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Getting Started

I Holography

d + 2 dim gravity in bulk ⇔ d + 1 dim “matter” fields on boundary

I The boundary is sometimes called a

“holographic screen”

I Example: AdSd+2/CFTd+1

AdS black holes in d + 2

⇔ CFTd+1 at finite temperature

I Is there any holographic description

of gravity in asymptotically dS or

flat background? dS/CFT, matrix

black holes, entropic forces · · ·
I Boundary thermodynamics → bulk gravity (black holes...)



I A general question: When does thermodynamics apply to
small systems?

I What happens if a holographic screen becomes “tiny”? —
may be related to “microscopic properties” of gravity

♣ A Naive Observation

I Black holes in AdSd+2, with flat boundary R1 × Rd

I Metric

ds2 = L2

�
−r 2f (r)dt2 + r 2dx2 +

dr 2

r 2f (r)

�
, f (r) = 1− r 2

+

r 2

I Hawking temperature

κ̂ =
d + 1

2
r+ ⇒ βH =

2π

κ̂
⇒ TH =

d + 1

4π
r+

I Thermodynamical relations

S ∼ VdT
d
H , E ∼ VdT

(d+1)
H , S ∼ V

1/(d+1)
d E d/(d+1)



I Heat capacity is positive

CV =

�
∂E

∂T

�
V

= T

�
∂S

∂T

�
V

= d · S = (d + 1)
E

TH
> 0

I Thermodynamic stability: system + environment in
equilibrium

fluctuations : environment
δQ>0−→ system

δT ∼ δQ/CV > 0

I Boundary CFTd+1 has scaling invariance under

t → λt, x i → λx i ; 1 ≤ i ≤ d

I If T = 0, no characteristic scales in the boundary theory
I Finite temperature t ∼ t + iβ sets up a natural length scale,

so a physical quantity of dimension Lα should scale as T−α

[X ] = Lα ⇒ X ∼ T−α



I Putting the system into a box of volume Rd ⇒ X = T−αf (RT )

I For extensive variables

f (RT ) = c · (RT )d ⇒ X = c · VdT
d−α

I Applying to entropy and energy → reproduce the thermodynamics of

AdS black holes

S = c1VdT
d , E = c2VdT

d+1 ⇒ S ∼ V
1/(d+1)
d E d/(d+1)

I The first law of thermodynamics

dE = TdS ⇒ c2 = c1 ·
d

d + 1
⇒ S =

d + 1

d

E

T

I Schwarzschild Black Holes

ds2 = −
�

1− wd+1M

rd−1

�
dt2 +

�
1− wd+1M

rd−1

�−1

dr 2 + r 2dΩ2
d

wd+1 ≡
16πGd+2

d ·Vol(Sd)
, Vol(Sd) =

2π(d+1)/2

Γ((d + 1)/2)



I Horizon and ADM energy

rH = (wd+1M)
1

d−1 , E = M

I Surface gravity and temperature

κ̂ =
d − 1

2rH
, βH =

2π

κ̂
⇒ TH =

d − 1

4πrH

I Dependence of energy on temperature

E =
rd−1
H

wd+1
=

d ·Vol(Sd)

16πGd+2

�
d − 1

4π

�d−1

T−d+1
H

I Bekenstein-Hawking entropy

S =
Ad

4Gd+2
=

Vol(Sd)

4Gd+2
rd
H =

Vol(Sd)

4Gd+2

�
d − 1

4π

�d

T−d
H

I Relation between entropy and energy

S ∼ V
− 1

d−1

d E
d

d−1 , Vd ∝ Vol(Sd)



I Heat capacity is negative, indicating thermodynamic instability

CV =

�
∂E

∂T

�
V

= T

�
∂S

∂T

�
V

= −d · S = −(d − 1)
E

TH
< 0

I At a fixed point of RG flows (e.g. IR fixed point), there are
models exhibiting anisotropic scaling behavior (Lifshitz Fixed
Point)

t → λz t, x i → λx i ; 1 ≤ i ≤ d

I Dimensions

[x] = L, [k] = L−1, [t] = Lz , [ω] = [E ] = [T ] = L−z , [c] = L1−z

I Toy model action (N = 1, free theory)

S0 =

Z
dt ddx

h
φ̇2 − φ(−∇2)zφ

i
I Canonical dim: 1 = [S0] = Lz+d · L−2z · [φ]2 ⇒ [φ] = L(z−d)/2



I When T = 0, scale invariance ⇒ no characteristic scales in
the theory

I At finite temperature, t ∼ t + iβ, T = 1/β

[T−1/z ] = [β1/z ] = L

I A physical quantity X of dimension [X ] = Lα should scale as
X ∼ T−α/z

I If the system is put into a box with spacial volume Rd , then

X = T−α/z f (RT 1/z)

I For extensive variables

f (RT 1/z) = c · RdT d/z ⇒ X = c · VdT
d−α

z

I Applying to entropy and energy (α = 0,−z , respectively)

S = c1VdT
d/z , E = c2VdT

(d+z)/z ⇒ S ∼ V
z/(d+z)
d E d/(d+z)



I The first law of thermodynamics

dE = TdS ⇒ c2 = c1 ·
d

d + z
⇒ S =

d + z

d

E

T

I Heat capacity

CV =

�
∂E

∂T

�
V

= T

�
∂S

∂T

�
V

=
d

z
S =

d + z

z

E

T

I CV < 0 iff the critical exponent z is “unphysical”: −d < z < 0

I Thermodynamics at z = −1 ⇒ Schwarzschild black holes?

I Adding a mass term −m2φ2 and a K.T. −c2φ(−∇2)φ to the
free action, one gets

ωk =
p

m2 + c2k2 + (k2)z

I For z = −1, the dispersion relation in the IR region |k| ∼ 0
looks somewhat “stange”ωk ∼ 1/|k|

cf. stretched membrane [Miao, hep-th/0311105]



I If [x] = [t] = L, we have to insert a dimensionful parameter

ζ ∼ m
−2(z−1)
p into the action, so that [φ̇2] = [ζ · φ(−∇2)zφ]

I For z > 1, Kachru, Liu and Mulligan proposed a “gravity
duals of Lifshitz-like fixed points” arXiv:0808.1725 [hep-th]

I Thermodynamics → Taylor, arXiv:0812.0530 [hep-th]

ds2 = L2

�
−r 2z f (r)dt2 + r 2dx2 +

dr 2

r 2f (r)

�
, f (r) ≡ 1−

� r+
r

�d+z

κ̂ =
d + z

2
r z
+, βH =

2π

κ̂
⇒ TH =

1

βH
=

d + z

4π
r z
+

IE = − LdVd

16πGd+2
rd+z
+ βH = − (4π)d/zLdVd

4(d + z)(d+z)/zGd+2
β
−d/z
H

E =
∂IE
∂βH

=
Ldd

16πGd+2

�
4π

d + z

�(d+z)/z

VdT
(d+z)/z
H

S = βHE − IE =
Ld

4Gd+2

�
4π

d + z

�d/z

VdT
d/z
H ∼ V

z/(d+z)
d E d/(d+z)



♣ Power Counting

I Nontrivial dynamics may come from interacting terms, e.g.

SI =

Z
dt ddx

X
n≥3

gnφ
n

I Dimensions of the couplings

1 = [SI ] = Lz+d · [gn] · Ln(z−d)/2 ⇒ [gn] = L−(z+d)−n(z−d)/2

I Conditions for perturbatively renormalizable interactions gnφ
n:

z + d +
n(z − d)

2
≥ 0

I If z ≥ d , the inequality holds for any integer n ≥ 0, in this case
all polynomial interactions are renormalizable

I If z < d , renormalizablity imposes an upper bound on n

n ≤ 2(d + z)

d − z
⇒ nmax =

2(d + z)

d − z
= 2 +

4z

d − z



I When z = −1, nmax < 2, no renormalizable interactions
allowed?

I For an `-loop Feynman diagram with Vn n-valence vertices,
together with I internal lines and E external edges:

V =
X
n≥3

Vn,
X
n≥3

nVn = 2I + E , `− I + V = 1

�
I n = 4, 5; I = 1, E = 7

I V4 = V5 = 1 ⇒ V = 2

I
P

n nVn = 4 · 1 + 5 · 1 = 9

I 2I + E = 9

A ∼
Z Ỳ

a=1

dωa ddka

IY
i=1

G(ωi , ki )
Y
n≥3

gVn
n

n!

G(ω, k) ∼ 1

ω2 − [m2 + c2k2 + (k2)z ]
, [G ] = L2z



I If z > 1, the UV behavior of the propagator is dominated by

G(ω, k) ∼ 1

ω2 − (k2)z

I Degree of divergence δ:

"Ỳ
a=1

dωad
dka

IY
i=1

G(ωa, ka)

#
= L−δ

8>><
>>:

δ > 0 superficially divergent

δ = 0 possibly logarithmic

δ < 0 convergent

I Dimensional analysis gives (Visser, arXiv:0902.0590 [hep-th])

δ = (z + d)`− 2zI = `d − (I + V − 1)z

I I + V − 1 always positive, so z ↑ ⇒ δ ↓
I In particular if z ≥ d , then

δ ≤ `d−(I+V−1)d = −2(V−1)d ≤ 0 → renormalizable for any n

I For z < 1 (e.g. z = −1), G(ω, k) ∼ 1/(ω2 − c2k2) at UV



♣ The Large-N Limit

I Motivated by the above, the model would consist of
I A scalar field Φ(x) in d + 1 dimensions, with N components

Φ = (φ1, φ2, · · · , φN), Φ2 ≡
PN

i=1 φ2
i → O(N)-invariant variable

I A potential V (Φ) with O(N) symmetry
I Kinetic terms (with z = −1, thus quasi-local)

L0 =
1

2

h
(∂tΦ)2 − c2(∇Φ)2 −m2Φ2 − ζ · Φ(−∇2)zΦ

i
I Dimensions reset to [t] = [x] = L; [c] = 1, [ζ] = L2(z−1) z=−1−→ L−4

I Writing V (Φ) = NU(Φ2), the degree of U lowered; e.g.

deg V = 4 ⇒ deg U = 2

I Introduce two Lagrange multipliers λ(x) and ρ(x)

exp

�
i

Z
dd+1x V (Φ)

�
∝
Z

[dλ][dρ] exp

�
iN

Z
dd+1x

�
1

2
λ(Φ2 − ρ) + U(ρ)

��



I In φ4-theory, deg U = 2, integration over ρ is gaussian and
can be performed; this will result in “Hubbard-Stratonovich
transformation” [Hubbard, Phys. Rev. Lett. 3 (1959) 77]

I The effective Lagrangian is a quardratic form in Φ

L = −
1

2

�
(∂µΦ)2 + (m2 + λ)Φ2 + ζ · Φ(−∇2)zΦ

�
+

N

2
λρ− NU(ρ)

⇒ Seff = N

Z
dd+1x

�
1

2
λρ− U(ρ)

�
+

N

2
Tr log

�
−∂2

µ + ζ(−∇2)z + m2 + λ
�

I N plays the role of 1/~, so taking the large-N limit leads to a
classical theory for λ, ρ

Seff = N

Z
dd+1x Leff

Wick rotation−→ Ni

Z β

0

dt

Z
ddxLeff

Leff =
1

2
λρ− U(ρ) +

1

2

Z
dωddk

(2π)d+1
log
h
−ω2 + c2k2 + ζ(k2)z + m2 + λ

i

ωn ∼
2πn

iβ
⇒
Z

dω

2π
F(−ω2, · · · ) → 1

iβ

X
n∈Z

F
�

4π2n2

β2
, · · ·

�
Matsubara frequencies



I Classical equations of motion ⇔ saddle point equations

1

2
λ = U ′(ρ), ρ =

1

(2π)d+1

Z
dωddk

[−ω2 + c2k2 + ζ(k2)z + m2 + λ]

⇒ ρ =
1

(2π)d+1

Z
dωddk

[−ω2 + c2k2 + ζ(k2)z + m2 + 2U ′(ρ)]

I Working out the saddle point λ0, ρ0 and insetting them back
into Seff , one gets the free energy

F = N
Rd

T
f (T , c, ζ, z , m2) +

1

N
-corrections (N ∝ 1

Gd+2
??)

f (T , c, ζ, z , m2) = ρ0U
′(ρ0)− U(ρ0) + f0(T , c, ζ, z , m2 + λ0)

f0(T , c, ζ, z , u) =
T

2

X
n

Z
ddk

(2π)d
log
h
(2πnT )2 + c2k2 + ζ(k2)z + u

i
I In free theory, the potential vanishes U ≡ 0 ⇒ λ0 = 2U ′(ρ0) = 0,

hence the free energy becomes

F = N
Rd

T
f0(T , c, ζ, z , m2)



I For N large, the O(N) invariant quantities self-average and
have small fluctuations (central limit theorem), e.g.

〈Φ2(x)Φ2(y)〉 ∼ 〈Φ2(x)〉〈Φ2(y)〉+ terms suppressed by N−1

I Thus large-N limit is essentially a mean-field theory [Zinn-Justin,

QFT & critical phenomena, 1996]

I 1/N corrections to the critical exponent z could be computed
see e.g. Shpot, Pis’mak and Diehl, cond-mat/0412405, arXiv:0802.2434

z → z +
z (1)

N
+ O(N−2)

I This would give black hole entropy a logarithmic correction

• A Little Computaion

∂f0
∂u

=
T

2

X
n

Z
ddk

(2π)d

1�
(2πnT )2 + c2k2 + ζ(k2)z + u

�
≡ T

2

Z
ddk

(2π)d

X
n

1

(2πnT )2 + ε2(k, u)
(ε =

p
c2k2 + ζ(k2)z + u)



I The sum has a contour integral representation

X
n

1

(2πnT )2 + ε2
= −

I
C

dω

2πi

ϕ(ω)

ω2 − ε2
=

1

2ε
[ϕ(ε)− ϕ(−ε)] =

coth
�

ε
2T

�
2εT

⇒ f0(T , c, ζ, z , u) =
1

2

Z
ddk

(2π)d

hp
c2k2 + ζ(k2)z + u

+ 2T log

�
1− e−

√
c2k2+ζ(k2)z+u/T

��



I For free field theories, u = m2 does not depend on T , in this
case the first term is nothing but the divergent vacuum energy
density of T = 0 QFTs (recall F = NRd f0/T , E = ∂F/∂β)

I The second term gives the finite-temperature contributions to
the free energy

F (β) = NRd

Z
ddk

(2π)d
log

�
1− e−β

√
c2k2+ζ(k2)z+m2

�
I Applying to the Lifshitz fixed point: c = m = 0

F (β) = NRd Vol (Sd−1)

Z ∞

0

dk

(2π)d
kd−1 log

�
1− e−β

√
ζkz
�

= NRd Vol (Sd−1)
�
β
p

ζ
�− d

z

Z ∞

0

ds

(2π)d
sd−1 log

�
1− e−sz

�
I The integral is convergent for z > 0, giving rise to a negative

constant, denoted by −Id(z)

Id(d) =
1

(2π)d

π2

6
, I2(1) =

ζ(3)

4π2
, I3(2) =

ζ(5/2)

32π5/2
· · ·



I Thermodynamic quantities have the expected scaling behavior

F = −NId(z)Vol (Sd−1)

ζd/2z
RdT d/z

E =
∂

∂β
F (β) =

d

z
· NId(z)Vol (Sd−1)

ζd/2z
RdT (d+z)/z

S = βE − F =
d + z

z
· NId(z)Vol (Sd−1)

ζd/2z
RdT d/z =

d + z

d

E

T

I For z < 0, we find divergence at s ≡ (β
√

ζ)1/zk ∼ ∞
I One has to add an UV regulator c2k2 to the integral ⇒����scaling
I In particular, taking z = −1, m = 0 and c = 1

F (β) = NRd Vol (Sd−1)

Z ∞
0

dk

(2π)d
kd−1 log

�
1− e

−β
q

k2+ ζ

k2

�

F ′(β) = NRd Vol (Sd−1)

Z ∞
0

dk kd−1

(2π)d

p
k2 + ζk−2

eβ
√

k2+ζk−2 − 1

F ′′(β) = −NRd Vol (Sd−1)

Z ∞
0

dk kd−1

(2π)d

�
k2 + ζk−2

�
eβ
√

k2+ζk−2

(eβ
√

k2+ζk−2 − 1)2



I The heat capacity is positive

CV =
∂E

∂T
= −β2F ′′(β) > 0

I In a canonical ensemble, CV > 0 even before thermodynamic
limit is taken:

F (β) = − log Z(β) ⇒ F ′′(β) =
Z ′(β)2

Z 2
− Z ′′(β)

Z
= −〈(∆E)2〉 < 0

I The failure of reproducing thermal relations of Schwarzschild
black holes is, of course, expectable:

I Black holes (in flat spacetime) with CV < 0 are not in thermal
equilibrium with radiation, they can’t be described by thermal
stable states in any boundary theories

I Gross-Perry-Yaffe instability: there are no ways of creating a
translationally invariant state with finite energy density; hot
flat space is unstable [Phys. Rev. D 25 (1982) 330]

I One could use microcanonical ensembles [Ann. Phys. 146, 419 (1983)]



♣ Microcanonical Systems

ω(E) =
1

C

Z
dNqdNp δ(E − H(q, p)), Ω(E) =

Z
Ẽ≤E

dẼ ω(Ẽ), S = log Ω(E)

〈A〉 =
1

ω(E)C

Z
dNqdNpA(q, p) δ(E − H(q, p)),

1

T
=

∂S

∂E

����
V

,
1

CV
=

∂T

∂E

����
V

⇒ T =
2〈K〉
3N

,
CV

N
=

�
2

3
− N

�
〈K2〉 − 〈K〉2

〈K〉2

��−1

I In most cases, CV < 0 arises in “small” systems; under large
volume limit V →∞, the microcanonical and the (grand-)
canonical ensembles are usually equivalent [“small” means the size

L comparable to the range of interactions, cf. van Hove theorem]

I Two subsystems at the same microcanonical temperature:

Stot = S1(E1 + ε) + S2(E2 − ε)

= S1(E1) + S2(E2) +
��

���
�

1

T
−

1

T

�
ε−

1

2

� ε

T

�2
�

1

C1
+

1

C2

�



I (Meta)stability corresponds to (local) maximum of the total
entropy ⇒

1

C1
+

1

C2
> 0

8>>>><
>>>>:

C1 > 0, C2 > 0; total system stable

C1 < 0, C2 < 0; unstable, runaway

C1 > 0, C2 < 0; depends on

(
C1 + C2 < 0 stable

C1 + C2 > 0 unstable

I Canonical partition is a Laplace transform of microcanonical
entropy

Z (β,F , · · ·) =

∫ ∞

0
dEdx · · · eS(E)−β(E+Fx+···)

I In Verlinde’s approach (arXiv:1001.078, [hep-th]), thermodynamic
force F in a boundary system (defined on certain holographic
screen) is interpreted as the bulk gravitational force;
thermodynamic displacement x conjugate to F plays the role
of an emergent bulk space coordinate



I During a first order phase transition at some T = Tc , there is
an amount of energy (latent heat) E` released or absorbed by
the system without changing temperature

The distribution

P(E) ∼ exp[S(E)− βE ]

has separated peaks at E1 and

E2 = E1 + E`, corresponding to

two phases (say, liquid and gas)

I P(E ) is smooth microcanonically before taking V →∞
I Between the two pure phases, there must be a minimum of

log P(E ) = S(E )− βE ; in a neighborhood of this minimum

∂2

∂E 2
log P(E) > 0 ⇒ ∂2S

∂E 2
> 0 ⇒ 1

CV
= −T 2 ∂2S

∂E 2
< 0

I ∃ negative heat capacity is a generic signal of phase separation



I A toy model [due to Hüller, Z. Phys. B 95 (1994) 63]

S1(E , N) = V · sV (ε) + V
d−1

d · s∂V (ε), ε ≡ E

V
, s(ε) ≡ S(E , V )

V

sV (ε) = βcε−

(
0, if −ε` < ε < ε`

α4 (|ε| − ε`)
4 , if |ε| ≥ ε`

s∂V (ε) = −α cos
πε

ε`
→ S1 not extensive: S1(λE , λV ) 6= λS1(E , V )

I The bulk specific entropy sV (ε) obeys van Hove’s condition

∂2sV

∂ε2
≤ 0, ∀ε ⇒ (CV )bulk ≥ 0

I In energy range −ε` < ε < ε`, Hove’s condition violated for
the total specific entropy at finite V

∂2s1

∂ε2
> 0 ⇒ CV < 0

I Surface contribution disappears as V →∞



I The entropy becomes an extensive quantity in the
thermodynamic limit

I The minimum ε0 of P(E ) ∝ eS1(E)−βE separating two peaks
depends on β

I The critical value β = βc corresponds to ε0 = 0; when β is
slightly larger than βc , ε0 > 0



I At the critical temperature, two pure phases appear, located
at the peaks of P(E ) with the same probability of occurrence

I Below critical temperature, the pure phase with smaller E is
more stable than the other and forms the dominant phase

I When V increased (e.g. from V ∼ 102 to V ∼ 103), width of
peaks become narrower, the non-dominant phase is much less
important; in the thermodynamic limit V →∞, only the
dominant phase remains at β 6= βc

I At β = βc , P(E ) ∝ δ(ε + ε`) + δ(ε− ε`)



System Requirements

♣ Finite Size Effects

I Finite size is essential to get a well-defined CV < 0 in some
energy region [When V = ∞, CV diverse at the critical point]

I Example: AdS has a confining potential

I When black holes are “small”
(. L), negative heat capacity may
appear in thermodynamics

I CV < 0 should be a signal of the
existence of a certain first order
phase transition (Hawking-Page)

I The physics on the CFT side is
known pretty well by now

I r+: the largest real root of F (r) ≡ 1−
wd+1M

rd−1
+

r2

L2
= 0



I Surface gravity and Hawking temperature

κ̂ =
1

2
F ′(r+) =

(d + 1)r 2
+ + (d − 1)L2

2L2r+
, βH =

κ̂

2π
=

4πL2r+
(d + 1)r 2

+ + (d − 1)L2

I The Hawking temperature has a lower bound (for d ≥ 1)

TH =
1

4πL

�
(d + 1)r+

L
+

(d − 1)L

r+

�
≥
√

d2 − 1

2πL
≡ Tmin

I Associated to each TH ≥ Tmin there are two black holes

r+ =
2πL2

(d + 1)

�
TH±

q
T 2

H − T 2
min

� 8<
:

+ : large black hole

− : small black hole

I At the minimal temperature, large and small black holes have
the same size r+ = L

p
(d − 1)/(d + 1)

I Large black hole is heavier: r+ ↑, the ADM energy E = M is
monotonely increasing



I Heat capacity is computed by

CV =
∂E

∂TH
=

∂E

∂r+

∂r+
∂TH

=
Vol (Sd)(rd−1

+ d)TH

4Gd+2
· 2πL2

(d + 1)

"
1± THp

T 2
H − T 2

min

#

⇒

(
CV > 0 for large black holes

CV < 0 for small black holes

I Since C large
V + C small

V > 0, small black holes cannot be in thermal
equilibrium with the large ones, they will decay either to large
black holes or to pure thermal AdS

I Bekenstein-Hawking entropy

S =
A

4Gd+2
=

Vol (Sd)rd
+

4Gd+2

=
Vol (Sd)

4Gd+2

�
2πL2

d + 1

�d �
TH ±

q
T 2

H − T 2
min

�d



I Scaling behavior S ∝ T d
H is violated by the finite size effect

I In holographic dual, S is not strictly extensive, at least in the
strong coupling region

I According to Gibbons-Hawking, free energy F of AdS black
holes can be computed by Euclidean Einstein-Hilbert action
evaluated at the black hole solution

I One may compare this F to the free energy F0 of the pure
thermal AdS [Witten, hep-th/9803131]

I Regulating Euclidean actions by a large cavity of radius R; the
Tolman (or local) temperatures at r = R should be the same

THq
1− wd+1M

Rd−1 + R2

L2

=
T0q

1 + R2

L2

⇒ β0 = βH

s
1−

L2rd−1
+ + rd+1

+

L2Rd−1 + Rd+1
= βH

"
1−

L2rd−1
+ + rd+1

+

2Rd+1
+ · · ·

#



I The regulated spacetime volumes w/ and w/o black holes are

V (R) = Vol (Sd )

Z βH

0
dt

Z R

r+

dr rd =
Vol (Sd )

d + 1

�
Rd+1 − rd+1

+

�
βH

V0(R) = Vol (Sd )

Z β0

0
dt

Z R

0
dr rd =

Vol (Sd )

d + 1
Rd+1β0

=
Vol (Sd )

d + 1

"
Rd+1 −

L2rd−1
+ + rd+1

+

2
+ O(R−1)

#
βH

I Difference between the free energies

F − F0 =
d + 1

8πGd+2L2
lim

R→∞
[V (R)− V0(R)]

=
Vol (Sd)

4Gd+2

(L2 − r 2
+)rd

+

(d − 1)L2 + (d + 1)r 2
+

I Hawking-Page phase transition occurred at r+ = L(
r+ > L, F < F0, black hole phase dominant

r+ < L, F0 < F , pure thermal AdS dominant



I The corresponding critical temperature

Tc =
1

4πL

�
(d + 1)r+

L
+

(d − 1)L

r+

�
r+=L

=
d

2πL

�
> Tmin =

√
d2 − 1

2πL

�
I Energy and entropy differences are computed by

E − E0 =
∂

∂β
(F − F0) = M, S − S0 =

Vol (Sd)rd
+

4Gd+2

I The size of small black holes have an upper-bound

r+ =
2πL2

d + 1

"
T 2

min

TH +
p

T 2
H − T 2

min

#
≤ 2πL2

d + 1
Tmin = L

r
d − 1

d + 1
< L

⇒ F − F0 > 0 ⇒ small black holes never dominant over thermal AdS phase

I The phase transition between hot AdS and large black holes is
first order: at transition point the latent heat M non-vanishing



I Behavior of the distribution function P(E )
I TH � Tc : A main peak located at E ∼ E0 + M, corresponding to

the large black hole phase; other peaks (if any) are not significant
I TH & Tc : two peaks appear, one of which located at E ∼ E0 (pure

thermal AdS phase), the other located at E ∼ E0 + M (large black
hole phase), P(E0 + M) > P(E0)

I TH = Tc : two peaks have equal height P(E0 + M) = P(E0)
I TH . Tc : P(E0 + M) < P(E0), the pure hot AdS phase is slightly

dominant
I Tmin < TH < Tc : the dominant phase is pure thermal AdS

I The boundary CFT lives on R× Sd , finite size effects are not
negligible → insure the boundary CFT (e.g. N = 4 SYM)
undergoing a confinement/deconfinement phase transition
against scale invariance; peaks described approximately by
thermal stable states in boundary theory

I In the flat boundary R1 × Rd limit, we will always be in the
large black hole phase; Hawking-Page transition will never
occur



I Small black holes have mass M̃ < M, located at a minimum
E ∼ E0 + M̃ ∈ [E0,E + M] of P(E ), separating the two peaks



♣ York’s Isothermal Cavity

I Schwarzschild black holes are similar to small AdS black holes
I Both are not thermodynamic stable
I Both have negative heat capacity

I The difference is that small AdS black holes separate two
(meta) stable phases when TH ∼ Tc ; in the Schwarzschild
case there seems no such stable phases nearby [The fate of small

black holes in AdS5 is simply decaying to the (de)confinement phases of SYM;

what about the fate of Schwarzschild black holes?]

I Following York [Phys Rev D33 2092 (1986)], consider (d + 2)-dim
Schwarzschild black holes confined to an isothermal cavity,
and investigate its finite size effects [suppose d > 1]

I Let L = radius of cavity, T = uniform temperature on the
wall; the size of this system is described by the geometric
quantity Vol (Sd)Ld ≡ A (the invariant area of the wall)



I If there are no black holes in the cavity, we just get a thermal
flat space (t, r ,Ωd), with t ∼ t + iβ, β = 1/T ; the boundary
of this spacetime (at r = L) is S1 × Sd (Euclidean version)

I Putting a Schwarzschild black hole into the cavity, we have
the Hawking temperature

TH =
d − 1

4π
(wd+1M)

− 1
(d−1) , wd+1 ≡

16πGd+2

d ·Vol (Sd)

I Isothermal condition requires the temperature T on cavity’s
wall equal to the local Hawking temperature at r = L

THq
1− wd+1M

Ld−1

= T ⇒ (wd+1M)
2

d−1 − (wd+1M)
d+1
d−1

Ld−1
=

�
d − 1

4πT

�2

I Multiplying by L−2 to derive the “isothermal equation”

ξ2 − ξd+1 =

�
d − 1

4πLT

�2

, ξ ≡ (wd+1M)
1

d−1

L
=

�
wd+1M

Ld−1

� 1
d−1



I The existence of positive real roots ξ = ξr > 0 will force T to
have a minimal value Tmin > 0; At temperature T below this
bound, no black hole solutions with real mass M = M(T ) > 0
allowed → the cavity has to be in the thermal flat phase

I Proof by contradiction: Take a set of temperatures arbitrarily
close to zero; if the equation has a positive real root ξr (T ) for
each T in such a set, then

ξr (T )2−ξr (T )d+1 → +∞ as T → 0 ⇒
(

ξr (T ) → +∞

1− ξr (T )d−1 > 0
impossible

I In York’s original work d = 2, the equation becomes cubic; a
general cubic equation ξ3 + aξ2 + bξ + c = 0 has discriminant

∆ = −4p3−27q2

8>><
>>:

p = b −
a2

3

q =
2a3

27
−

ab

3
+ c

p = q = 0 ⇒ all 3 roots are zero

otherwise

8>><
>>:

∆ < 0 ⇔ 1 real root

∆ = 0 ⇔ 2 distinct real

∆ > 0 ⇔ 3 distinct real



I If ∆ < 0, the three roots of a generic cubic equation are
ξr , ω, ω̄, where ξr is real and ω, ω̄ are a pair of conjugate
complex numbers; a relation between roots and coefficients
gives

ξr |ω|2 = −c ⇒ ξr is positive iff c < 0

I When c > 0, a necessary condition for the cubic equation
having positive real roots is ∆ ≥ 0

I Applying to the isothermal equation ξ3 − ξ2 + (4πLT )−2 = 0

8>>>><
>>>>:

a = −1

b = 0

c =

�
1

4πLT

�2
⇒ ∆ =

�
1

2πLT

�2
2
41−

 √
27

8πLT

!2
3
5

I The isothermal equation allows positive real solutions only if
∆ ≥ 0 or, equivalently

T ≥
√

27

8πL
≡ Tmin

(
T = Tmin, 2 distinct real ξr = ξ1, ξ1, ξ2

T > Tmin, 3 distinct real ξr = ξ1, ξ2, ξ3



I When T = Tmin, ξ2
1ξ2 = −c < 0 ⇒ ξ2 < 0, 2ξ1 + ξ2 = −a ⇒ ξ1 > 0,

∃ exactly one positive root ξ1

I For T > Tmin, one deduces from ξ1ξ2ξ3 = −c < 0 that the
number of distinct positive roots is either 2 or 0; since
ξ1 + ξ2 + ξ3 = −a = 1, not all solutions are negative ⇒ there
must be precisely two different positive roots ξ1, ξ2

I Summary: given wall temperature T , there exists a minimal
value Tmin ∼ 1/L such that

I If T < Tmin, no black holes allowed, the system is in thermal
flat phase

I If T > Tmin, there are two black hole solutions with masses
M1 6= M2, the heavier black hole is the larger one

I If T = Tmin, large and small black holes become degenerate,
with the same mass M1 = M2

I Next we consider d + 2-dim



I In general dimensions, the minimal temperature Tmin could be
determined by the condition that two distinct positive roots of
P(ξ) = ξd+1 − ξ2 + c become degenerate at some ξ0 > 0

8>>>><
>>>>:

P′(ξ0) = 0 ⇒ ξ0

h
(d + 1)ξd−1

0 − 2
i

= 0 ⇒ ξ0 =

�
2

d + 1

� 1
d−1

< 1

P(ξ0) = 0 ⇒
�

d − 1

4πLTmin

�2

= ξ2
0 − ξd+1

0 =

�
2

d + 1

� 2
d−1

−
�

2

d + 1

� d+1
d−1

I The limiting temperature in (d + 2)-dimensions

Tmin =
d − 1

4πL

"�
2

d + 1

� 2
d−1

−
�

2

d + 1

� d+1
d−1

#− 1
2

, d = 2, 3, · · ·

d = 2 3 4 5 6

LTmin :
3
√

3

8π
≈ .21

1

π
≈ .32

55/6√3

21/3(4π)
≈ .42

33/4

√
2π
≈ .51

77/10√5

21/5(4π)
≈ .61



I Compare this Tmin to the minimal temperature of AdS black
holes:

TAdS
min =

√
d2 − 1

2πL
⇒ Tmin

TAdS
min

=
1

2

r
d − 1

d + 1

"�
2

d + 1

� 2
d−1

−
�

2

d + 1

� d+1
d−1

#− 1
2

I Behavior of the ratio
I Decreasing when d larger
I Converging to 1/2 at d = ∞



♣ Thermodynamics

I Thermodynamics can be constructed by the Gibbons-Hawking
approach [Phys. Rev. D 15 (1977) 2752]

I = I1 − I0

I1 = − 1

16πGd+2

Z
M

dt dr ddΩ
√

g R +
1

8πGd+2

I
∂M

dt ddΩ
√

γK

K = trace of the extrinsic curvature tensor on ∂M = S1 × Sd

γαβ = the induced metric on ∂M

I0 = subtract term, i.e. I1 evaluated on Mflat, with ∂Mflat = ∂M

I Since R = 0, the bulk action vanishes
I The period of Euclidean time t

βH =
1

TH
=

4π

d − 1
(wd+1M)

1
d−1 ⇒

I
S1

dt (· · · ) =

Z βH

0

dt (· · · )



I Schwarzschild metric in d + 2 dim

gµν =

0
B@1− wd+1M

rd−1 0 0

0
�
1− wd+1M

rd−1

�−1

0

0 0 r 2ωab

1
CA , ωab : metric on unit sphere

I The metric γαβ on S1 × Sd at r = L is induced from gµν

γαβ =

�
1− wd+1M

Ld−1 0
0 L2ωab

�
⇒ √

γ =

�
1− wd+1M

Ld−1

� 1
2

Ld ·
√

ω| {z }
Sd at r = L

I
√

γ contains a factor
√

gtt , giving the proper length of S1

β =

Z βH

0

√
gttdt = βH

�
1− wd+1M

Ld−1

� 1
2

→ inverse of the wall temperature



I Trace of the second fundamental form at r = L

K = − 1
√

g

∂

∂r

"
√

g

�
1− wd+1M

rd−1

� 1
2

#
r=L

= −d

L

�
1− wd+1M

Ld−1

� 1
2

− (d − 1)wd+1M

2Ld

�
1− wd+1M

Ld−1

�− 1
2

= −
�

1− wd+1M

Ld−1

�− 1
2
�
d

L
− (d + 1)wd+1M

2Ld

�

I Integration over Sd results in the invariant “size” of the wallI
Sd

ddΩ Ld ·
√

ω = Vol (Sd)Ld

I Putting these things together

I1 = −Vol (Sd)Ld

8πGd+2

�
d

L
− (d + 1)wd+1M

2Ld

�
βH

=
Vol (Sd)Ld

2(d − 1)Gd+2

"
d + 1

2
·
�

wd+1M

Ld−1

� d
d−1

− d ·
�

wd+1M

Ld−1

� 1
d−1

#



I Similarly, I0 is computed by

I0 =
1

8πGd+2

Z β

0

dt

I
Sd

ddΩ
√

γ0K0

β =
1

T
,

√
γ0 = Ld ·

√
ω, K0 = − 1

√
g0

∂
√

g0

∂r

����
r=L

= −d

L

⇒ I0 = −d ·Vol (Sd)Ld

8πGd+2

β

L

= −d ·Vol (Sd)Ld

2(d − 1)Gd+2

�
wd+1M

Ld−1

� 1
d−1
�

1− wd+1M

Ld−1

� 1
2

I The total effective action I = I1 − I0 may be interpreted as
the free energy difference between black hole phase and the
pure thermal flat space phase, which takes the form

I =
Vol (Sd)Ld

2(d − 1)Gd+2
F(ξ), ξ ≡

�
wd+1M

Ld−1

� 1
d−1

F(ξ) =
d + 1

2
ξd + d · ξ

hp
1− ξd−1 − 1

i



I Isothermal equation

ξ2 − ξd+1 =

�
d − 1

4πLT

�2

⇒ ξ < 1 ⇒ F(ξ) real-valued

I For ξ ∼ 1− and 0 < ξ � 1

F(ξ) ∼

8>><
>>:

d + 1

2
− d = −

d − 1

2
< 0, black hole phase dominant

d + 1

2
ξd + d · ξ

��
1−

1

2
ξd−1

�
− 1

�
=

1

2
ξd > 0, thermal flat dominant

I ∃ a phase transition point ξ = ξc 6= 0, at which F(ξc) = 0

d + 1

2
ξd−1
c + d ·

�q
1− ξd−1

c − 1

�
= 0

I Similar to the Hawking-Page phase transition



I There is a unique none-zero solution ξc , given by

ξc =

�
4d

(d + 1)2

� 1
d−1

⇒ 0 < ξc < 1 ⇒

Tc =
d − 1

4πL

(�
4d

(d + 1)2

� 2
d−1

−
�

4d

(d + 1)2

� d+1
d−1

)− 1
2

I If Tc > Tmin, the system will undergo a phase transition when
temperature raised from Tmin < T < Tc to T > Tc

d = 2 3 4 5 6

LTc :
27

32π
≈ .27

2
√

3π
≈ .37

55/3

21/3(8π)
≈ .46

3
√

3

51/4(2π)
≈ .55

72/5

23/531/5(4π)
≈ .64

LTmin :
3
√

3

8π
≈ .21

1

π
≈ .32

55/6√3

21/3(4π)
≈ .42

33/4

√
2π
≈ .51

77/10√5

21/5(4π)
≈ .61



I In general one should be able to prove, for d ≥ 2, that

�
2

d + 1

� 2
d−1

−
�

2

d + 1

� d+1
d−1

>

�
4d

(d + 1)2

� 2
d−1

−
�

4d

(d + 1)2

� d+1
d−1

I For a proof, consider the function f (x) = x2 − xd+1, x ∈ R+

I There are only two extremal points of f (x) in [0,∞), given by

f ′(x) = 0 ⇒ 2x − (d + 1)xd = 0 ⇒

8><
>:

x = 0

x =

�
2

d + 1

� 1
d−1

I The second order derivative of f (x) at these extremal points

f ′′(x) = 2−d(d+1)xd−1 =

8><
>:

2 > 0, x = 0

−2(d − 1) < 0, x =

�
2

d + 1

� 1
d−1

I Hence x = 0 is the minimal point, and x = [2/(d + 1)]1/(d−1) the
maximal one



I Since there are no other extremal points in R+, we conclude
that

f

"�
2

d + 1

� 1
d−1

#
> f (x), ∀x ∈ [0,∞), x 6=

�
2

d + 1

� 1
d−1

I The inequality on the last page follows if we take

x =

�
4d

(d + 1)2

� 1
d−1

∈ R+ �

I The above proof, though quite simple, tells us something
useful: If the wall has a temperature below its limiting value,
T < Tmin, then there are no solutions ξ ∈ R+ of the
isothermal equation

ξ2 − ξd+1 =

�
d − 1

4πLT

�2

[R.H.S exceeds the maximal value of f (ξ)]



For each T > Tmin, positive real

solutions ξr (T ) are located at the

intersecting points of y = f (ξ) and

the line y = [(d − 1)/(4πLT )]2 > 0;

there are exactly two such points

0 < ξ1(T ) < ξ2(T ) < 1, associated

to a small and a large black hole,

respectively. Mass degeneration

occurs when the line move up to the

limiting position

I Question: which black hole, the large one or the small one, is
thermodynamically (meta) stable?

I The system has a couple of parameters such as β = 1/T ,
βH = 1/TH , L, M etc., only two of them are independent

I E.g. given β, L, the mass of black holes is determined by
solving the isothermal equation

ξ2 − ξd+1 =

�
d − 1

4πLT

�2

⇒ ξ = ξ(T , L) ⇒ M =
Ld−1

wd+1
· ξd−1



I We choose β and L as independent variables — they are
temperature and size of the wall

I The thermodynamic energy of this system is computed by

E =
∂I
∂β

����
A

, A = Vol (Sd)Ld is the invariant area of the wall

I Using the isothermal equation, one may write

F(ξ) ≡ d + 1

2
ξd + d · ξ

hp
1− ξd−1 − 1

i
=

d + 1

2
ξd − d · ξ + d ·

p
ξ2 − ξd+1

=
d + 1

2
ξd − d · ξ +

d(d − 1)

4πL
β

I Thus we find

∂F(ξ)

∂β

����
A

= d ·
�

d + 1

2
ξd−1 − 1

�
· ∂ξ

∂β

����
A

+
d(d − 1)

4πL



I On the other hand, differentiating the isothermal equation
yields

h
2ξ − (d + 1)ξd

i
·

∂ξ

∂β

����
A

= 2

�
d − 1

4πL

�2

β

⇒
�

d + 1

2
ξd−1 − 1

�
·

∂ξ

∂β

����
A

= −
�

d − 1

4πL

�2 1

Tξ
= −

d − 1

4πL

p
ξ2 − ξd+1

ξ

⇒
∂F(ξ)

∂β

����
A

=
d(d − 1)

4πL

h
1−

p
1− ξd−1

i
=

d(d − 1)

4πL

 
1−

r
1−

wd+1M

Ld−1

!

I This gives a closed form expression for the thermodynamic
energy

E =
Vol (Sd)Ld

2(d − 1)Gd+2

∂F(ξ)

∂β

����
A

=
d ·Vol (Sd)Ld−1

8πGd+2

 
1−

r
1− wd+1M

Ld−1

!

I When L →∞, the ADM energy E = M recovered



I The entropy is determined by S = βE − I; writing

E =
Vol (Sd)Ld

2(d − 1)Gd+2
E , S =

Vol (Sd)Ld

2(d − 1)Gd+2
S ⇒ S = βE − F

E =
∂F(ξ)

∂β

����
A

=
d(d − 1)

4πL

�
1−

p
1− ξd−1

�

βE =
d(d − 1)

4πLT

�
1−

p
1− ξd−1

�
= dξ

p
1− ξd−1

�
1−

p
1− ξd−1

�
= dξ

p
1− ξd−1 − d(ξ − ξd)

βE − F = dξ
p

1− ξd−1 − d(ξ − ξd)−
�

d + 1

2
ξd + dξ

hp
1− ξd−1 − 1

i�

=
d − 1

2
ξd ⇒ S =

d − 1

2

�
wd+1M

Ld−1

� d
d−1

I The final form of the entropy reads

S =
Vol (Sd)

4Gd+2
(wd+1M)

d
d−1 =

Vol (Sd)rd
H

4Gd+2



I The entropy increases as M becomes larger; so if we have two
black holes of mass M1 < M2 at the same temperature, M1 is
thermodynamically unstable

I Thermal stability is determined by heat capacity

I In thermodynamics one usually consider partial derivatives at
fixed space volume V , (∂/∂X )|V , here we are interested in
partial derivatives with wall area A = Vol (Sd)Ld fixed, this
amounts to fixing the wall size L

I The heat capacity CA is defined by

CA = T
∂S

∂T

����
A

=
∂E

∂T

����
A

= −β2 ∂E

∂β

����
A

↓

Vol (Sd)Ld

2(d − 1)Gd+2
CA ⇒ CA = −β2 ∂2F

∂β2

����
A



I We have derived

∂F
∂β

����
A

=
d(d − 1)

4πL

�
1−

q
1− ξd−1

�
,

∂ξ

∂β

����
A

= −
d − 1

4πL

p
1− ξd−1

d+1
2

ξd−1 − 1

⇒
∂2F
∂β2

�����
A

=
d(d − 1)2

8πL

ξd−2

p
1− ξd−1

∂ξ

∂β

����
A

= −
d(d − 1)

2

�
d − 1

4πL

�2

ξ
d−2

�
d + 1

2
ξ

d−1 − 1

�−1

I This gives the heat capacity

CA = −β2 ∂2F
∂β2

����
A

=
d(d − 1)

2

�
ξd − ξ2d−1

��d + 1

2
ξd−1 − 1

�−1

=
d(d − 1)

2

(wd+1M)
d

d−1

Ld

�
1− wd+1M

Ld−1

��
d + 1

2

wd+1M

Ld−1
− 1

�−1

CA =
Vol (Sd)Ld

2(d − 1)Gd+2
CA

=
d ·Vol (Sd)

4Gd+2
(wd+1M)

d
d−1

�
1− wd+1M

Ld−1

��
d + 1

2

wd+1M

Ld−1
− 1

�−1



I Small and large black holes
I Recall that

wd+1M

Ld−1
≡ ξd−1 → wd+1M0

Ld−1
=

2

d + 2
⇔ ξ0 =

�
2

d + 2

� 1
d−1

I The “critical” mass M0 separating CA < 0 and CA > 0
corresponds precisely to the maximal point ξ0 of the function
f (ξ) = ξ2 − ξd+1

I Given T > Tmin, the isothermal equation has two solutions
0 < ξ1 < ξ0 < ξ2 < 1, associated with small and large black
holes of masses M1 < M0 < M2



I The function f (ξ) = ξ2 − ξd+1 decreases more rapidly (when
ξ leaves ξ0 to the right) than it increases (when ξ approaches
to ξ0 from the left), it follows that

0 < ξ2 − ξ0 < ξ0 − ξ1 ⇒ 0 <
d + 1

2
ξd−1
2 − 1 < 1− d + 1

2
ξd−1
1

⇒
�

d + 1

2
ξd−1
2 − 1

�−1

>

�
1− d + 1

2
ξd−1
1

�−1

⇒
�

d + 1

2
ξd−1
1 − 1

�−1

+

�
d + 1

2
ξd−1
2 − 1

�−1

> 0

for d ≥ 2⇒ ξd−2
1

�
d + 1

2
ξd−1
1 − 1

�−1

+ ξd−2
2

�
d + 1

2
ξd−1
2 − 1

�−1

> 0

⇒ C small
A + C large

A > 0

I A system containing both large and small black holes (at the
same temperature) is thermodynamically unstable, the small
one has to decay [either to large black hole or to thermal flat space]



I Since dE 6= TdS , there should be a new variable entering into
the first law of thermodynamics: surface pressure

σ ≡ − ∂E

∂A

����
S

⇒ dE = TdS − σdA

I We now choose L,M as two independent variables; since the
entropy depends only on M (not on L), keeping S unchanged
amounts to holding M as a constant

∂E

∂L

����
S

=
d ·Vol (Sd )

8πGd+2

∂

∂L

"
Ld−1

 
1−

r
1−

wd+1M

Ld−1

!#
M=const.

=
d(d − 1)Vol (Sd )Ld−2

8πGd+2

"
1−

�
1−

wd+1M

2Ld−1

��
1−

wd+1M

Ld−1

�− 1
2

#

∂A

∂L

����
S

= d ·Vol (Sd )Ld−1

I The surface pressure is then given by

σ =
d − 1

8πGd+2L

"�
1− wd+1M

2Ld−1

��
1− wd+1M

Ld−1

�− 1
2

− 1

#



I One has (1− x/2)2 ≥ 1− x; 0 < x < 1 ⇒ (1− x/2)(1− x)−1/2 > 1 ⇒ σ > 0

I To study mechanical stability of the system, one needs to
consider the isothermal compressibility

κT (A) ≡
1

A

∂A

∂σ

����
T

=
d

L
·

∂L

∂σ

����
T

=
8πd · Gd+2L

d − 1

�
d + 1

2
ξd−1 − 1

���
d + 1

2
ξd−1 − 1

��
1−

p
1− ξd−1

�

+
1

2
ξd−1

p
1− ξd−1

�−1

⇒ κT (A) > 0 for large black holes

I Number of states: Let β̃ be a saddle-point of −I(β, L) + βE

ν(E) =
1

2πi

Z i∞

−i∞
dβ exp (−I(β, L) + βE)

saddle-point−→ exp
�
−I(β̃, L) + β̃E

�
= eS(E)

I The thermodynamic behavior is very similar to AdS black
holes



Installation (?)

I To construct a microscopic “boundary” description of
Schwarzschild black holes, it seems necessary to confine such
holes in an (isothermal) cavity, in order to stabilize the bulk
system thermodynamically

I The entropy in the boundary theory should not be strictly
extensive

I A first order phase transition should occur in the holographic
dual, at some critical temperature

I Unlike the AdS case, there are subtleties to choose a
holographic screen

I The boundary of AdS at infinity has a nice property: each
isometric transformation inside AdS space induces a conformal
transformation on the boundary, this provides a natural way of
constructing a “finite size” holographic screen

I The isothermal wall of York’s cavity itself is not a proper
candidate for the holographic screen · · ·



♣ A Bizarre Speculation

I The boundary theory might obey Hill’s nanothermodynamics
T. L. Hill , Thermodynamics of Small Systems, Parts 1 and 2, (W. A. Benjamin

and Co., 1964)], but not the ordinary thermodynamical laws

I In one-component nano-systems considered by Hill, the first
law of the usual thermodynamics is still valid, but the entropy
is not extensive in the number of particles

I Hill introduced a subdivision (entropic) potential J such that8>><
>>:
J = S −

X
α

Fαxα

dJ = −
X

α

xαdFα

I The usual Gibbs-Duhem relation
P

α xαdFα = 0 is generalized

I J is an intensive variable, conjugate to the number λ of
“nano-systems”; J vanishes for a macroscopic (extensive)
system ⇒ entropic force dS =

P
α Fαdxα



♣ Thermostatistics

I The usual thermostatistics is based on Gibbs-Shannon’s
entropy

S = −
X

i

pi log pi

I This entropy obeys the extensive condition: if A, B are two
independent systems, pA⊕B

ij = pA
i pB

j , then

S(A⊕ B) = S(A) + S(B)

I For isolated systems, the principle of extremum at
equiprobability gives

pi ∼
1

Ω
⇒ S ∼ log Ω, Ω =

X
i

pi

I Tsallis entropy

S = −kB
1−

P
i p

q
i

1− q

I q: degree of nonextensivity

S(A + B) = S(A) + S(B) + (1− q)S(A)S(B)
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