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1. Three quantization formalisms

The formulation and (1st) quantization of
superstring theory is a difficult problem. Either we
keep manifest Lorentz covariance without manifest
(spacetime) supersymmetry (NSR formalism) or we
have manifest spacetime supersymmetry but using
light-cone gauge (Green-Schwarz). Only in 2000
a new formalism called pure spinor formalism was
constructed by Berkovits (hep-th/0001035, Super-
Poincare Covariant Quantization of the Superstring).




The basic fields (open string or left-moving part of
closed string) are:

Xtk (be),  (8,7)

The central charges are

c=D F(—=26) + 11 =0= D = 10.




For multi-loop amplitude we have

Ang = /DXD¢DchDﬂD7 ce
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(b, c) zero-modes and (3,~) zero-modes give rise to
the factor [T2;"(u;, b) TT227°(0(B(2a))).




Integration over super-moduli: super-current
insertions J(Z,).

What is more important is the fact that " and
the (5,7) ghosts have fractional (odd-half integer)
conformal weight on Riemann surface. So they have
an extra property call spin structure. There must be
a summation over spin structures. (Seiberg-Witten,

1986. GSO, 1976: GSO projection and SUSY. Modular
invariance or global diffeomorphism.)

Problems: super-moduli integration lost manifest
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“gauge invariance” (solved for 2-loop in 2001 by
D’'Hoker and Phong, leading to 1lst computation
of the manifest gauge parameter independent 2-
loop 4-particle amplitude in 2002 by Zheng-Wu-Zhu,
identically obtained by D’Hoker and Phong at the
beginning of 2005. ) and modular invariance (rules for
summation over spin structures unknown).




e Spacetime supersymmetric only after GSO proj.

e Higher loops: summation over spin structure and
modular invariance not known. The measure is
not manifestly gauge independent (total derivatives,
spurious poles, etc.)

e Applied to multi-particle, higher-loop (2-loop, see
below) and topological string theory amplitudes.




The basic fields are X' and S%, a=1,---,8.

Conformal weight: 0. So there is no spin structure
problem.

Also spacetime supersymmetry is manifest.

The biggest problem is that Lorentz covariance is
not manifest (causing contact interactions, etc.)




the basic fields are:
X" (0% pa), AYw,), a=1,---,16.
The conformal weights are:
0, (0,1), (0,1).

(0%, p,) are fermionic and the rests are bosonic.

AY is called a pure spinor and must satisfy the
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constraints:
Xyt =0, p=0,1,---,9.

Only 11 independent components remain. (The
dual field w, has gauge transformations. Physical
observable has gauge invariance.)

An explicit representation of the I' matrix. An
explicit solution of the pure spinor constraints.
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0 central charges:

c=104+16 x (=2) + 11 x 2 = 0.

(Remember ¢ = 2¢(6(\° — \) + 1) for a (\,1 — )
system.)
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e Lorentz covariant and manifestly spacetime
supersymmetric (no summation over spin structures).

e All integer dimensional free fields on (ordinary)
Riemann surface.

e Shortcoming: pure spinor constraints and very
complicated composite b fields.
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2. Pure spinor and some basic formulas
1
" = 0X" + (67" 90).

1

1
do = po— (axm + Z(Wnae)) (VB

The basic OPEs are:

Oé/

X"(z,2) X" (w,w) — 5 n™"1n |z — w|?,
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pa(2)0(w) — 2,

o' YL,

da(2)ds(w) — ST
(1" () — S0

Furthermore, if V(y,0) is a generic superfield then
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its OPE’s with d, and II"" are computed as follows

o' D,V(y,0
da(2)V (y,0) — 5 Z£y>,
oV (y, 0
()Y (5.6) — 2

Here the supersymmetric derivative D, is given by

0, 1
Doz: {_mam-
50 T 5(7"0)ad

Why we need the pure spinor field \?
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The Lorentz currents from the fermionic variables

1

give the following OPEs:

n Lp(y™" P = 4Py™)0 | 1 (tr(y™"y™)
2T (w)3(z) = — 3

_ pPlnymla — palnyymlp »
w — 2 T (w — 2)?
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With ~"yPl — APl = gty — 2P 4 2Ty —
2n"Py" and tr(y™"yP) = —320,,".

(Recalling that in the RNS formalism the OPE of
the Lorentz currents for the fermionic variables > yng =
Y"™)" satisfies
\ np[ng’ggs _ 7761[%27;;}\1; . pmlappin

w — 2 (w — 2)?

%%S(w)ZZﬁNS(z)

The different double pole coefficients would make the
computations of scattering amplitudes not agree with
each other. )
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To insure Lorentz covariance, w, only appears in:

1
J = oz)\Oéa mn — & WWa\')mn - )\ﬁ
w N 2w (Yonn) 5

\ 5m[lNk]n(Z) . 5n[lNk]m(Z)

kl mn
N (y)N™(2) —

5kn5lm L 5km5ln
3 2
(y — 2)
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mn\o )\B >
N (y)A%(2) é” (y) _ﬁz)( ).

1
= — @ A\,
¢ 27m'7{

satisfies () = 0 due to the pure spinor constraints.

Therefore we can define the unintegrated and
integrated massless vertex operators for the super-
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Yang-Mills states as follows

V =XA.(x,0)

| 1
U = eZk'X(c‘?HO‘Aa(H)JerAm(H)+daW“(9)+§Nm”]-"mn(9))

where the superfields A,, A,,, W® and F,,, describe
the super-Yang-Mills theory in D=10.

(In the RNS formalism the unintegrated vertex
operator satisfies QU = 0V, as one can check by
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recalling that U = {$b,V} and T = {Q, b}.)
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3. Multi-loop superstring amplitudes

Amplitudes can be easily constructed. For bosonic
string theory we have

DX™Dg ooy
A (ke k) = E X —AX
j1oenin (Rt K - /Vol.(Diff x Weyl) e

><H/dQO'i(detg(O'i))l/2V}'i(ki,()'i)
1=1

Vi(ko) is a vertex operator describing a specific
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particle.

For superstring theory in the pure spinor formalism
the proposal is (hep-th/0406055):

39—3

A= [, o B / Puppp(up)bp, (up, 2p)
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< | [Ye,(u) P[] / d'trUr(tr) )

where
e “picture-lowering” operator: Yo = C,0°0(C3\")

e “picture-raising” operator:

1
ZB — §an )\’ymnd 5(quNpq), ZJ — )\&dgé(J)
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More importantly is the composite “D ghost” field:
bB(z,u).
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4. bp(z,u)
By construction we have:
{Q,0(2)} =T(2)

{Q.bp(z,w)} = T(2)Zp(w)
bi(z,w) = bp(z) + T(z)/ du By, ON"(u)d(BN (u))

zZ

1
T =~ 0X"0X, — padl® + T




To construct bp(z), we introduce the following
sequence of operators:

ZB = )\QZOM

{Qa Za} — AﬁZﬁaa
[Qv Zﬁoz] — )\727504,

{Q., Zyo} = N Zsyga + OX Y580,

27



where the operators Z3,, Z. 30, Zs30 and Ys 5, are
['s-traceless (=0 when saturated with I'; between 2
adjacent indices). Concretely, the full expression of
the operators Z’s and T,,..,, in the case of Z; takes
the form:

1
7. = §Bab(Fabd)&5(BchCd)

(Bd).5(BN).

28



1 1
Z 0 = —§(Fcrba) 501l Bapd(BN) — Z(Bd)a(Bd) 306(BN),

1
Zyga = —5|(T°T™)5a(.00), Bud (BN)

1
+§(F(Tba) sa(Bd) I1.B,,06(BN)

1
+ (0T, (5(Bd)oT1Budd (BN)
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Z(S”yﬁoz

+(Bd)(Bd)s(Bd),0°5(BN)].

_i[((Fcha)ﬁa(B@ 5(Led0)

—(TT*),15(Bd) 4 (T':00)5) BaOd (BN)
((Ffred)5[fy(rcrba)ﬁ]a

(DT 50 (DT, )T Boy 11 B 05 (BN)
1

5((Fcfba)ﬁa(3d)w(3d)5 + (DT")43(Bd) ) (Bd);




1
-+ §(F6Fba’)5[a(3d)g(3d)ﬂ )HcBaba2(5(BN)

_ i( Bd).(Bd)5(Bd),(Bd)sd*5(BN)],

1
Y0 = =5 (L) (TT™) 30 Bud(BN).

On the other hand we introduce another set of
operators G¢, - - -:

1Q, G} = \°T.
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[QaHQﬁ] — )‘aGﬁ—I_"'a

{QaKaﬁfy} — )\@HﬁW+ T

Q, L7 = XK -

where the dots denote [';-traceless terms. The chain
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of equations finishes at the level of the last equation,
since, for dimensional reasons, \*L”7°¢ vanishes modulo
[';-traceless terms so that

Lozﬁfy(S _ )\asﬁfy(S 4o
and
[Q, Saﬂv] — Kby + APy 4o

for a suitable field 7°7. Then, according to Berkovits
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(hep-th/0406055), b is given by:

bg = by + by + bs + b + b

where
by = GZ,,
by = H*Z,4,
by = —K“Zop,,
bia) _ —Lamazam(s,

Bl = —SPION Y504,

)
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Firstly we have:

1
bib) _ Bab[ o Tw)\Nab o —J@Nab

4
1 ab 1 a bc
+3ND.T + N ONM5(BN).

The other needed fields are:

GO{

1 1 1 1
. @ . a. = aFab a = oz__2904
2H (T'yd) 1 »(1°00) 4J8«9 48 :
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where

HOéﬂ — H(aﬁ) + H[@5]7

I(ab) — ipaﬁ

16 “

1

1
(NI, — T + 2011%),

1

HP = — 1% (=dT"*d + 6 N""II%).

96 abc

4
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1 1
K = ——T%(T,d)"N ) (Td)"N"
AR a ( b ) 1992 abc( d)
1 3
| Fﬁfy FdozNa,b (red)J — I Q
1
) (Td)* N
g+ el 1)

But we only give the totally antisymmetric part of
L:

1
3072

L[Ozﬁfyé] _ (Fabc) [aﬁ(rade)fyé]Nchde.
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Schematically,we have:

bp = B(ddIl +dNOO + NON + T .,N + NIII)§(BN)
+BB(dddd 4+ ddNTI + NNIIII + NNd90)05 (BN )
+BBB(ddddN + ddNNII)9*5(BN) - - -
+BBBB(ddddNN)0*5(BN)
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5. Two-Loop 4-particle amplitude

The 2-loop 4-particle amplitude obtained by Zheng-
Wu-Zhu in 2002 (hep-th/0212191, 198, 219) is:

1 T8, A% v 42 | |
AII N / i=1 e—kz-k] (X (23) X (25))
T5d‘/;77“‘ Hz<] H ‘ . ‘2 H
X |s(2120 + 2324) + t(2124 + 2223) + u(2123 + z224)\2
av,, — aniandeOZLk7 T _ /d221d2z2\z1 — ,222]27
’@ijaikajk‘ ’y(zl)y(ZZ)’
(X (2)X (%)) = G(2i, 25) = —In|E(z;, 2;)|
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+27T(IIHQ)[_J1 (Im/ jw[) (Im/ jCUJ)

2

A better but equivalent form derived by D’ Hoker and
Phong (hep-th/0501197):

KK [|11;<;dQ,)7

A 13 kz —
(e ki) = 90 | (det m )
X D/s\QeXp( — Zkl - ij(zz-,zj))
2t i<j
Vg = (ki — ka) - (k3 — k) A(z1, 20) A(23, 24) + - - -
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X S(z129 + 2324) + t(2124 + 2223) + w(2123 + 2224)

Alz,w) = wi(2)ws(w) — wi(w)ws(2)

Berkovits et. al. also obtained the same results
by using pure spinor formalism (hep-th/0503197,

0509234).
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6 . Three-Loop 4-particle amplitude

Integration over 6“ and d, requires at least 16 + 16¢
zero modes to give a non-vanishing result.

For the 4-particle amplitude we are just on the verge
of getting a non-vanishing amplitude.

There are 8¢ + 3 d-field from Z; and Z;. So at
least 8g — 3 d-field must come from bz and the vertex
operators.

There are no terms in ZBB with 3 d-fields. Terms with
4 d-fields contains a derivative on the delta function
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(6', N§", or NN§®).) Because

/ dud'(z) = 0,
/ doad (z) = —1.

we need some N fields from bp or the vertex operators.

and

Taken ¢ = 2. Only 3 bz and 4 vertex operators.
Need 13. 12 or 10, 8, ---. 8 and less are excluded. 10
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