take soft function as an example. Renormalization of
Wilson loop Polyakov, 1980

@ ~ vs(a) In(LAyv) O = e (jfy’ ?;)l?ngéiizi

Spmc(L, mv) = lim Nitr<0|T 51, (0)5a-(0)] T[S (L)) Sa- (w(E0)] 10)

v—>+00 c /

semi-infinite Iiéht-like Wilson line

2

= [2Fcu3p(a3) In % — Q’YEEC(QS)] SEEC(E_Lv My V)

dSgec(by, 11, v)
. d
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From factorization to resummation

* Solving the RG equation for the hard, jet, and soft
function resum the Sudakov logarithms to all order

e Such a resummation is important to compare theory with
experiment

% LO
5| Q=91.2 GeV NLO
* NNLO
3| =
o ' resummed
= | S : |
0.5
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160 165 170 175




Collinear limit from
factorization approach



Single logarithmic collinear divergence

X*~ 2
* In the small angle limit, cross section diverges as 1/z
ST | T 1]
do _ 1 : sy
dz 2z =
2]11,2 ;é\o.s
T Qg | S
2z 5
5 In? 2 | 0.1 -
—I—OdSZ ... oosE

|
6-94 / X (degree) 777777 3

collinear limit

time-like splitting kernel



Leading Log resummation

 |LL series resummed long time ago by jet calculus
Konishi, Ukawa, Veneziano, 1979

2 — (4PT) B |:s(4p%) A2/2mb
a%i Dala2 (1, 1; PT, Q°)= ? ( 2)8] O‘S(Qz)]ji , (5.17)

and the same with 4p% -> 5202,

e Attempt to go beyond LL with limited success
Kalinowski, Konishi, Scharbach, Taylor, 1980

1+21 142 271 2T :r
E =2 (-2 — — .
(71, 72) { + 1 — 2 + 1=z, (-2 (1—m) :\
n 2_1+£B1_1+$2+ 2 log (1—.’21)(1—:82) v i ¥
l—zo 1—z1 (1—z1)(1—22) 1 —x1— 22 .

Dixon, M.X. Luo, Shtabovenko, T.Z. Yang, HXZ, 2018

. e 8011
d dzy E(zq, + (z1 + 1—z — = 403+ — (g — —— .
/0 xl/(, z2 E(21, 22) [2122 + (21 + 22)(1 — 21 — 22)) G+ @ 132 NLL resummation not

available in general!



All-order factorization for z—0

Dixon, Moult, HXZ, to appear

Q? N O
e Cumulant Q(z,In ,u_”u) dz' (2", In Faﬂ)
0

2 1 2 )2 2
)z, an—,,u) / dz z2J7 (In - 2Q ) - H(x,In Q—,,u)
p? 0 P s

. 2 N

z = 2T 5 Fixed by kinematics and
¢ X Q dimension analysis
X * Both jet and hard function are vector in flavor space

* Hq (Hy) : probability of finding a quark (gluon) with
momentum fraction X

_ * Jq (Jg) : probability of finding two parton with
ﬁF”" '"te”_e"eg‘?e . momentum fraction y+, y» and relative transverse
efiects retained in momentum qr in quark (gluon) initiated jet,

and J, separately weighted by y1*y.



Counting the order

‘ LL Konishi, Ukawa, Veneziano, 1979

NLL + NNLL Dixon, Moult, HXZ, 2019, to appear

O,
Inz/z , o,)?/ O
2 e,
In“z/z 5 Y
Y, O
3 e
In” z/z

To get to NNLL
require:

NNLO splitting kernel

Moch, Vermasseren, Vogt

NNLO hard function
Mitov, Moch, 2006;
Almasy, Moch, Vogt, 2011

NNLO Jet function

A Very challenging!




g 3CF
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e The results obey leading transcendental principle: setting CF=CA, the leading transcendental series agree
with N=4 SYM.

e Furthermore, this leading transcendental series is simply AD of twist-two spin 1 anomalous dimension in N=4
SYM vy,.i(1). Maybe the first all order prediction in QCD cross section for the leading transcendental part!



z(1-2)/0, do/dz

Numerical impact of NNLL

Dixon, Moult, HXZ, to appear
EEC for small z
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EEC in N=4 sYM



EEC as four point correlator

* The nice thing about EEC is that it can be defined directly
in terms of field theory correlator ~ Hofman, Maldacena, 2008

(€(n1)€(ng))q = 0_1/d4$ e’ ?(0|0"(x)€ (n1)E(n2)0(0)[0)
E (n) = / dt lim r nZTOZ(t rn) energy flow operator
0 T—>00

 The operator O produce localized excitation from vacuum

* |In N=4 sYM, one can choose the operator O to be in the
same supermultiplet of the energy-momentum tensor

1 w%2$§4 3333334211
(O(21)O(22)0(23)O(z4))E = 5 2 ®(u,v;a) u= 234 = 24
12952333349”41 L13Lo4 L13T24

known to very high order!



EEC in N=4 SYM

* The only difficulty is that EEC is defined as Wightman
correlation with Minkowski signature, while known results
are for Euclidean correlator. Require very non-trivial
analytical continuation

* This has been done at NLO by Mellin space techniques

* Very recently, exploring the Lorentzian inversion formula,
EEC can be computed through triple discontinuities

Energy energy correlatlon in N=4 sYM

40

Henn, Sokatchey, Y. Kai, Zhibodove, 2019
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EEC(C) = W3C22135 dz/dt = 1_0
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—40-

\
20 40 60 80 100 120 140 160



Collinear limit from field theory

e Collinear limit in CFT has a particular interesting
iInterpretation as operator product expansion

 For ajet in z direction, useful to change coordinate

X+t=x04+x3, x=x0-x3 Hofman, Maldacena, 2008
2 2 1 2
T S e i R L
xT xT xT xt
> 1 2
g(ylay2) = 2/ dy—T——(y—7y+ — an » Y )
—00

coordinate — () plane
transfoermation
(y1 — yz = le_—yzj_) <0

le_ ?72L

leading term: ~~ 1/2
EFL)EWDL) ~ /dy—T——(y_,?ﬁ = O,yl)/dy’_T——(y’_,y+ =0,01) ~ > |7™ " Uj—1al,_,



Two very different picture

* |n the factorization approach, small z limit determined by

time-like splitting
mﬁ<
T
* |n the field theory correlator approach, small z limit
corresponds to space-like OPE

—I_:

Yy () plane

Yol — Y1,1

(y1 —y2)® = (1,1 — Fo,1)* <O



factorization approach

PT(LE, Sij > O)

t [/
: A —h—<< ‘
light cone J

OPE approach

* How comes that the time-like picture and space-like
picture describe the same physics?



Time-like space-like connection from factorization equation

Dixon, Moult, HXZ, to appear
e \We can demonstrate the

time-like kernel

* Power-law ansatz for the jet function l
N:4(as) 2 N
5 B ZQ2 Y dJ_/\/‘: (ln %) 1 2 2 ',¢ \“
160% 0 = Oyt (22 05 [ ataneain L 0

~~~~~

1
2’)/N:4(()és) = — 2/ dy y2+27N_4(a8)PT,uni.<xa as)
0
— 27’_4\”/’:4 (3 + 2’7'/\/:47 as)

. ‘ _ — = B )
e Reciprocity 274 =" (N, as) = 2 =1 (N + 27§ (N, ), ) Korch;:::fy, 2006
N=4 _ N=4
— Y (as) = 75 (3, as)

* We can also derive a reciprocity relation in pure Yang-Mills

298" YN, as (u
295 YN, g () = 298 T | N + =5 — (QE P
1+ =5 Bo1n(2)
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Summary

Jets provides excellent probe for connecting perturbative
hard physics and non-perturbative soft physics

Energy correlators are perhaps the simplest observable to
understand structure of jets

Recent progress in understanding energy correlators:
fixed order calculation, all order resummation

Energy correlators in N=4 sYM: interesting connection
between time-like and space-like physics
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