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Getting Started

» Holography

d + 2 dim gravity in bulk < d+ 1 dim “matter” fields on boundary

> The boundary is sometimes called a
“holographic screen”

> Example: AdSyi2/CFT g1

AdS black holes in d + 2
< CFTy4a at finite temperature

> |s there any holographic description
of gravity in asymptotically dS or
flat background? dS/CFT, matrix
black holes, entropic forces - - -

» Boundary thermodynamics — bulk gravity (black holes...)




» A general question: When does thermodynamics apply to
small systems?

» What happens if a holographic screen becomes “tiny”"? —
may be related to “microscopic properties” of gravity

& A Naive Observation
» Black holes in AdSy, 2, with flat boundary R x R?

> Metric
ds® = 12 | =P f(r)dt® + rPdx® + i fr)=1- 3
- r2f(r)]’ - r?
» Hawking temperature
. d+1 2 d+1
R=—"r" = /GH = Tﬂ = Ty = ry
2 K 47

» Thermodynamical relations

S VaTl, Enm VT, 5 o Y@ pd/04)



Heat capacity is positive

OE oS E
Thermodynamic stability: system + environment in
equilibrium

6Q>0
—

fluctuations :  environment system

5T ~6Q/Cy >0

Boundary CFT 441 has scaling invariance under
t — At, Xi—>>\xi; 1<i<d

If T =0, no characteristic scales in the boundary theory

Finite temperature t ~ t + i sets up a natural length scale,
so a physical quantity of dimension L% should scale as T—¢

[X]=L* = XxX~T°



» Putting the system into a box of volume R? = X = T-“f(RT)
» For extensive variables

f(RT)=c-(RT)! = X =c- VT *
» Applying to entropy and energy — reproduce the thermodynamics of

AdS black holes
S=aVuT? E=oV,T%" = s~ v}/

» The first law of thermodynamics

3 3 d _d+1E

dE—Td5:>C2—C1d7+1:>5— d T

» Schwarzschild Black Holes

rd—1 rd—1

=i
ds? = — <1 - Wd“M) dt® + (1 - W"“M> dr* + r*dQ;

167TGd+2
d - Vol(S9)’

Wd+1 =

o (d+1)/2
V)= F 7
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Horizon and ADM energy
1
ry = (WgriM)e=1, E=M
Surface gravity and temperature

d—1 2 d—1
, ﬂH:% = Ty =

k=

2I’H

Dependence of energy on temperature

£ it d-Vol(S?) (d—1\*" —
Wdi1 167 Gy 47

Bekenstein-Hawking entropy

Ag Vol(S)) 4 Vol(SY) (d—1\? __4
S= = g = T,
4Ggy2 4Gyy2 4Ggi2 4

Relation between entropy and energy

__1_
S~V TIETT, Vo Vol(SY)



Heat capacity is negative, indicating thermodynamic instability

OE oS E

At a fixed point of RG flows (e.g. IR fixed point), there are
models exhibiting anisotropic scaling behavior (Lifshitz Fixed
Point) ' '

t— Nt, xX' =X 1<i<d
Dimensions
X=L [K=L7" []=L I=[E=[T]=L"" []=L""

Toy model action (N = 1, free theory)
So = /dt dx [& - ¢(—V2)Z¢]

Canonical dim: 1 =[S] = L7 . L7 . [¢]> = [¢] = L9/
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When T = 0, scale invariance = no characteristic scales in
the theory
At finite temperature, t ~ t + i3, T =1/p

[T/ =18 =1

A physical quantity X of dimension [X] = L% should scale as
X~ T2
If the system is put into a box with spacial volume RY, then

X =T /*f(RT'?)

For extensive variables

d—a

F(RTY?)=c-RITY? = X =c VT

Applying to entropy and energy (a = 0, —z, respectively)

5 —q \/d7—d/z7 E— C2VdT(d+z)/z = S ~ Vj/(d+Z)Ed/(d+z)



» The first law of thermodynamics

d d+zE
dE—Td5:>C2—C1'd7_’_Z:>S— d ?

» Heat capacity

__(OE _ oS _ﬂ _d—l—zE
CV_<37T>V_T(5‘7T)V_ZS_ z T

» Cy < 0 iff the critical exponent z is “unphysical’: —d <z <0

» Thermodynamics at z= —1 = Schwarzschild black holes?

> Adding a mass term —m?¢? and a K.T. —c?¢(—V?)¢ to the
free action, one gets

Wk = / m2 L c2k? s (k2)z

» For z = —1, the dispersion relation in the IR region |k| ~ 0
looks somewhat “stange” wix ~ 1/|k|

cf. stretched membrane [Miao, hep-th/0311105]



» If [x] = [t] = L, we have to insert a dimensionful parameter
¢~ m,;z(z_l) into the action, so that [¢?] = [¢ - ¢(—V?)?¢]

» For z > 1, Kachru, Liu and Mulligan proposed a “gravity
duals of Lifshitz-like fixed points” arXiv:0808.1725 [hep-th]
» Thermodynamics — Taylor, arXiv:0812.0530 [hep-th]

2 d+z
ds® = 12 |—rf(r)dt® + rPdx® + rdr ] L f(n=1- (’i)

2f(r) r
N d+z 2 1 d+z
= — T = = = T/
R=— —r;, Bu= = = Ty = B s
o= — LIV P, = (4m)# L7 vy —d/z
167 Gy i 4(d + Z)(C’Jrz)/Z Gg12 b
d+z)/z
_ 0l _ L% kel v, T2
(95;-/ 167er+2 d i
r L ay /(d+2) pd/(d+2)
S =PBuE — Ie VaTg/? ~ v/t pa/iae
ﬁH 4Gd+2 < ) dly d



& Power Counting
» Nontrivial dynamics may come from interacting terms, e.g.
S :/dtddegnng"
n>3
» Dimensions of the couplings
1— [SI] _ Lz+d X [gn] . Ln(zfd)/2 = [gn] _ Lf(z+d)7n(zfd)/2
» Conditions for perturbatively renormalizable interactions g,¢":

(z—d)

z+d+n > >0

» If z > d, the inequality holds for any integer n > 0, in this case
all polynomial interactions are renormalizable
» If z < d, renormalizablity imposes an upper bound on n
2(d + z) _2(d+2) 4z

< ——— max — —; =
HE d—z = d—z 2—i_dfz



» When z = —1, npax < 2, no renormalizable interactions
allowed?

» For an /-loop Feynman diagram with V|, n-valence vertices,
together with / internal lines and E external edges:

V=) Vo > naVai=2I+E, (—-1+V=1

n>3 n>3
» n=4,5 I=1 E=7
» Vu=Ve=1=> V=2
> > . nV,=4-14+5-1=9
» 2|+ E=09
£ I Vi
A~ /Hdwa d’k, [ ] 6w k) [ 22
a=1 i=1 n>3 n
1 2z
G(w, k) ~ [G]=L

w2 — [m2 L c2k? s (k2)z]’



» If z > 1, the UV behavior of the propagator is dominated by

1

G(w,k) ~ ‘412_70(2)2

» Degree of divergence 0:
, } 6 > 0 superficially divergent
[ dwsd?ka ]| G(warka)| =L7°¢ 6 =0 possibly logarithmic
a=1 i=1
6 <0 convergent
» Dimensional analysis gives (Visser, arXiv:0902.0590 [hep-th])

d=(z+d}¥—2zI =4d— (I +V —1)z

v

I + V —1 always positive, so z T = 6 |
In particular if z > d, then

v

0 < ld—(1+V—-1)d = —2(V—-1)d <0 — renormalizable for any n

> For z <1 (eg. z=—1), G(w,k) ~ 1/(w?® — c?k?) at UV



& The Large-N Limit

» Motivated by the above, the model would consist of
> A scalar field ®(x) in d + 1 dimensions, with N components

S = (f1, 02, ,Pn), 2= vazl $? — O(N)-invariant variable

» A potential V(&) with O(N) symmetry
» Kinetic terms (with z = —1, thus quasi-local)

Lo =5 [(@0) — (VO — m'e? — - o(~V?) ]

» Dimensions reset to [t] = [x] = L; [c] =1, [¢] = [2=~D ==~
> Writing V() = NU(®?), the degree of U lowered; e.g.
degV =4 = deglU=2

> Introduce two Lagrange multipliers A(x) and p(x)

exp [i/dd“x V(d))} x /[dA][dp] exp {iN/dd“x EA(& —p)+ U(p)]}



> In ¢*-theory, deg U = 2, integration over p is gaussian and
can be performed; this will result in “Hubbard-Stratonovich
transformation” [Hubbard, Phys. Rev. Lett. 3 (1959) 77]

» The effective Lagrangian is a quardratic form in ®

L= —% [(8.®)? + (m? + A)®? + - &(—V?)Z D] + g)\p — NU(p)
_ d+1 1 _ ﬂ a2 72z 2
= Sqg=N/[d""x 2)\,0 U(p) +2Tr|og[ 5+ (= V) + m* + A

» N plays the role of 1/h, so taking the large-N limit leads to a
classical theory for A, p

] ) B8
Ser = N / A9 x Lo VST Ny / dt / d% Log
0

_1 dUJddk 2 21,2 2\z 2
L‘eff—ﬁz\p U(p) + = /Wlog[—w +ck”+¢(k) +m +/\]

27Tn dw 5 47r n?
Wp ~ —w S, E ———=—g000 Matsubara frequencies



» Classical equations of motion < saddle point equations

Lo V(o) 1 / dwdk

2" T OV PT onyd | S+ 2k C(KD)7 + P + A]
| / dwdk

P71 ] [P+ R+ (@) + P + 20/ (p)]

» Working out the saddle point Ag, pp and insetting them back
into Sei, one gets the free energy

d
F = NRTf( T,c,(,z,m?) + %—corrections (N Giz 77)

F(T,c,¢,z,m*) = poU'(po) — U(po) + fo(T, ¢, ¢, 2, m” + Xo)

d
fo(T,c, ¢, z,u) = gZ/ % log [(27rnT)2 + K+ C(K)* + u]

» In free theory, the potential vanishes U= 0= \g =2U'(p) =0,
hence the free energy becomes

R? 2
F: NTfO(T7C7C7zzm )



For N large, the O(N) invariant quantities self-average and
have small fluctuations (central limit theorem), e.g.

(D2 (x)D*(y)) ~ (D*(x))(D*(y)) + terms suppressed by N~

Thus large-N limit is essentially a mean-field theory [Zinn-Justin,
QFT & critical phenomena, 1996]

1/N corrections to the critical exponent z could be computed
see e.g. Shpot, Pis'mak and Diehl, cond-mat/0412405, arXiv:0802.2434

~(1)

z—>z—|—W+O( )

This would give black hole entropy a logarithmic correction

e A Little Computaion

o 1
u 2 Z/ (2m) [(2mnT)? + c2k2 + ¢(k?)? + u]

T 1

(27T ) Z (2rnT)? + e2(k, u)

(e = /PR T (A + 1)



» The sum has a contour integral representation

1 [dw gw) _ 1 _ coth (%)
Y e = famis-a — 5 WO el =7
o ) o
I (o c
K
% € o c "
K
4
K
(a) (b)
1 dk

= (T, ¢, ¢ z,u)

Y RN o

+ 2T log (1 e Czkzﬂ(kz““”)}



For free field theories, u = m? does not depend on T, in this
case the first term is nothing but the divergent vacuum energy
density of T =0 QFTs (recall F = NRfy/T, E = OF /0p3)
The second term gives the finite-temperature contributions to
the free energy

F(B) = NRd/% log <1 B ewW)
i

Applying to the Lifshitz fixed point: c=m=0

k' log (1 - e‘Wka)

F(3) = NR?Vol(5%" 1)/ or )d

d d— 1 ds 41 —&
NR? Vol (S (5\/) /O o Iog(l—e )
The integral is convergent for z > 0, giving rise to a negative
constant, denoted by —/4(2)




» Thermodynamic quantities have the expected scaling behavior

Nlg(z)Vol (§91)

_ d—l—d/z
F - Cd/Qz R

0 d Nly(z )Vol(Sd B 4 Tld+2)/2
E %F(ﬁ) z WR

_ d+z Nld(z)\/ol(sd 1) drd/z d+zE
S=BE—-F= . care RT =—0 7

» For z < 0, we find divergence at s = (ﬁ\/Z)l/zk ~ 00

» One has to add an UV regulator c?k? to the integral = scaling
» In particular, taking z= -1, m=0and c =1

F(ﬁ):NRC’Vol(sdfl)/oo<> (2‘”3 = (l_e—ﬁ k”fz)

d—1 2 -2
F'(8) = NRY Vol (59~ 1)/ dk k VK + ok
(2m)9  oBVKEHCK2 _q
d—1 (2 k—2) ofBVKIHCk2
F"(8) = —NRdVol(Sd_l)/ dik? (Kt Ck) e
0 (27r)d (eﬁ /k2+<k—2 _ 1)2




» The heat capacity is positive

OE

_ Y= _ 2 1
Cv = T B°F'(B) >0
» In a canonical ensemble, Cyy > 0 even before thermodynamic
limit is taken:
1(2)\2 1 f
F(B)=—log2(8) = F'(8)=2LL _ZB) __ary) <o

Z% V4

» The failure of reproducing thermal relations of Schwarzschild
black holes is, of course, expectable:

» Black holes (in flat spacetime) with Cyy < 0 are not in thermal
equilibrium with radiation, they can't be described by thermal
stable states in any boundary theories

> Gross-Perry-Yaffe instability: there are no ways of creating a
translationally invariant state with finite energy density; hot
flat space is unstable [Phys. Rev. D 25 (1982) 330]

» One could use microcanonical ensembles [ann. Phys. 146, 419 (1983)]



& Microcanonical Systems

w(E) = %/qude(S(E— H(a,p)), Q(E):/E_<E dEw(E), S =logQ(E)

! 1 8s 1 aT

(A) = w(E)C/qudeA(q,p)é(E—H(q,p)), === ===
_K) Cv ]2 (K2) — (K)2\1 !
~m=% Wi ()]

» In most cases, Cy < 0 arises in “small” systems; under large
volume limit V — oo, the microcanonical and the (grand-)
canonical ensembles are usually equivalent [“small” means the size
L comparable to the range of interactions, cf. van Hove theorem]

» Two subsystems at the same microcanonical temperature:

Stot S1(E1 +¢€) + S2(E2 —¢)

S1(E1) + S2(E2) +%€ = % (%)2 {Cil + CLJ



> (Meta)stability corresponds to (local) maximum of the total
entropy =
G >0, (G >0; total system stable
1 1 (1 <0, G <0; unstable, runaway
— 4= >0
G G+ G <0 stable

G
G>0 G<O0; d d
! 2 epends on { G+ G >0 unstable

» Canonical partition is a Laplace transform of microcanonical
entropy

Z(B,F, )= /OO dEdx - . - eS(E)=B(E+Fx+-)
0

» In Verlinde's approach (arXiv:1001.078, [hep-th]), thermodynamic
force F in a boundary system (defined on certain holographic
screen) is interpreted as the bulk gravitational force;
thermodynamic displacement x conjugate to F plays the role
of an emergent bulk space coordinate



» During a first order phase transition at some T = T, there is
an amount of energy (latent heat) E; released or absorbed by

the system without changing temperature

PE)

P(E)

The distribution
P(E) ~ exp[S(E) — BE]
has separated peaks at E; and
E; = E; + Ey, corresponding to
two phases (say, liquid and gas)

» P(E) is smooth microcanonically before taking V — oo

» Between the two pure phases, there must be a minimum of
log P(E) = S(E) — BE; in a neighborhood of this minimum
0? 0°S 1 »0°S

5 8 P(E) >0 = 25 >0 = & ="T3:<0

» - negative heat capacity is a generic signal of phase separation



» A toy model [due to Hiiller, Z. Phys. B 95 (1994) 63]

SIE,N) = V- sy(e) + VT - spu(e), e

Il
<l
[%)
G
Il
<

0, if —ep <e<e

as (le] — eg)4, if |e|] > e

sv(e) = Bee — {
sav(€) = —acos ? — 51 not extensive: S1(AE,\V) # AS1(E, V)
£
» The bulk specific entropy sy (¢) obeys van Hove's condition

(92SV
0e?

<0, Ve = (Cv)bux >0

> In energy range —¢; < € < €4, Hove's condition violated for
the total specific entropy at finite V

8251
¥>0 = Cv <0

» Surface contribution disappears as V' — oo



» The entropy becomes an extensive quantity in the
thermodynamic limit

> The minimum g of P(E) o e®(F)=FE separating two peaks
depends on (3

s1 (e)+ae+b

/-1 -o0.5 0.5 1

» The critical value § = (3. corresponds to ¢y = 0; when [ is
slightly larger than (¢, g > 0



» At the critical temperature, two pure phases appear, located
at the peaks of P(E) with the same probability of occurrence

.’/\\ 1.5 Iy 2.5
\1.25 Iy 2
VNN N W\ \
\\\\l N \ 1.5 ;,n \
07T\ \ . P
0.5 Y B\ /o
A Wt S \
028 My N _ A\
N 4=\
1 0.5 0.5 1 1.5 B 0.5 1 1.5

» Below critical temperature, the pure phase with smaller E is
more stable than the other and forms the dominant phase

» When V increased (e.g. from V ~ 102 to V ~ 10%), width of
peaks become narrower, the non-dominant phase is much less
important; in the thermodynamic limit V — oo, only the
dominant phase remains at § # (.

> At B = B¢, P(E) x 0(e+ €7) + (e — )



System Requirements

& Finite Size Effects

» Finite size is essential to get a well-defined C, < 0 in some
energy region [When V = oo, Cy diverse at the critical point]

» Example: AdS has a confining potential

» When black holes are “small”
(£ L), negative heat capacity may
appear in thermodynamics

» Cy < 0 should be a signal of the
existence of a certain first order
phase transition (Hawking-Page)

» The physics on the CFT side is
known pretty well by now

Wd+1M r2

» r.: the largest real root of F(r)=1— Tt

=0




Surface gravity and Hawking temperature

_(d+1)ri+(d-1)L° 4l®r,

. R
—Z-F = — =
f=3F) 212r, » PH=on (d+1)r2 +(d —1)L2

The Hawking temperature has a lower bound (for d > 1)

1
T”—m[

(d+1)r (d—l)L] VT

= Tmin
L ry 27l

Associated to each Ty > T there are two black holes

2rl? f—a 2
ry = m {TH:‘: TH — Tmin

At the minimal temperature, large and small black holes have
the same size ri. = L\/(d —1)/(d + 1)

Large black hole is heavier: ry T, the ADM energy E = M is
monotonely increasing

+ : large black hole

— . small black hole



» Heat capacity is computed by

OE _ OE ory

OTw  Ory 0TH

Vol (S (rd™'d) Ty 212
4Gyq2 (d + 1)

Cv

1+ L
T2 — T2

min

Cv >0 for large black holes
=
Cy <0 for small black holes
» Since C;/"®° 4 Cy™!' > 0, small black holes cannot be in thermal
equilibrium with the large ones, they will decay either to large

black holes or to pure thermal AdS
» Bekenstein-Hawking entropy

A Vol(S§9)r{
4Gy2 4Gy

Vol (§%) [ 2rl?\*?
ThE /T2 -T2,
4Gd+2 d + 1 H + H min

s =

d




» Scaling behavior S Tﬁ is violated by the finite size effect

» In holographic dual, S is not strictly extensive, at least in the

strong coupling region

According to Gibbons-Hawking, free energy F of AdS black
holes can be computed by Euclidean Einstein-Hilbert action
evaluated at the black hole solution

One may compare this F to the free energy Fy of the pure
thermal AdS [Witten, hep-th/9803131]

Regulating Euclidean actions by a large cavity of radius R; the
Tolman (or local) temperatures at r = R should be the same

TH . To
Vit s 1k

/_2,171 _|_ri+1 L%’iil + rﬂﬂ
= BO_BH\/l [2RI—T + Rd+1 =PBu |1 JRd+1L o




» The regulated spacetime volumes w/ and w/o black holes are

B 2 Vol (§9)
VR:VISd/ dt/d Y= RA+L _ pdtl
(Ry=Vol(s) | " de [ “drr? = =25 (RO = of1) g

Bo R d
Vo(R) :Vol(Sd)/ dt/ drrd = MR"“ﬁo

0 0 d+1

Vol (89) [ gur L2071 41912 _
= R +1_ -+ "'+ O(R 1
41 5 +O(R™7) | Bu

» Difference between the free energies

d+1
FoR = 2=
0 81 Gyy2L2 RLmoo
Vol (%) (L2 = r2)rd
4Ggip (d —1)L2+(d +1)r2

[V(R) — Vo(R)]

» Hawking-Page phase transition occurred at rp = L

{ rr > L, F < Fg, black hole phase dominant

ri <L, Fo<F, purethermal AdS dominant



» The corresponding critical temperature

Lo L [(d+1)r+ . (d—l)L]
4L L r+ re=L
d d?—1
- T Tomin = ————
oL (> 2L )

» Energy and entropy differences are computed by
_ 0 _ _ Vol(s9)rf
E_EO_BB(F_FO)_M’ S-S5 = 4Gora

» The size of small black holes have an upper-bound

2 2 —
Tmin < 2rl Trnin = L u <L
Tt /T2 -T2, |~ d+1 Va+i

= F — Fy > 0 = small black holes never dominant over thermal AdS phase

_27rL2
T d+1

r+

» The phase transition between hot AdS and large black holes is
first order: at transition point the latent heat M non-vanishing



» Behavior of the distribution function P(E)

>

>

>

Tw > T.: A main peak located at E ~ Eg + M, corresponding to

the large black hole phase; other peaks (if any) are not significant

Tw 2 Tc: two peaks appear, one of which located at E ~ Ey (pure
thermal AdS phase), the other located at E ~ Ey + M (large black
hole phase), P(Eo + M) > P(Eo)

TH = Tc: two peaks have equal height P(Ey + M) = P(Eo)

Th < Te: P(Eo + M) < P(Eo), the pure hot AdS phase is slightly

dominant

Tmin < Ty < T.: the dominant phase is pure thermal AdS

» The boundary CFT lives on R x S9, finite size effects are not
negligible — insure the boundary CFT (e.g. N’ =4 SYM)
undergoing a confinement/deconfinement phase transition
against scale invariance; peaks described approximately by
thermal stable states in boundary theory

In the flat boundary R! x RY limit, we will always be in the

large black hole phase; Hawking-Page transition will never
occur



» Small bIackN holes have mass M < M, located at a minimum
E ~ Ey+ M € [Ey, E + M] of P(E), separating the two peaks

)
n

oo

0.03

0.025

S-BE
g

Temperature
17
[

9

Heat Capacity
o 8

45555685775885

Energy




& York's Isothermal Cavity

» Schwarzschild black holes are similar to small AdS black holes
» Both are not thermodynamic stable
» Both have negative heat capacity
» The difference is that small AdS black holes separate two
(meta) stable phases when Ty ~ T¢; in the Schwarzschild
case there seems no such stable phases nearby [The fate of small
black holes in AdSs is simply decaying to the (de)confinement phases of SYM;
what about the fate of Schwarzschild black holes?]

» Following York [Phys Rev D33 2092 (1986)], consider (d + 2)-dim
Schwarzschild black holes confined to an isothermal cavity,
and investigate its finite size effects [suppose d > 1]

» Let L = radius of cavity, T = uniform temperature on the
wall; the size of this system is described by the geometric
quantity Vol (S9)L9 = A (the invariant area of the wall)



If there are no black holes in the cavity, we just get a thermal
flat space (t,r,Qq), with t ~ t + i3, 3 =1/ T, the boundary
of this spacetime (at r = L) is S x S (Euclidean version)
Putting a Schwarzschild black hole into the cavity, we have
the Hawking temperature

d—1 1 167 Gy.2
Ty = —— M) (@-1) = "1
H yp (Wd+1 ) y  Wd+1 d- Vol(Sd)
Isothermal condition requires the temperature T on cavity's
wall equal to the local Hawking temperature at r = L

d+1 5

TH 2 (Wd+1M)d i d—1

S B— N A M)TT — =
1_ wg+1M (Wd ! ) Ld-1 47T

[d—1

Multiplying by L=2 to derive the “isothermal equation”

1

Ly (d1)2 ¢ (Wd+1/\/7)ﬁ _ <Wd+1/\/7>ﬁ
’ L

4wl T [d-1



The existence of positive real roots £ = &, > 0 will force T to
have a minimal value T, > 0; At temperature T below this
bound, no black hole solutions with real mass M = M(T) >0
allowed — the cavity has to be in the thermal flat phase

» Proof by contradiction: Take a set of temperatures arbitrarily
close to zero; if the equation has a positive real root &,(T) for
each T in such a set, then

(T) — +
(T —£6(T) - 40 as T — 0 = { i (_5) (T)di: o impossible

In York's original work d = 2, the equation becomes cubic; a
general cubic equation &3 + ag? + b€ + ¢ = 0 has discriminant

p = q = 0= all 3 roots are zero

a
p*b_? A <0<« 1 real root
A= —4p3—27q2
223  ab otherwise A = 0 < 2 distinct real
1= T3 te

A > 0 < 3 distinct real



If A < 0, the three roots of a generic cubic equation are
& w, @, where &, is real and w, @ are a pair of conjugate
complex numbers; a relation between roots and coefficients
gives

Elwf=—c = & is positive iff c < 0
When ¢ > 0, a necessary condition for the cubic equation
having positive real roots is A > 0
Applying to the isothermal equation €3 — &2 + (4xLT)"2 =0

a=-1
2 2
b=0 B A:( 1 ) - V27
1 N2 2rLT 8rLT
C:(4wLT>

The isothermal equation allows positive real solutions only if
A > 0 or, equivalently

V27 { T = Twmin, 2 distinct real & = &1,&1,&%

T 2 —_— = Tmin
8L T > Tmin, 3 distinct real & = &, &, &



» When T = Tyin, €6 =—-c<0=6<0,26+&=—a=& >0,
3 exactly one positive root &;

» For T > Tin, one deduces from & 66 = —c < 0 that the
number of distinct positive roots is either 2 or 0; since
&+ &+ & =—a=1, not all solutions are negative = there
must be precisely two different positive roots &1, &>

» Summary: given wall temperature T, there exists a minimal
value Tpin ~ 1/L such that

» If T < Tiuin, no black holes allowed, the system is in thermal
flat phase

» If T > T.in, there are two black hole solutions with masses
My # M,, the heavier black hole is the larger one

> If T = Tpn, large and small black holes become degenerate,
with the same mass M; = M

» Next we consider d + 2-dim



» In general dimensions, the minimal temperature T, could be
determined by the condition that two distinct positive roots of

P(&) = §d+1 — 52 + ¢ become degenerate at some & > 0

P(60) =0 = & [(d+1)&™ -2 =0 = & = (di“)ﬁ <1

d—1\2 5 4 5 N e 5 N e
P(&) =0 = =& - = — — | —
) <4wLTmin) %% (d+1> (d+1)

» The limiting temperature in (d + 2)-dimensions

d—1 2 \ @I 2 \#17]7E

Tinin = — D —\ T ) d:2737
4rlL <d+1> <d+1> :|

d= 2 i3 4 5 6
ﬂ N 1 55/6\/§ _ 33/4 77/10\/5 _

.21 — = .32 — R .42 ~ .51 —— =~ .61
87 T 21/3(47) V2w 21/5(47r)

LTmin :




» Compare this T, to the minimal temperature of AdS black
holes:

TAdS _ d? -1 Tmin 1 [d—1

min 7 on L TAS 2\ d+1

min

50 100 150 Z00 £50 200 250

» Behavior of the ratio
> Decreasing when d larger
> Converging to 1/2 at d = c©



& Thermodynamics

» Thermodynamics can be constructed by the Gibbons-Hawking
approach [Phys. Rev. D 15 (1977) 2752]

T = Ii— 1Dy
1 d d
7 = —— dtdrd’Q R+ dtd“Q K
! 167TGd+2 //\/1 \/g 871'Gd+2 OM ﬁ
K = trace of the extrinsic curvature tensor on IM = S x S¢
Yo = the induced metric on OM
To = subtract term, i.e. Z; evaluated on Mgy, with O Mg,y = OM

» Since R = 0, the bulk action vanishes
» The period of Euclidean time t

1 4 1 BH
ﬁH:TfHZdijl(WdHM)H = jildt(m):/0 de(---)



» Schwarzschild metric in d + 2 dim

M
I 0 0
" 1
Buv = 0 (1 = Wrdjjf/l) 0 ,  Wap : metric on unit sphere
0 0 r’wab

> The metric 7,5 on ST x S9 at r = L is induced from Ty

1
1 WaaM 0 wariM\ 2 g
w8 = Ld—1 = = (1— L¢.
ded ( 0 L2wab) 4 ( et ) Lo
shatr=1

» /7 contains a factor /g, giving the proper length of St

wa1 M

BH 5
ﬁ = / \/ﬁdt = ﬁH <1 = [d1 > — inverse of the wall temperature
0




» Trace of the second fundamental form at r = L

1
1 8 |: Wd+1M 2
K = -——3 \/§<1_ d—1
VE or r L
d watM\?  (d — 1)wgM AN
L 1- [d—1 o old 1- [d—1

__(y_ waaM "2 [d  (d+1LweaM
- 91 L 207

> Integration over S9 results in the invariant “size” of the wall
jf d’QL? - \/w = Vol (§9)L°
sd
» Putting these things together

S €Ty FRCES ) Y

8mGasz | L 2Ld

Vol (S9)LY [d+1 (wenM ﬁ,d. W1 M 71
20d —1)Gara | 2 a1 o1




» Similarly, Zy is computed by

B
To = dt ¢ dQ 7Kk
0 87TGd+2/0 \id \/’% 0
_1 _d 1 oym| _ d
ﬂ_?a \/’%_L \/av ICO_ \/ng 3r r,L_ L
d- Vol (S)L9 3
Ty=———"2 1 2
= 0 871'Gd+2 L
d-Vol(S)LY [ waaM\ 71 Y :
2(d - l)Gd+2 Ld-1 Ld-1

» The total effective action Z = Z; — Zp may be interpreted as
the free energy difference between black hole phase and the
pure thermal flat space phase, which takes the form

1

Vol (§9)L¢ A TEAE
2(d_1)Gd+2‘7:(£)7 §:< Ld 1 )

Fo) =52 v d g [Vime -]

7=



» Isothermal equation

2 (d—1)° _
&€& = <47TLT = £<1 = F(§) real-valued

» Foré ~17and 0< €K1

d+1 d—1
% —d= S < 0, black hole phase dominant

F(&) ~

d+1 1 1
%gd +d-¢ {(1 _ 55‘**) _ 1} = 550’ >0, thermal flat dominant

» 3 a phase transition point £ = & # 0, at which F({.) =0
d+1 4 _
Tgi’ '4d- {\/1—55’ 1—1} =0

» Similar to the Hawking-Page phase transition



» There is a unique none-zero solution &., given by

gc:[ﬁ]dfl = 0<é<l =

» If T. > Tonin, the system will undergo a phase transition when
temperature raised from Ty < T < Toto T > T,

@l = 2 8 4 5 6

LT, z 27 2 37 5°/2 5 5 Lk 64
< 27 N 21/3(8m) 51/4027) 23/531/5(4r)

LT, e 21 ! 32 55/6\/§ 42 e 77/10\/5 61
e st T 21/3(47) o Var 21/5(47) o




» In general one should be able to prove, for d > 2, that
d+1 2 d+1
d—1 d—1

(2)7 - ) - o)

» For a proof, consider the function f(x) = x> — x9*1, x € R*
» There are only two extremal points of f(x) in [0, c0), given by

x=0
f/(x)=O$2X—(d+l)xd:0:> 5 2
= (d+1>

» The second order derivative of f(x) at these extremal points

2>0, x=0

2(d -1 2 -
-1 <0 x=(z75)

f(x) = 2—d(d+1)x? ! =

» Hence x = 0 is the minimal point, and x = [2/(d + 1)]*/¢“~V the
maximal one



> Since there are no other extremal points in R*, we conclude

that
A e
(m) :| > f(X), Vx € [07 OO)7 X ;é (m)

» The inequality on the last page follows if we take

1
= | — R (]
X [(d+1)2] <

» The above proof, though quite simple, tells us something
useful: If the wall has a temperature below its limiting value,
T < Tmin, then there are no solutions £ € RT of the
isothermal equation

2
§2 = §d+1 = Clrmia [R.H.S exceeds the maximal value of f(¢)]
Al T



For each T > T,,in, positive real

. \ - - - /\ solutions &-(T) are located at the

. 0.3 BE +  intersecting points of y = (&) and
the line y = [(d — 1)/(47LT)]? > 0;
o there are exactly two such points

0<&(T) < &(T) < 1, associated

¢ to a small and a large black hole,
3

s respectively. Mass degeneration
.
s

occurs when the line move up to the

limiting position
» Question: which black hole, the large one or the small one, is
thermodynamically (meta) stable?

» The system has a couple of parameters such as 5 =1/T,
By =1/Ty, L, M etc., only two of them are independent

» E.g. given (3, L, the mass of black holes is determined by
solving the isothermal equation

d—1

2 a1 (d=1)° _ I S
£-¢ —(WT) = £=&(T\L) = M= —¢




» We choose 3 and L as independent variables — they are
temperature and size of the wall
» The thermodynamic energy of this system is computed by

oz
98|,

» Using the isothermal equation, one may write

Fo) = e vae[Vit@T-1]

E A = Vol (§%)L? is the invariant area of the wall

2
N %g—d'ﬁd-\/é—gdﬂ
_ d+1,4 d(d —1)
= T STdtr T

» Thus we find

0F(£)
B

d(d—1)
4ol

g (dtlaa ). 9
A‘d(2 - 1) o8

A



» On the other hand, differentiating the isothermal equation
yields

[25—(d+1)§d] % 72<d_1)25

By 4L
S (o) | (LYl _di/EEw
2 0B | A 4L TE¢ 4L &
OF(E)| _dd=1)7, g1 _dd=1) (. [ wgaM
B |4 4nlL [1 1-¢ 1] T 4AnL (1 1 Ld-1 )

» This gives a closed form expression for the thermodynamic
energy

g Vol(S)L? 0F(e)
a 2(d - 1)Gd+2 85

_d-Vol($HL [ wauM
A o 87TGd+2 Ld71

» When L — oo, the ADM energy E = M recovered



» The entropy is determined by S = 3E — Z; writing
Vol (5)L? Vol (5)L?

5272(61_1)@”25, 5:72@_1)@”23 = S=p-F
_ 9F(§)| _d(d-1) =
€= 95 |,T  anL (1-vi-e™)

,d(d_l) d—1) — d—1 d—1
pe = 2020 (1 V=) - VA= 1 - VIZE)

—dfvl—fd L—d(¢-¢%)

pe - F = dey/T=gi1 - dig - &) - { T te! + ae [VI—E - 1] |

d—1.4 d—1(wgM o
O

» The final form of the entropy reads

Vol (59)
4Gy

Vol (Sd)rf_j,

d
M)7E —
(Wd+1 ) 4Gd+2

S =




The entropy increases as M becomes larger; so if we have two
black holes of mass M; < M at the same temperature, M is
thermodynamically unstable

Thermal stability is determined by heat capacity

» In thermodynamics one usually consider partial derivatives at

fixed space volume V, (9/0X)|v, here we are interested in
partial derivatives with wall area A = Vol (S9)L9 fixed, this
amounts to fixing the wall size L

The heat capacity Cu is defined by

oS OE » OE
CA = —_— = — — _6 -
oT|, 0T|, 8|,
!
Vol (59)L? 2 O°F

d—Den? = “=F 3z

A



» We have derived

oOF d(d —1) [ /7] 23 d—1 /1—¢d—1
PN = 1 — 4/1 — gd—1 , — = —
B |5 4L &

pla 4wl dHlegd-1 g

o?F| dd—1? g2 ¢
T A 87l /1—gd 1 9Bl,

— — 2 —1
__dd-1 (d 1) Ed’Z(cHl&d’l—l)
2 4rL 2

» This gives the heat capacity

PF d(d—1) N\ (d+1 4 -t
- _p3? _ d_ g2d—1 d—1
= a6 |, 2 (5 ¢ ) 7 ¢ !
d(d — 1) (Was M) 7T L WenMY (d+1wgaM _\7
B 2 L T et 2 LT
dyyd
o = Vol(sU)L

2(d — l)Gd+2 A

d - Vol (§9) e wa 1M\ [ d+1 wg M -t
= 4Gyin (Wd+1M) o= L= [d—1 2 [d-1 1




» Small and large black holes

» Recall that
War1M 41 W11 Mo
[d—1 =¢ [d—1

» The “critical” mass My separating C4 < 0 and C4 > 0
corresponds precisely to the maximal point & of the function

F(€) = €2 — £+

2 d+1
y=¢-&

N

small black hole

way M) - 2 2 \TT way 1 Ma
Ld-1 d+1 d+1 Ld-1 s

I
|
I
|
I
|
I
I
o & 1

large black hole
L

waM
Lﬂ’—l =5

2

d+1

» Given T > Ty, the isothermal equation has two solutions
0 <& <& <& <1, associated with small and large black

holes of masses M; < My < M,



» The function f(§) = &2

— ¢9*1 decreases more rapidly (when

€ leaves &y to the right) than it increases (when £ approaches
to &o from the left), it follows that

0< & —

o <& —

=i
C el

d+1 d+1
& = 0< &t - i
d+1€f 1) -1

=il —1

for d.> 2 §f72<d+1£f 1
small large
= CA aF CA >0

)7 +§§*2<d+1£§ P

=il
1) >0

» A system containing both large and small black holes (at the
same temperature) is thermodynamically unstable, the small
one has to decay [either to large black hole or to thermal flat space]



» Since dE # TdS, there should be a new variable entering into
the first law of thermodynamics: surface pressure

OE

~ 94 = dE=TdS —odA

$

» We now choose L, M as two independent variables; since the
entropy depends only on M (not on L), keeping S unchanged

amounts to holding M as a constant

9E| _ d-Vol(§9) 8 [Ldl (1 . Wdﬂ/\/lﬂ
- T 8-C. .- ol - - d—1
oL S 87'I'Gd+2 oL L M=const
_ dd—pvol(sHhe2 [ (17 wd+1l\/l> (17 wd+1l\/l>’%
87 Garz 21d-1 L1
94 d - Vol (591971
oL |s

» The surface pressure is then given by

L d=1 [ weaM\ (| weaM *%_1
T 8mGyal 2/d-1 Ld-1




» Onehas (1—x/2)2>1-x;0<x<1=(1—x/2)(1-x)"Y2>1=0>0

» To study mechanical stability of the system, one needs to
consider the isothermal compressibility

1 0A d oL
RT(A)EZ b = -
olr L Oo|t
_ 87rdd- GlerzL (d;—lgd,lil) [(dzlémfl) (1—@)

1 -1
+ Eﬁd_l\/ 1-— §d*1} = k71(A) > 0 for large black holes

» Number of states: Let 3 be a saddle-point of —Z(B,L)+ BE

WE) = o [ dB e (T8, 1) + BE) *UE" exp (~2(5, 1) + E) = 5O
Tl J —ioco
» The thermodynamic behavior is very similar to AdS black
holes



Installation (?)

» To construct a microscopic “boundary” description of
Schwarzschild black holes, it seems necessary to confine such
holes in an (isothermal) cavity, in order to stabilize the bulk
system thermodynamically

» The entropy in the boundary theory should not be strictly
extensive

» A first order phase transition should occur in the holographic
dual, at some critical temperature

» Unlike the AdS case, there are subtleties to choose a
holographic screen

» The boundary of AdS at infinity has a nice property: each
isometric transformation inside AdS space induces a conformal
transformation on the boundary, this provides a natural way of
constructing a “finite size” holographic screen

» The isothermal wall of York's cavity itself is not a proper
candidate for the holographic screen - - -



& A Bizarre Speculation

» The boundary theory might obey Hill's nanothermodynamics
T. L. Hill , Thermodynamics of Small Systems, Parts 1 and 2, (W. A. Benjamin
and Co., 1964)], but not the ordinary thermodynamical laws

» In one-component nano-systems considered by Hill, the first
law of the usual thermodynamics is still valid, but the entropy
is not extensive in the number of particles

» Hill introduced a subdivision (entropic) potential 7 such that

T=5-) Fox®
dJ = —Zx“dFa

» The usual Gibbs-Duhem relation 3°_ x“dF, = 0 is generalized

» 7 is an intensive variable, conjugate to the number \ of
“nano-systems”; J vanishes for a macroscopic (extensive)
system = entropic force dS =3"_ Fodx*



& Thermostatistics

» The usual thermostatistics is based on Gibbs-Shannon's
entropy
S=-Y pilogpi

» This entropy obeys the extensive condition: if A, B are two

independent systems, p/i¥8 = p,’-quB, then

ij
S(A® B) = S(A) + S(B)
» For isolated systems, the principle of extremum at
equiprobability gives
1
pi~g = S~lgQ, Q:pr

» Tsallis entropy
1-5.p7
S— kg LT 2Pl
1-gq
» g: degree of nonextensivity

S(A+B) = S(A) + S(B) + (1 — q)S(A)S(B)



	Getting Started
	A Naive Observation
	Power Counting
	The Large-N Limit
	Microcanonical Systems

	System Requirements
	Finite Size Effects
	York's Isothermal Cavity
	Thermodynamics

	Installation (?)
	A Bizarre Speculation
	Thermostatistics


