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BH/QCP	Duality	and	quantum	matters.		
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Introduction:		unification	

•  Physics=	Simplification	by	(unification,reduction,symmetry)		

•  Unification=	Identify	different	objects	
à reduces	the	#	of	axioms 

	Example	:	 Electricity+	Magnetism	 à	Electromagnetism	
	 	 	 			particle+wave	àQuantum	Physics		

	 	 	 	 			space+time		Special	relativity 	 	 						
	 	 			 			spacetime+gravityà	General	relativity		
	 	 	 			spacetime	geometry+	force+dulaity	èstring	theory	

	
•  Issue	of	today:		

	Quantum	matter	+	spacetime	geometry	
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Theme	

•  Similarity	of	Quantum	Critical	point	and	black	hole	
	 	à	New	field	theory	for	strongly	int.	system		
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QCP	
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Quantum	matter	=	large	quantum	fluctuation		

•  Classical	vs	quantum	mechanics:	
	
	

•  One	configuration	dominant	à	no	fluctuation	
	sum	over	many	configuration	à	big	fluctuation	.		

	
	
•  Quantum	matter	=	matter	with	large	quantum	fluctuation		
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When	Quantum	fluctuation	is	large?	

1.  Strong	interactionà	Large	fluctuation	

2.  g	~		V/K		

3.  Slow	elctron:	large	g	à	large	fluctuation		
	
4.  Quantum	matterà	slow	electrons		

5	18.04.27.USTC	



Material	with	slow	electrons	
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Transition metal oxides

25

• Atomic quantum numbers: (n, l, m, ms)
• Partially filled d-shell: strongly correlated, multi-orbital
• O2-: anion 
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V3+: V2O3, d2

V4+: VO2, d1
3d	Transition	metal	Oxide,		

	 												Hi	Tc	SC		
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Why	3d?		why	Oxide?	
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Transition	metal	oxide	3d	1-10	4s1-2	O	
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1.  Loss of particle à Loss of calculability: 
 
 
 
 
 

 Effect of strong Interaction i) 
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δ-function=Particle	
resonance=quasi-particle	
no	feature=non-particle	



2. Abnormally Rapid Thermalization à  Hydro-dynamic description 	

Effect of strong Interaction (ii) 
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Planckian dissipation !

Universal entropy production time in QC system: !
  

€ 

τ = τ ! ≈
!
kBT

  

€ 

ρ ∝
1
τ !

∝ kBT

Observed in Quark gluon 
plasma (heavy ion colliders 
RIHC, LHC) and cold atom 
�unitary fermi gas�:!

Since early 1990�s recognized as 
responsible for strange metal 
properties, also linear resistivity high 
Tc metals ??:!
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Plankian	Dissipation:	Arriving at universality instantly. 

Planckian dissipation !

Universal entropy production time in QC system: !
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Since early 1990�s recognized as 
responsible for strange metal 
properties, also linear resistivity high 
Tc metals ??:!
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Linear	Registivity	in	
Strange	Metal  
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Other Effect of strong Interaction 

Violation of Wiedemann-Franz law      
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FIG. 3. Disorder in the Dirac fluid. (A) Minimum car-
rier density as a function of temperature for all three sam-
ples. At low temperature each sample is limited by disorder.
At high temperature all samples become limited by thermal
excitations. Dashed lines are a guide to the eye. (B) The
Lorentz ratio of all three samples as a function of bath tem-
perature. The largest WF violation is seen in the cleanest
sample. (C) The gate dependence of the Lorentz ratio is well
fit to hydrodynamic theory of Ref. [5, 6]. Fits of all three
samples are shown at 60 K. All samples return to the Fermi
liquid value (black dashed line) at high density. Inset shows
the fitted enthalpy density as a function of temperature and
the theoretical value in clean graphene (black dashed line).
Schematic inset illustrates the di↵erence between heat and
charge current in the neutral Dirac plasma.

more pronounced peak but also a narrower density de-
pendence, as predicted [5, 6].

More quantitative analysis of L(n) in our experiment
can be done by employing a quasi-relativistic hydrody-
namic theory of the DF incorporating the e↵ects of weak
impurity scattering [5, 6, 39].

L =
LDF

(1 + (n/n0)2)
2 (2)

where

LDF =
HvFlm
T 2�min

and n2
0 =

H�min

e2vFlm
. (3)

Here vF is the Fermi velocity in graphene, �min is the elec-
trical conductivity at the CNP, H is the fluid enthalpy
density, and lm is the momentum relaxation length from

impurities. Two parameters in Eqn. (2) are undeter-
mined for any given sample: lm and H. For simplic-
ity, we assume we are well within the DF limit where
lm and H are approximately independent of n. We fit
Eqn. (2) to the experimentally measured L(n) for all
temperatures and densities in the Dirac fluid regime to
obtain lm and H for each sample. Fig 3C shows three
representative fits to Eqn. (2) taken at 60 K. lm is esti-
mated to be 1.5, 0.6, and 0.034 µm for samples S1, S2,
and S3, respectively. For the system to be well described
by hydrodynamics, lm should be long compared to the
electron-electron scattering length of ⇠0.1 µm expected
for the Dirac fluid at 60 K [18]. This is consistent with
the pronounced signatures of hydrodynamics in S1 and
S2, but not in S3, where only a glimpse of the DF appears
in this more disordered sample. Our analysis also allows
us to estimate the thermodynamic quantity H(T ) for the
DF. The Fig. 3C inset shows the fitted enthalpy density
as a function of temperature compared to that expected
in clean graphene (dashed line) [18], excluding renormal-
ization of the Fermi velocity. In the cleanest sample H

varies from 1.1-2.3 eV/µm2 for Tdis < T < Tel�ph. This
enthalpy density corresponds to ⇠ 20 meV or ⇠ 4kBT
per charge carrier — about a factor of 2 larger than the
model calculation without disorder [18].

To fully incorporate the e↵ects of disorder, a hydrody-
namic theory treating inhomogeneity non-perturbatively
is necessary [40, 41]. The enthalpy densities reported
here are larger than the theoretical estimation obtained
for disorder free graphene, consistent with the picture
that chemical potential fluctuations prevent the sample
from reaching the Dirac point. While we find thermal
conductivity well described by Ref. [5, 6], electrical con-
ductivity increases slower than expected away from the
CNP, a result consistent with hydrodynamic transport in
a viscous fluid with charge puddles [41].

In a hydrodynamic system, the ratio of shear viscos-
ity ⌘ to entropy density s is an indicator of the strength
of the interactions between constituent particles. It is
suggested that the DF can behave as a nearly perfect
fluid [18]: ⌘/s approaches a conjecture by Kovtun-Son-
Starinets: (⌘/s)/(~/kB) & 1/4⇡ for a strongly inter-
acting system [42]. A non-perturbative hydrodynamic
framework can be employed to estimate ⌘, as we discuss
elsewhere [41]. A direct measurement of ⌘ is of great
interest.

We have experimentally discovered the breakdown of
the WF law and provided evidence for the hydrodynamic
behavior of the Dirac fermions in graphene. This pro-
vides an experimentally realizable Dirac fluid and opens
the way for future studies of strongly interacting rela-
tivistic many-body systems. Beyond a diverging thermal
conductivity and an ultra-low viscosity, other peculiar
phenomena are expected to arise in this plasma. The
massless nature of the Dirac fermions is expected to re-
sult in a large kinematic viscosity, despite a small shear

Pseudo	Gap	
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Problem		

1.  SIS	
2.  QFT=calculation	method	for	many	body	system 

3.  20C	QFT=pertubation	theory		
g=U/t	(or	t/U),							A=	1+	a	g2+b	g3	+c	g4	+d	g5	+	….	

4.  g>1	àthe	more	you	calculate	the	wronger	you	beocome.		

5.  No	calculation	method	for	such	matter.		
à	No	theory	for	new	material,	high	Tc.		
					Recognized	from	1930,	Famous	after	1986.	
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Condensed matter theory  
   = Structure in UV scale à functionality in IR scale  

physics with reductionism.   
Not applicable to SIS.  

Implications  

12	18.04.27.USTC	
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New	idea?		

•  Similarity	of	Quantum	Critical	point	and	black	hole	
	 	à	New	field	theory	for	strongly	int.	system		

13	

QCP	
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Quantum	critical	point		

1.  Critical	pointà	Fluctuation	of	all	size	.		
2.  inconsistencyà divegence:		

vapor-water	critical	point:			density	=0	as	water.		
Density=infinity	as	vapor		0	or	infinity	

3.  For	divergence	Làinfinity		
4.  Quantum	critical=	lcutuation	in	time.		

Size	of	time=1/Temp=βàinfinity	è		T=0.		
	*		divergence	of	a	order	parameter	means	not	a	good	parameter		for	the	system	
	appearance	of	massless	d.o.f											ω=kz	
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15	

 
 
 
 
 
 
Black Hole  has  
i) Universality /no hair / information loss 
ii)		Thermodynamics		(1st	law	ßàEinstein	eq.)	
iii)	Transport 

                                 
So is the QCP.  
 
                        one for all.  

Similarity	of	BH	and	QCP	

18.04.27.USTC	

Quantum	Critical	point	



Good	Observables	for	the	new	theory?	

16	
QCP	

Z,	θ:				ω=kz,			[s]=D-θ	

Most	universal	quantity:		spectral	function		and	Transport	near	QCP		
	
 Absence of scaleàabsence of  structural dependence à Universality 

  
Classifying QCP :  dynamical exponent     
	

18.04.27.USTC	



	holography	meets	the	experiment	

17	

Simplest	QCP	is		z=1	:		graphene	

Q: strong coupling?		….		10	years	of	speculation		
 
    1.  
 
    2. near Dirac Point : Tiny FS à No (insufficient) screening 

g2 =
e2 · c

4⇡✏~c · vF
⇠ 1

18.04.27.USTC	
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ELECTRON TRANSPORT

Observation of the Dirac fluid and the
breakdown of the Wiedemann-Franz
law in graphene
Jesse Crossno,1,2 Jing K. Shi,1 Ke Wang,1 Xiaomeng Liu,1 Achim Harzheim,1

Andrew Lucas,1 Subir Sachdev,1,3 Philip Kim,1,2* Takashi Taniguchi,4 Kenji Watanabe,4

Thomas A. Ohki,5 Kin Chung Fong5*

Interactions between particles in quantum many-body systems can lead to collective behavior
described by hydrodynamics. One such system is the electron-hole plasma in graphene near
the charge-neutrality point, which can form a strongly coupled Dirac fluid.This charge-neutral
plasma of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the
thermal conductivity, thanks to decoupling of charge and heat currents within hydrodynamics.
Employing high-sensitivity Johnson noise thermometry, we report an order of magnitude
increase in the thermal conductivity and the breakdown of the Wiedemann-Franz law in the
thermally populated charge-neutral plasma in graphene.This result is a signature of the Dirac
fluid and constitutes direct evidence of collective motion in a quantum electronic fluid.

U
nderstanding the dynamics of many inter-
acting particles is a formidable task in phys-
ics. For electronic transport inmatter, strong
interactions can lead to a breakdown of the
Fermi liquid (FL) paradigm of coherent

quasi-particles scattering off of impurities. In
such situations, provided that certain conditions
are met, the complex microscopic dynamics can
be coarse-grained to a hydrodynamic description
of momentum, energy, and charge transport on
long length and time scales (1). Hydrodynamics
has been successfully applied to a diverse array of

interacting quantum systems, fromhigh-mobility
electrons in conductors (2) to cold atoms (3) and
quark-gluon plasmas (4). Hydrodynamic effects
are expected to greatly modify transport coef-
ficients compared with their FL counterparts, as
has been argued for strongly interactingmassless
Dirac fermions in graphene at the charge-neutrality
point (CNP) (5–8).
Many-body physics in graphene is interesting

because of electron-hole symmetry and a linear
dispersion relation at the CNP (9, 10). Together
with the vanishing Fermi surface, the ultra-
relativistic spectrum leads to ineffective screening
(11) and the formation of a strongly interacting
quasi-relativistic electron-hole plasma known as
a Dirac fluid (DF) (12). The DF shares many fea-
tures with quantum critical systems (13): most
importantly, the electron-electron scattering time
is fast (14–17) and well suited to a hydrodynamic
description. Because of the quasi-relativistic na-
ture of the DF, this hydrodynamic limit is de-
scribed by equations (18) quite different from

those applicable to its nonrelativistic counter-
parts. A number of unusual properties have been
predicted, including nearly perfect (inviscid) flow
(19) and a diverging thermal conductivity, which
results in the breakdown of theWiedemann-Franz
(WF) law at finite temperature (5, 6).
Away from theCNP, graphenehas a sharpFermi

surface, and the standardFLphenomenologyholds.
By tuning the chemical potential, we are able to
measure thermal and electrical conductivity in
both the DF and the FL in the same sample. In a
FL, the relaxation of heat and charge currents is
closely related, as they are carried by the same
quasi-particles. The WF law (20) states that the
electronic contribution to a metal’s thermal con-
ductivity ke is proportional to its electrical con-
ductivity s and temperature T, such that the
Lorenz ratio L satisfies

L ≡
ke
sT

¼ p2

3
kB
e

! "2

≡ L0 ð1Þ

where e is the electron charge, kB is the Boltz-
mann constant, and L0 is the Sommerfeld value
derived from FL theory. L0 depends only on
fundamental constants, not specific details of the
system such as carrier density or effective mass.
As a robust prediction of FL theory, the WF law
has been verified in numerous metals (20). At
high temperatures, the WF law can be violated
due to inelastic electron-phonon scattering or
bipolar diffusion in semiconductors, even when
electron-electron interactions are negligible (21).
In recent years, several nontrivial violations of
theWF law—all of which are related to the emer-
gence of non-FL behavior—have been reported
in strongly interacting systems such as Luttinger
liquids (22), metallic ferromagnets (23), heavy fer-
mionmetals (24), and underdoped cuprates (25).
Owing to the strong Coulomb interactions be-

tween thermally excited charge carriers, the WF
law is expected to be violated at the CNP in a DF.
An electric field drives electrons and holes in op-
posite directions; collisions between them intro-
duce a frictional dissipation, resulting in a finite
conductivity even in the absence of disorder (26).
In contrast, a temperature gradient causes elec-
trons and holes to move in the same direction,
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transport in graphene, a signature of so-called Dirac fluids.

 observed a huge increase of thermalet al.fluid flowing through a small opening. Finally, Crossno 
 found evidence in graphene of electron whirlpools similar to those formed by viscouset al.Bandurin 

 had a major effect on the flow, much like what happens in regular fluids.2fluid in thin wires of PdCoO
 found that the viscosity of the electronet al.counterexamples (see the Perspective by Zaanen). Moll 

flow rarely resembles anything like the familiar flow of water through a pipe, but three groups describe 
Electrons inside a conductor are often described as flowing in response to an electric field. This

Electrons that flow like a fluid
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thus inducing an energy current that grows un-
impeded by interparticle collisions as the total
momentum is conserved. The thermal conduc-
tivity is therefore limited by the rate at which
momentum is relaxed by residual impurities.
Realization of the DF in graphene requires

that the thermal energy be larger than the local
chemical potential m(r), defined at position r:
kBT ≳ jmðrÞj. Impurities cause spatial variations
in the local chemical potential, and even when
the sample is globally neutral, it is locally doped
to form electron-hole puddles with finite m(r)
(27–30). At high temperatures, formation of the
DF is complicated by phonon scattering, which
can relax momentum by creating additional in-
elastic scattering channels. This high-temperature
limit occurs when the electron-phonon scattering
rate becomes comparable to the electron-electron
scattering rate. These two temperatures set the
experimental window in which the DF and the
breakdown of the WF law can be observed.
Tominimize disorder, we usedmonolayer gra-

phene samples encapsulated in hexagonal boron
nitride (31). All devices used in this study have
two terminals, so as to keep awell-defined temper-
ature profile (32), with contacts fabricated using
the one-dimensional edge technique (33) to mini-
mize contact resistance. We employed a back-gate
voltage Vg applied to the silicon substrate to tune

the charge carrier density n = ne – nh, where ne
and nh are the electron and hole densities, re-
spectively (21). All measurements were performed
in a cryostat to control the bath temperatureTbath.
Figure 1A shows the resistance R versus Vg mea-
sured at various fixed temperatures for a repre-
sentative device [see (21) for all samples]. From
this, we used the known sample dimensions to
estimate the electrical conductivity s (Fig. 1B). At
the CNP, the residual charge carrier density nmin

can be estimated by extrapolating a linear fit of
log(s) as a function of log(n) out to theminimum
conductivity (34). At the lowest temperatures,nmin

saturates to ~8 × 109 cm–2. Extraction of nmin by
this method prompts overestimation of the charge-
puddle energy, consistentwith previous reports (31).
Above the disorder temperature scale Tdis ~ 40 K,
nmin increases as Tbath is raised, which suggests
that thermal excitations begin to dominate and
the sample enters the nondegenerate regime near
the CNP.
Electronic thermal conductivity wasmeasured

using high-sensitivity Johnson noise thermometry
(JNT) (32, 35). We applied a small bias current
through the sample, thus injecting a Joule heating
power P directly into the electronic system and
inducing a small difference between the temper-
ature of the graphene electrons and that of the
bath: DT≡Te−Tbath. The electron temperature

Te was monitored independently of the lattice
temperature through the Johnson noise power
emitted at 100 MHz, with a 20-MHz bandwidth
defined by an inductor-capacitor matching net-
work. We designed our JNT setup to be operated
over a wide temperature range, from 3 to 300 K
(35). With a precision of ~10 mK, we measured
small deviations of Te from Tbath (i.e., DT≪Tbath).
In this limit, the temperature of the graphene
lattice is well thermalized to the bath (32), and
our JNT setup allows us to sensitively measure
the electronic cooling pathways in graphene.
When the temperature is low enough, electron
and lattice interactions are weak (35, 36), and
most of the Joule heat generated in graphene
escapes via direct diffusion to the contacts (21).
As the temperature increases, electron-phonon
scattering becomesappreciable, and thermal tran-
sport becomes limited by the electron-phonon
coupling strength (36–38). The onset temperature
of appreciable electron-phonon scattering, Tel-ph,
depends on the sample disorder and device geo-
metry:Tel-ph ~ 80K (35, 36, 39, 40) for our samples.
Below this temperature, the electronic contribu-
tion of the thermal conductivity can be obtained
from P and DT using the device dimensions (21).
Figure 1C shows ke(Vg) plotted alongside the

simultaneously measured s(Vg) at various fixed
bath temperatures. Here, for a direct quantitative
comparison based on the WF law, we plot the
scaled electrical conductivity as sTL0 in the same
units as ke. In a FL, these two values will coincide,
in accordancewith Eq. 1. At low temperatures (T <
Tdis ~ 40 K), where the puddle-induced density
fluctuations dominate, we find that ke ≈ sTL0,
monotonically increasing as a function of carrier
density with a minimum at the neutrality point,
confirming theWF law in the disordered regime.
As T increases (T > Tdis), however, we begin to
observe violation of theWF law. This violation ap-
pears only close to the CNP, with the measured
thermal conductivitymaximized at n = 0 (Fig. 1C).
The deviation is the largest at 75 K, where ke is
more than an order of magnitude larger than the
value expected for a FL. The nonmonotonicity of
ke(T) is consistent with acoustic phonons relaxing
momentum more efficiently than impurities as T
increases (41). For T ≳ 100K in our samples, activ-
ation of optical phonons introduces an additional
electron-phonon cooling pathway (35), and the
measured thermal conductivity is larger than ke.
This non-FL behavior quickly disappears as jnj in-
creases; ke returns to the FL value and restores the
WF law. In fact, away from the CNP, the WF law
holds for a wide temperature range, consistent
with previous reports (35, 36, 39) (Fig. 1E). For this
FL regime, we verify the WF law up to T ~ 80 K.
Our observation of the breakdown of the WF

law in graphene is consistent with the emer-
gence of the DF. Figure 2 shows the full density
and temperature dependence of the experimen-
tally measured Lorenz ratio, highlighting the
presence of the DF. The blue region denotes
L ∼ L0, suggesting that the carriers in graphene
exhibit FL behavior. The WF law is violated in
the DF (yellow-red region), with a peak Lorenz
ratio 22 times larger than L0. The green dotted
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Fig. 1. Temperature- and density-dependent electrical and thermal conductivity. (A) Resistance (R)
versus gate voltage (Vg) at various temperatures. kW, kilohm. (B) Electrical conductivity (blue) as a
function of the charge density set by the back gate for different bath temperatures. The residual carrier
density at the neutrality point (green) is estimated by the intersection of the minimum conductivity with
a linear fit to log(s), away from neutrality (dashed gray lines). Curves have been offset vertically such that
the minimum density (green) aligns with the temperature axis to the right. Solid black lines correspond to
4e2/h. At low temperatures, the minimum density is limited by disorder (charge puddles). Above Tdis ~ 40 K
(yellow shaded area), thermal excitations begin to dominate, and the sample enters the nondegenerate
regime near the neutrality point. (C to E) Thermal conductivity (red points) as a function of (C) gate voltage
and [(D) and (E)] bath temperature, compared to with the WF law, sTL0 (blue lines). At low temperature
and/or high doping ðjmj ≫ kBTÞ, we find the WF law to hold.This is a nontrivial check on the quality of our
measurement. In the nondegenerate regime ðjmj < kBTÞ, the thermal conductivity is enhanced and the
WF law is violated. Above T ~ 100 K, electron-phonon coupling becomes appreciable and begins to dominate
thermal transport at all measured gate voltages. At this temperature, the yellow shaded background ends. All
data from this figure are taken from sample S2 [inset in (E)].

RESEARCH | REPORTS

 o
n 

A
ug

us
t 7

, 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

4

0 100 200
0

5

10

15

20

25

Temperature (K)
L

 /
 L

0

 

 

B

1 10 100 1000
109

1010

1011

Temperature (K)

n
m

in
 (

c
m

-2
)

Disorder
Limited

Thermally
Limited

S3
S2
S1

A

−6 −4 −2 0 2 4 6
0

4

8

12

16

20

n (1010 cm−2)

L
/L

0

 

C

40 60 80 100
0

2

4

6

8

10

T (K)

H
  

(e
V

/µ
m

2
)

 

 

CH
e

h

-V+V
e

h

∆Vg = 0

FIG. 3. Disorder in the Dirac fluid. (A) Minimum car-
rier density as a function of temperature for all three sam-
ples. At low temperature each sample is limited by disorder.
At high temperature all samples become limited by thermal
excitations. Dashed lines are a guide to the eye. (B) The
Lorentz ratio of all three samples as a function of bath tem-
perature. The largest WF violation is seen in the cleanest
sample. (C) The gate dependence of the Lorentz ratio is well
fit to hydrodynamic theory of Ref. [5, 6]. Fits of all three
samples are shown at 60 K. All samples return to the Fermi
liquid value (black dashed line) at high density. Inset shows
the fitted enthalpy density as a function of temperature and
the theoretical value in clean graphene (black dashed line).
Schematic inset illustrates the di↵erence between heat and
charge current in the neutral Dirac plasma.

more pronounced peak but also a narrower density de-
pendence, as predicted [5, 6].

More quantitative analysis of L(n) in our experiment
can be done by employing a quasi-relativistic hydrody-
namic theory of the DF incorporating the e↵ects of weak
impurity scattering [5, 6, 39].

L =
LDF

(1 + (n/n0)2)
2 (2)

where

LDF =
HvFlm
T 2�min

and n2
0 =

H�min

e2vFlm
. (3)

Here vF is the Fermi velocity in graphene, �min is the elec-
trical conductivity at the CNP, H is the fluid enthalpy
density, and lm is the momentum relaxation length from

impurities. Two parameters in Eqn. (2) are undeter-
mined for any given sample: lm and H. For simplic-
ity, we assume we are well within the DF limit where
lm and H are approximately independent of n. We fit
Eqn. (2) to the experimentally measured L(n) for all
temperatures and densities in the Dirac fluid regime to
obtain lm and H for each sample. Fig 3C shows three
representative fits to Eqn. (2) taken at 60 K. lm is esti-
mated to be 1.5, 0.6, and 0.034 µm for samples S1, S2,
and S3, respectively. For the system to be well described
by hydrodynamics, lm should be long compared to the
electron-electron scattering length of ⇠0.1 µm expected
for the Dirac fluid at 60 K [18]. This is consistent with
the pronounced signatures of hydrodynamics in S1 and
S2, but not in S3, where only a glimpse of the DF appears
in this more disordered sample. Our analysis also allows
us to estimate the thermodynamic quantity H(T ) for the
DF. The Fig. 3C inset shows the fitted enthalpy density
as a function of temperature compared to that expected
in clean graphene (dashed line) [18], excluding renormal-
ization of the Fermi velocity. In the cleanest sample H

varies from 1.1-2.3 eV/µm2 for Tdis < T < Tel�ph. This
enthalpy density corresponds to ⇠ 20 meV or ⇠ 4kBT
per charge carrier — about a factor of 2 larger than the
model calculation without disorder [18].

To fully incorporate the e↵ects of disorder, a hydrody-
namic theory treating inhomogeneity non-perturbatively
is necessary [40, 41]. The enthalpy densities reported
here are larger than the theoretical estimation obtained
for disorder free graphene, consistent with the picture
that chemical potential fluctuations prevent the sample
from reaching the Dirac point. While we find thermal
conductivity well described by Ref. [5, 6], electrical con-
ductivity increases slower than expected away from the
CNP, a result consistent with hydrodynamic transport in
a viscous fluid with charge puddles [41].

In a hydrodynamic system, the ratio of shear viscos-
ity ⌘ to entropy density s is an indicator of the strength
of the interactions between constituent particles. It is
suggested that the DF can behave as a nearly perfect
fluid [18]: ⌘/s approaches a conjecture by Kovtun-Son-
Starinets: (⌘/s)/(~/kB) & 1/4⇡ for a strongly inter-
acting system [42]. A non-perturbative hydrodynamic
framework can be employed to estimate ⌘, as we discuss
elsewhere [41]. A direct measurement of ⌘ is of great
interest.

We have experimentally discovered the breakdown of
the WF law and provided evidence for the hydrodynamic
behavior of the Dirac fermions in graphene. This pro-
vides an experimentally realizable Dirac fluid and opens
the way for future studies of strongly interacting rela-
tivistic many-body systems. Beyond a diverging thermal
conductivity and an ultra-low viscosity, other peculiar
phenomena are expected to arise in this plasma. The
massless nature of the Dirac fermions is expected to re-
sult in a large kinematic viscosity, despite a small shear
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with the Planck time ⇠ ~/kT , which is the time for hy-
drodynamics to work.

The net electric current J and total number current
Jn which become neutral at Dirac point, are defined by
J = Je + Jh, Jn = Je � Jh, respectively and their elec-
tric charge densities and number densities are related
by Q1 = en1 and Q2 = �en2. The total electric con-
ductivity � = @J

@E and  can be expressed in terms of
Q = Q1 + Q2 and Qn = Q1 � Q2 together with the
proportionality constant gn of Qn = gnQ:

� = �0(1 + (Q/Q0)
2),  =

̄

1 + (1 + g2n)(Q/Q0)2
, (16)

where

�0 =
e2

~ 2Z0, ̄ =
4⇡kB
~

sT

k2
, Q2

0 =
~�0

4⇡kB
sk2. (17)

To fix the parameters, we used four measured values of
ref. [11] at 75K, �0 = 0.338/k⌦, ̄ = 7.7nW/K , Q0 =
e ·320/(µm)2, together with the curvature of density plot
of  to fix gn = 3.2. and assumed charge conjugation
symmetry to set W0 = Z0. Using these, the basic pa-
rameters of the theory as well as the entropy density can
be determined: 2Z0 = 1.387, k2 = 454

(µm)2 , s = 2044 kB
(µm)2 .

We replace all r0 dependence by s, the entropy density
by s = 4⇡kBr20. Cosmological constant is not determined
due to the inherent scale symmetry.

Now, why we can set the proportionality of the two

charges as given in eq. (13). To avoid the issues involved
in the transport by puddle, we simply assume that well
localized puddles do not contribute transport or simply
assume that the system is homogeneous. Under such
assumption, the number densities of electrons and holes
created by thermal excitation is proportional to the net
charge density: for the fermi liquid case, out of total
degree of freedom (d.o.f) n ⇠ k2F ⇠ µ2, excitable d.o.f is
⇠ kT · µ, because the excitable shell width is kT . But
in hydrodynamic regime, kT >> µ, therefore entire non-
degenerate charge distribution region is excitable. In fact
this is a typical situation of fermion dynamics described
by AdS black hole [27, 28]. In summary, in case of the
hydrodynamic regime, the charge carrier density created
is proportional to total degree of freedom, Q, which is
the volume of the Dirac cone above the Dirac point.

We remark that due to strong Coulomb interaction,
the created electron hole pairs can form the bound state,
exciton. Such excitons in homogeneous graphene satisfies
the linear relations between the electric charge and the
exciton number. Although exciton in graphene has been
discussed extensively [29, 30], mosts are only for bi-layer
graphene. However, we expect that strong coulomb in-
teraction in Dirac Fluid regime of single layer graphene
should be able to make bound state. The abundance of
such excitons are remained to be verified experimentally.

Discussions: In the presence of an extra current that
carries mainly heat, the violation of WFL is not direct
evidence of a Dirac fluid. However, the fact that such

(a)

(b)

FIG. 1. Holography v.s the experimental data: (a) density
plot of �. (b) density plot of . Red circles are for data used
in [11, 13], dashed lines are for one current model and real
lines are for two current model. The white region is the Dirac
fluid regime in which our theory works, while the shaded area
is the fermi liquid regime.

a phenomenon is quantitatively well described by hydro-
dynamics and gauge/gravity duality, indicates that the
system is strongly correlated.
Disorder and the nature of the scalar field: The scalar

field provides momentum dissipation only when both its
gradient and the vacuum expectation value of its dual
operator, hOIi, are nonzero. The latter is the analogue
of charge density in electric field as one can see from the
Ward identity,

r⌫T
µ⌫ = hOIirµ�

0
I + F 0

µ⌫ hJ
⌫
i . (18)

The role of the source field �0
I = kxI is the chemical

potential of impurity and that of hOIi is the density of
impurity. Therefore, k2 can be understood as the density
of the uniform impurity.
The puddle e↵ect on the transport: One important

source of the disorder in graphene is known to be the
the charge density inhomogeneity, [11, 13, 31], which is
completely neglected here. Then why the theory could
match the experiment so well? A partial answer is that
while the DC conductivities directly depends only on the
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should be able to make bound state. The abundance of
such excitons are remained to be verified experimentally.

Discussions: In the presence of an extra current that
carries mainly heat, the violation of WFL is not direct
evidence of a Dirac fluid. However, the fact that such

(a)

(b)

FIG. 1. Holography v.s the experimental data: (a) density
plot of �. (b) density plot of . Red circles are for data used
in [11, 13], dashed lines are for one current model and real
lines are for two current model. The white region is the Dirac
fluid regime in which our theory works, while the shaded area
is the fermi liquid regime.

a phenomenon is quantitatively well described by hydro-
dynamics and gauge/gravity duality, indicates that the
system is strongly correlated.
Disorder and the nature of the scalar field: The scalar

field provides momentum dissipation only when both its
gradient and the vacuum expectation value of its dual
operator, hOIi, are nonzero. The latter is the analogue
of charge density in electric field as one can see from the
Ward identity,

r⌫T
µ⌫ = hOIirµ�

0
I + F 0

µ⌫ hJ
⌫
i . (18)

The role of the source field �0
I = kxI is the chemical

potential of impurity and that of hOIi is the density of
impurity. Therefore, k2 can be understood as the density
of the uniform impurity.
The puddle e↵ect on the transport: One important

source of the disorder in graphene is known to be the
the charge density inhomogeneity, [11, 13, 31], which is
completely neglected here. Then why the theory could
match the experiment so well? A partial answer is that
while the DC conductivities directly depends only on the

4	basic	parameters.		

̄

T
=

(4⇡)
2

�2
r0, (7)

where the o↵-diagonal components of each transport coe�cient are zero in this case. The

other point is that the thermo-electric coe�cient ↵ and ↵̄ is linear in the charge density q.

The thermal conductivity is defined by

ij = ̄ij � T ↵̄ik�
�1
kl ↵lj. (8)

Together with (7) and (8), we get simple relation between the electric conductivity and the

thermal conductivity;
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. (9)
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The thermo-electric transport coe�cients with q� is given by

�xx =
(F �H

2
)(F + G2

)

(F2 +H2G2)

�xy =
HG(2F + G2 �H

2
) + ✓(F2

+H
2G2

)

(F2 +H2G2)

↵xx = ↵̄xx =
sG(F �H

2
)

F2 +H2G2

↵xy = ↵̄xy =
sH(F + G2

)

F2 +H2G2

̄xx =
s
2
T F

(F2 +H2G2)

̄yx =
s
2
T HG

(F2 +H2G2)
,

(10)
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2.3 Momentum relaxation with two U(1) field

In this section, we start from the action with two gauge fields;
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(albeit with negligible quantum entanglement) insofar as they
do not admit a controllable description via kinetic theory.
Furthermore, it has been shown [27] that strongly interacting
quantum critical fluids have a somewhat different hydrody-
namic description than the canonical Fermi liquids described
above, and this can lead to very different hydrodynamic
properties, including in transport [20,21,27– 31], as we will
review in this paper.

Using novel techniques to measure thermal transport
[32– 34], the Dirac fluid has finally been observed in
monolayer graphene, and evidence for its hydrodynamic
behavior has emerged [35], as we will detail. However,
existing theories of hydrodynamic transport are not consistent
with the simultaneous density dependence in experimentally
measured thermal and electrical conductivities. In this paper,
we improve upon the hydrodynamic theory of Ref. [27],
describe carefully effects of finite density, and develop a
nonperturbative relativistic hydrodynamic theory of transport
in electron fluids near a quantum critical point. Under
certain assumptions about the equations of state of the
Dirac fluid, our theory is quantitatively consistent with
experimental observations. The techniques we employ are
included in the framework of Ref. [36], which developed a
hydrodynamic description of transport in relativistic fluids
with long-wavelength disorder in the chemical potential [36]
was itself inspired by recent progress employing the AdS/CFT
correspondence to understand quantum critical transport in
strange metals [31,37– 44], but as we will discuss, this theory
is also well suited to describe the physics of graphene.

A. Summary of results

The recent experiment [35] reported order-of-magnitude
violations of the Wiedemann-Franz law. The results were
compared with the standard theory of hydrodynamic transport
in quantum critical systems [27], which predicts that

σ (n) = σQ + e2v2
Fn

2τ

H
, (2a)

κ(n) = v2
FHτ

T

σQ

σ (n)
, (2b)

where e is the electron charge, s is the entropy density, n is the
charge density (in units of length−2), H is the enthalpy density,
τ is a momentum relaxation time, and σQ is a quantum critical
effect, whose existence is a new effect in the hydrodynamic
gradient expansion of a relativistic fluid. Note that up to σQ,
σ (n) is simply described by Drude physics. The Lorenz ratio
then takes the general form

L(n) = LDF

(1 + (n/n0)2)2
, (3)

where

LDF = v2
FHτ

T 2σQ

, (4a)

n2
0 = HσQ

e2v2
Fτ

. (4b)

L(n) can be parametrically larger than LWF (as τ → ∞
and n ≪ n0), and much smaller (n ≫ n0). Both of these
predictions were observed in the recent experiment, and fits of
the measuredL to (3) were quantitatively consistent, until large
enough n where Fermi liquid behavior was restored. However,
the experiment also found that the conductivity did not grow
rapidly away from n = 0 as predicted in (2), despite a large
peak in κ(n) near n = 0, as we show in Fig. 1. Furthermore,
the theory of Ref. [27] does not make clear predictions for the
temperature dependence of τ , which determines κ(T ).

In this paper, we argue that there are two related reasons
for the breakdown of (2). One is that the dominant source of
disorder in graphene—fluctuations in the local charge density,
commonly referred to as charge puddles [45– 48]—are not
perturbatively weak, and therefore a nonperturbative treatment
of their effects is necessary [49]. The second is that the
parameter τ , even when it is sharply defined, is intimately
related to both the viscosity and to n, and this n dependence is
neglected when performing the fit to (2) in Fig. 1. We develop a
nonperturbative hydrodynamic theory of transport which relies
on neither of the above assumptions, and gives us an explicit
formula for τ in the limit of weak disorder. The key assumption
for the validity of our theory is that the size of the charge
puddles is comparable to or larger than the electron interaction
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FIG. 1. A comparison of our hydrodynamic theory of transport with the experimental results of Ref. [35] in clean samples of graphene at
T = 75 K. We study the electrical and thermal conductances at various charge densities n near the charge neutrality point. Experimental data
are shown as circular red data markers, and numerical results of our theory, averaged over 30 disorder realizations, are shown as the solid blue
line. Our theory assumes the equations of state described in (27) with the parameters C0 ≈11, C2 ≈9, C4 ≈200, η0 ≈110, σ0 ≈1.7, and
(28) with u0 ≈0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the Wiedemann-Franz law is restored, and
our hydrodynamic theory is not valid in or near this regime. We also show the predictions of (2) as dashed purple lines, and have chosen the
three-parameter fit to be optimized for κ(n).
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which request the co-linearity of all momentum vectors
~q1, · · · , ~q4. Therefore available phase space is greatly re-
duced. Such kinematical constraints maintains the non-
equilibrium states and as a consequence, the two currents
Je, Jh behave independently for a long time compared
with the Planck time ⇠ ~/kT , which is the time for hy-
drodynamics to work.

The net electric current J and total number current
Jn which become neutral at Dirac point, are defined by
J = Je + Jh, Jn = Je � Jh, respectively and their elec-
tric charge densities and number densities are related
by Q1 = en1 and Q2 = �en2. The total electric con-
ductivity � = @J

@E and  can be expressed in terms of
Q = Q1 + Q2 and Qn = Q1 � Q2 together with the
proportionality constant gn of Qn = gnQ:

� = �0(1 + (Q/Q0)
2),  =

̄

1 + (1 + g2n)(Q/Q0)2
, (16)

where

�0 =
e2

~ 2Z0, ̄ =
4⇡kB
~

sT

k2
, Q2

0 =
~�0

4⇡kB
sk2. (17)

To fix the parameters, we used four measured values of
ref. [11] at 75K, �0 = 0.338/k⌦, ̄ = 7.7nW/K , Q0 =
e ·320/(µm)2, together with the curvature of density plot
of  to fix gn = 3.2. and assumed charge conjugation
symmetry to set W0 = Z0. Using these, the basic pa-
rameters of the theory as well as the entropy density can
be determined: 2Z0 = 1.387, k2 = 454

(µm)2 , s = 2044 kB
(µm)2 .

We replace all r0 dependence by s, the entropy density
by s = 4⇡kBr20. Cosmological constant is not determined
due to the inherent scale symmetry.

Now, why we can set the proportionality of the two

charges as given in eq. (13). To avoid the issues involved
in the transport by puddle, we simply assume that the
system is homogeneous. Then the number densities of
electrons and holes created by thermal excitation is pro-
portional to the net charge density: for the fermi liquid
case, out of total degree of freedom (d.o.f) n ⇠ k2F ⇠ µ2,
excitable d.o.f is ⇠ kT · µ, because the excitable shell
width is kT . But in hydrodynamic regime, kT >> µ,
therefore entire non-degenerate charge distribution re-
gion is excitable. In fact this is a typical situation of
fermion dynamics described by AdS black hole [27, 28].
In summary, in case of the hydrodynamic regime, the
charge carrier density created is proportional to total de-
gree of freedom, Q, which is the volume of the Dirac cone
above the Dirac point.

We remark that due to strong Coulomb interaction,
the created electron hole pairs can form the bound state,
exciton. Such excitons in homogeneous graphene satisfies
the linear relations between the electric charge and the
exciton number. Although exciton in graphene has been
discussed extensively [29, 30], mosts are only for bi-layer
graphene. However, we expect that strong coulomb in-
teraction in Dirac Fluid regime of single layer graphene
also should be able to make bound state.

(a)

(b)

FIG. 1. Theory vs. Data: (a)density plot of �, (b)that
of . Red circles are for data used in [11, 13], dashed lines
are for one current model and real lines are for two current
model. The parameters are fixed such that  plot is well fit.
The white color is the Dirac fluid regime in which our theory
works, and the blue shaded is for the fermi liquid one.

Discussions: In the presence of an extra current that
carries mainly heat, the violation of WFL is not direct
evidence of a Dirac fluid. However, the fact that such
a phenomenon is quantitatively well described by hydro-
dynamics and gauge/gravity duality, indicates that the
system is strongly correlated.
Disorder and the nature of the scalar field: The scalar

field provides momentum dissipation only when both its
gradient and the vacuum expectation value of its dual
operator, hOIi, are nonzero. The latter is the analogue
of charge density in electric field as one can see from the
Ward identity,

r⌫T
µ⌫ = hOIirµ�

0
I + F 0

µ⌫ hJ
⌫
i . (18)

The role of the source field �0
I = kxI is the chemical po-

tential of impurity and that of hOIi is the density of im-
purity, whose presence gives the momentum dissipation.
It is identified as the subleading order term of the fluctu-
ation of the scalar field near the boundary and nonzero
due to the presence of curvature in AdS spacetime. k2

can be understood as the density of the uniform impurity.
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Discussions: In the presence of an extra current that
carries mainly heat, the violation of WFL is not direct
evidence of a Dirac fluid. However, the fact that such
a phenomenon is quantitatively well described by hydro-
dynamics and gauge/gravity duality, indicates that the
system is strongly correlated.
Disorder and the nature of the scalar field: The scalar

field provides momentum dissipation only when both its
gradient and the vacuum expectation value of its dual
operator, hOIi, are nonzero. The latter is the analogue
of charge density in electric field as one can see from the
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tential of impurity and that of hOIi is the density of im-
purity, whose presence gives the momentum dissipation.
It is identified as the subleading order term of the fluctu-
ation of the scalar field near the boundary and nonzero
due to the presence of curvature in AdS spacetime. k2

can be understood as the density of the uniform impurity.

18.04.27.USTC	



Remark:	all	analytical	

21	

2

One can see that if ev ⇠ r2 in asymptotic region, Qi

corresponds to the charge density of the boundary field
theory. To compute the transport coe�cients, we turn
on small fluctuations around the background solution as
given in equation (A3, A4). From the A field fluctuation
equations, the currents are defined by [18],

J1 =
p
�gZ(�)F xr, J2 =

p
�gW (�)Gxr

Q = U(r)2
d

dr

✓
�gtx(r)

U(r)

◆
�A(r)J1 �B(r)J2. (4)

Notice that near the boundary, the heat current becomes
Q = T tx

�µ1J1�µ2J2. Moreover, these currents are con-
served along radial direction r. Therefore their boundary
values are related to that of horizon data.

Finally, we get the boundary current in terms of the
external sources:

J1 =

✓
Z0 +

e�v0Q2
1

k2�0

◆
E1 +

e�v0Q1Q2

k2�
E2 +

4⇡TQ1

k2�0
⇣,

J2 =

✓
W0 +

e�v0Q2
2

k2�0

◆
E2 +

e�v0Q1Q2

k2�
E1 +

4⇡TQ2

k2�0
⇣

Q =
4⇡TQ1

k2�0
E1 +

4⇡TQ2

k2�0
E2 +

(4⇡T )2ev0

k2�0
⇣.

(5)

The eq. (5) can be written in matrix form, Ji = ⌃ijEj ,
with J3 = Q and E3 = ⇣. The transport coe�cients can
be read o↵ from the eq. (5) and the definition

0

@
�1 � ↵1T
�̄ �2 ↵2T

↵̄1T ↵̄2T ̄T

1

A := ⌃. (6)

Notice that the matrix is real and symmetric, so that the
Onsager relations hold:

↵̄i = ↵i, �̄ = �. (7)

The heat conductivity  is defined by the response of the
temperature gradient to the heat current in the absence
of other currents: setting J1 and J2 to be zero in (5), we
can express E1 and E2 in terms of ⇣. Substituting these
to the first line of (5), we get

 = ̄�
T ↵̄1(↵1�2 � ↵2�)

�1�2 � ��̄
�

T ↵̄2(↵2�1 � ↵1�̄)

�1�2 � ��̄
. (8)

To discuss more explicitly, we consider a black hole solu-
tion with two charges:

U(r) = r2 �
m0

r
�

k2

2
+

1

4r2

✓
Q2

1

Z0
+

Q2
2

W0

◆
, (9)

where m0 is given by U(r0) = 0 and the temperature is

T =
r0
4⇡

✓
3�

k2

2r20
�

Q2
1

4Z0r40
�

Q2
2

4W0r40

◆
. (10)

The solutions of U(1) gauge fields are a(r) = µ1 �
q1
r ,

b(r) = µ2 �
q2
r . Notice qi = Qi/Zi with Z1, Z2 being

Z0,W0 respectively. For the finite vector norm gµ⌫AµA⌫

at the horizon r = r0, we need µi = qi/r0.
The conductivities for any number of conserved cur-

rents can be calculated explicitly:

�i = Zi +
Q2

i

r20k
2
, �ij =

QiQj

r20k
2
,  =

̄

1 +
P

i 4⇡Q
2
i /sk

2Zi
,

with ̄ = 4⇡sT/k2, s = 4⇡r20 and Zi is the coupling of
Ai. If we identify the total electric current as J =

P
i Ji

and thermo-electric force Ei = E � Tr(µi/T ), we can
calculate the electric conductivity to give

� =
@J

@E
=

X

i

�i +
X

i,j

�ij = Z + 4⇡Q2/sk2, (11)

where Q =
P

i Qi and Z =
P

i Zi, showing the additivity
of density independent part of the electric conductivity.
If we define the heat conductivity due to the i-th current
by 1/i = 1/̄ + Q2

i /Zis2T , then the heat conductivity
formula leads us to additivity of density dependent part

of the inverse heat conductivity. Therefore

D[1/] =
X

i

D[1/i], D̄[�] =
X

i

D̄[�i], (12)

where D[f ], D̄[f ] denote the density dependent and in-
dependent part of f , respectively.
Finally we claim that the experimental data of

graphene will be well fit with two current theory if we
assume the proportionality of two charges

Q2 = gQ1, (13)

whose justification will be discussed later. This assump-
tion together with the second additivity eq.(12) is what
makes our two current model work.
Origin of two Currents in Graphene: What is

the nature and the origin of the extra current in the
graphene. There are a few attractive candidates. The
first idea is the e↵ect of imbalance [4] between the elec-
trons and holes due to the kinematical constraints of the
Dirac cone. When there is such an deviation of electron
and hole density from their equilibrium value, then the
system has tendency to reduce the di↵erence by creat-
ing/absorbing electron-hole pair:

e� $ e� + h+ + e�, h+
$ h+ + h+ + e� (14)

In such processes, energy and momemtum conservations
must hold. The point is that, for the graphene, the lin-
ear dispersion relation severely reduces the kinematically
available states [4]: If we define ~q as a momentum mea-
sured from a Dirac point,

~q1 = ~q2 + ~q3 + ~q4, |~q1| = |~q2|+ |~q2|+ |~q3|, (15)
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with ̄ = 4⇡sT/k2, s = 4⇡r20 and Zi is the coupling of
Ai. If we identify the total electric current as J =
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and thermo-electric force Ei = E � Tr(µi/T ), we can
calculate the electric conductivity to give
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where Q =
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of density independent part of the electric conductivity.
If we define the heat conductivity due to the i-th current
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i /Zis2T , then the heat conductivity
formula leads us to additivity of density dependent part
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where D[f ], D̄[f ] denote the density dependent and in-
dependent part of f , respectively.
Finally we claim that the experimental data of

graphene will be well fit with two current theory if we
assume the proportionality of two charges

Q2 = gQ1, (13)

whose justification will be discussed later. This assump-
tion together with the second additivity eq.(12) is what
makes our two current model work.
Origin of two Currents in Graphene: What is

the nature and the origin of the extra current in the
graphene. There are a few attractive candidates. The
first idea is the e↵ect of imbalance [4] between the elec-
trons and holes due to the kinematical constraints of the
Dirac cone. When there is such an deviation of electron
and hole density from their equilibrium value, then the
system has tendency to reduce the di↵erence by creat-
ing/absorbing electron-hole pair:

e� $ e� + h+ + e�, h+
$ h+ + h+ + e� (14)

In such processes, energy and momemtum conservations
must hold. The point is that, for the graphene, the lin-
ear dispersion relation severely reduces the kinematically
available states [4]: If we define ~q as a momentum mea-
sured from a Dirac point,

~q1 = ~q2 + ~q3 + ~q4, |~q1| = |~q2|+ |~q2|+ |~q3|, (15)
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One can see that if ev ⇠ r2 in asymptotic region, Qi

corresponds to the charge density of the boundary field
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The eq. (5) can be written in matrix form, Ji = ⌃ijEj ,
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Origin of two Currents in Graphene: What is

the nature and the origin of the extra current in the
graphene. There are a few attractive candidates. The
first idea is the e↵ect of imbalance [4] between the elec-
trons and holes due to the kinematical constraints of the
Dirac cone. When there is such an deviation of electron
and hole density from their equilibrium value, then the
system has tendency to reduce the di↵erence by creat-
ing/absorbing electron-hole pair:

e� $ e� + h+ + e�, h+
$ h+ + h+ + e� (14)

In such processes, energy and momemtum conservations
must hold. The point is that, for the graphene, the lin-
ear dispersion relation severely reduces the kinematically
available states [4]: If we define ~q as a momentum mea-
sured from a Dirac point,

~q1 = ~q2 + ~q3 + ~q4, |~q1| = |~q2|+ |~q2|+ |~q3|, (15)
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Recent experiments have uncovered evidence of the strongly coupled nature of graphene: the
Wiedemann-Franz law is violated by up to a factor of 20 near the charge neutral point. We describe
this strongly coupled plasma by a holographic model in which there are two distinct conserved U(1)
currents. We find that our analytic results for the transport coefficients for the two current model have a
significantly improved match to the density dependence of the experimental data than the models with only
one current. The additive structure in the transport coefficients plays an important role. We also suggest the
origin of the two currents.
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Introduction.—It has been argued that graphene near
charge neutrality forms a strongly interacting plasma, the
Dirac fluid. It does not have well-defined quasiparticle
excitations, and is amenable to a hydrodynamic description
[1–10]. Evidence for such a Dirac fluid has appeared in
recent experiments [11] on the violation of the Wiedemann-
Franz law (WFL) in extremely clean graphene near the
charge neutral point; the ratio of heat conductivity and
electric conductivity, L ¼ κ=Tσ, was found to be up to
20 times the Fermi liquid value.
The simplest hydrodynamic model [12], with pointlike

and uncorrelated disorder and a single conserved U(1)
current, agrees with the overall experimental trends, but
has difficulty capturing the density dependencies of both
the electrical (σ) and thermal (κ) conductivities [13]. An
alternative hydrodynamic model, the “puddle” model,
with long-wavelength disorder in the chemical potential
and a single conserved U(1) current, led to a better
agreement with observations [13], but still left room for
improvement.
In this Letter, we explore a model with two conserved

U(1) currents. The idea is that introducing a new neutral
current can enhance the transport of the heat relative to
that of the charge. Our model is formulated in holographic
terms [14,15], to utilize the recent progress in the develop-
ment of transport calculation in gauge-gravity duality
[16–27]. The Dirac fluid in our model is described by an
anti–de Sitter (AdS) black hole in 3þ 1 dimensions, the
holographic dual of a 2þ 1-dimensional system at finite
temperature. The momentum dissipation is treated using
scalar fields, which corresponds to weak pointlike dis-
order. We calculate electric, thermoelectric power, and
thermal conductivities analytically. We find that, under the

assumption that the conserved charges Q1, Q2 are propor-
tional to each other, the theoretical results for the density
dependencies of the electric and heat conductivities can
now satisfactorily match the experimental data in the
Dirac fluid regime.
One possible mechanism for the extra current is the

kinematic constraints of energy-momentum conservation
on the Dirac cone, which reduce the phase space of
electron and hole scattering significantly [4], allowing
electrons and holes to form independent currents as long
as the relaxation time for mixing between the currents is
presumed to be much longer than the Planckian relax-
ation time ℏ=kBT, the time required for the hydro-
dynamic regime to work. It should be noted, however,
that the estimates of electron and hole equilibration
times are made in a quasiparticle framework [4], whose
validity in hydrodynamic regime is just assumed here.
We see that the kinematics on the Dirac cone also
provide a reason why the two charge densities can be
proportional.
dc transport with two Uð1Þ fields.—We start from the

action S¼
R
d4x

ffiffiffiffiffiffi−gp
L with two gauge fields Aμ, Bμ, a

dilaton field ϕ, and the scalar fields χ1, χ2 for momentum
dissipation,

L ¼ R −
1

2
½ð∂ϕÞ2 þ Φ1ðϕÞð∂χ1Þ2 þ Φ2ðϕÞð∂χ2Þ2&

− VðϕÞ − ZðϕÞ
4

F2 −
WðϕÞ
4

G2; ð1Þ

where F ¼ dA,G ¼ dB, F2 ¼ FμνFμν, etc. We also require
positivity of ΦiðϕÞ, ZðϕÞ, and WðϕÞ. The action (1) yields
equations of motion,
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Material Pseudospin Energy scale (eV) References

Graphene, Silicene, Germanene Sublattice 1–3 eV [5, 6, 17, 19, 36, 37]
Artificial Graphenes Sublattice 10�8–0.1 eV [28, 29, 38–40]
Hexagonal layered heterostructures Emergent 0.01–0.1 eV [41–47]
Hofstadter butterfly systems Energent 0.01 eV [46]
Graphene-hBN heterostructures in high magnetic fields

Band inversion interfaces Spin-orbit ang. mom. 0.3 eV [48–50]
SnTe/PbTe, CdTe/HgTe, PbTe

2D Topological Insulators Spin-orbit ang. mom. < 0.1eV [7, 8, 22, 24, 51, 52]
HgTe/CdTe, InAs/GaSb, Bi bilayer, ...

3D Topological Insulators Spin-orbit ang. mom. . 0.3eV [7, 8, 23, 52–55]
Bi1�xSbx, Bi2Se3, strained HgTe, Heusler alloys, ...

Topological crystalline insulators orbital . 0.3eV [56–59]
SnTe, Pb1�xSnxSe

d-wave cuprate superconductors Nambu pseudospin . 0.05eV [60, 61]
3He Nambu pseudospin 0.3 µeV [2, 3]
3D Weyl and Dirac semimetals Energy bands Unclear [32–34]
Cd3As2, Na3Bi

Table 1. Table of Dirac materials indicated by material family, pseudospin realization in the Dirac Hamiltonian,
and the energy scale for which the Dirac spectrum is present without any other states.

Recent ARPES measurements on Na3Bi [32] and Cd3As2 [33, 34] have found evidence
for a three-dimensional Dirac semimetal state in these materials.

At first (microscopic) sight, a material like graphene does hardly display any similarity
with typical d-wave superconductors or superfluids. There are important materials spe-
cific properties making all these materials distinct: some are superconductors and some
are (bulk) insulators; some are crystalline with honeycomb lattice (graphene or silicene),
others have a more complicated Perovskite crystal structure (cuprate superconductors)
or do not exhibit any crystalline order (3He-A phase). Also the physical realizations of
the Dirac pseudospin di↵er between these materials (c.f. Table 1) and the list of di↵er-
ences can be continued. But again, it is the universal properties related to the existence
of the low-energy Dirac excitations that justify the concept of Dirac materials. As a uni-
fying principle, the presence of nodes leads to a sharp reduction of the phase space for
low-energy excitations in Dirac materials. More precisely, the dimensionality of the set
of points in momentum space where we have zero-energy excitations is reduced in Dirac
materials as compared to normal metals. For example, nodes for a three-dimensional
Dirac material mean the e↵ective Fermi surface is shrunk from a two-dimensional ob-
ject to a point. Lines of Dirac nodes in three dimensions would mean that the Fermi
surface has shrunk from a two-dimensional surface to a one-dimensional line. In either
case there is a reduction of dimensionality for the zero-energy states. This reduction of
phase space controlled by additional symmetry in the system is an indicator for Dirac
materials. Reduced phase space and controlling symmetries are important for applica-
tions. First of all, it is possible to lift the protected symmetry of the Dirac node and
therefore destroy the nodes and open an energy gap. This modification of the spectrum
of quasiparticles drastically changes the response of the Dirac material, as for example
is the case for topological insulator in a magnetic field [35]. Second, Dirac nodes and
the resultant reduction of phase space suppress dissipation and are thus attractive for
applications exploiting the coherence of low-energy states in the nodes.

4
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1.	Bi2Te3			with	Cr	doping:	Bao	et.al,		SREP02391		

directions and apBerry’s phase is accumulated10,11,44. The destructive
interference due to pBerry’s phase leads to an enhancement of MC.
Applying an external magnetic field suppresses the destructive
interference, giving rise to a negative MC11,44,45. One interesting
question to ask is what if the magnetic impurities are incorporated
into the TI materials? Theoretical predictions suggested that when
doping with magnetic impurities, a competing WL effect will be
introduced and the localization behavior is a result of the
competition between WAL and WL27,29,46,47. For the slightly doped
sample (x 5 0.08, Fig. 2b), at T 5 1.9 K the sharp upward cusp
feature of WAL is gone and the magnetoconductance exhibits a
non-monotonic increase with the increase of magnetic field, where
a sharp downward cusp is developed at small magnetic fields. When
the temperature warms up to 3.1 K, the non-monotonic behavior
disappears and the WAL shows up again. Further increasing the
temperature to 3.7 K flattens the cusp feature, indicating that the
WAL is weakened and it can only survive in a small temperature
range. For the sample doped with x 5 0.10 (Fig. 2c), WAL is
completely suppressed and a non-monotonic behavior is presented
up to 3.1 K before a classical parabolic dependence of the magnetic
field (,B2) of the MC appears around 4 K (Supplementary materials
Fig. S1). Further increasing the doping concentration to x 5 0.14
(Fig. 2d), downward cusp feature is persistent up to 10 K, indicative
of a WL dominated behavior.

The quantum corrections to the 2D MC can be described by
the Hikami-Larkin-Nagaoka (HLN) model48 and is given analytically

by the equation Dsxx:sxx Bð Þ{sxx 0ð Þ~a
e2

ph½y 1
2
z

Bw

B

! "
{

ln
Bw

B

! "

$, where e is the electron charge, h is Planck’s constant, B

is the magnetic field, y is the digamma function, and a is a coefficient
whose value is determined by the nature of the corrections being WL

or WAL, or having contributions from both effects. Additionally, we
have Bw~

.
4el2

w in which the coherence length is characterized by
lw~

ffiffiffiffiffiffiffiffi
Dtw

p
, D is the diffusion coefficient and tw is the dephasing

time. The undoped samples show a WAL behavior (Fig. 2a) and can
be fitted well to the HLN model (Figs. 2e and 2f). The resultant a
value ranges from 20.65 to 20.75 (black squares in Fig. 2h) with
increasing temperatures, consistent with the typical values of WAL
originated from 2D surface states of TI11,49–51. And for the heavily
doped samples with x 5 0.14, the MC has an excellent fit to the HLN
model (Fig. 2g) with a values from 0.25 to 0.09 (blue triangles in
Fig. 2h) suggesting a typical WL behavior28,51–53. However, the fit
becomes challenging for the lightly (x 5 0.08, Fig. 2b) and inter-
mediate doping (x 5 0.10, Fig. 2c) samples, primarily because of the
competition between WAL and WL. Under these circumstances, the
weight ratios of competing terms of WAL and WL are difficult to be
extracted. Nevertheless, in low magnetic fields (20.3 T , B ,
0.3 T), the sample with intermediate doping yields avalues ranging
from 1.0 to 0.37 with increasing temperatures (T # 2.8 K) as
opposed to a large deviation from the HLN model at high fields
(for B . 0.3 T, supplementary Fig. S1)27.

It has been proposed that the opening of the surface energy gap
from the TRS breaking is responsible for this crossover from WAL to
WL27,28. Experimental observation in CrxBi2-xTe3 thin films showed
that with x 5 0.23, the surface states were completely suppressed.
Correspondingly the system became a dilute magnetic semi-
conductor (DMS)28. It is well known that the incorporation of mag-
netic impurities leads to the increased disorder in the films causing
localization in the electronic states, known as WL, which is strongly
related to field-induced magnetization29. In our scenario, with a
much lower Cr doping of x 5 0.14, the MC is completely governed
by the WL effect as opposed to the crossover behavior from WL to
unitary parabola with x 5 0.10. This suggests that a long-range

Figure 2 | Crossover of quantum corrections of magnetoconductance (MC) with increasing Cr content in CrxBi2-xTe3 thin films (x # 0.14).
(a) MC curves of pure Bi2Te3 thin films, showing the negative MC features of WAL. (b) MC curves of Cr0.08Bi1.92Te3 thin film, indicating a non-
monotonic behavior with sharp downward cusp at low temperatures (, 3.1 K) and re-presence of WAL at higher temperatures (3.1 and 3.7 K). (c) MC
curves of Cr0.10Bi1.90Te3 thin film, showing a crossover from downward cusp feature to parabolic dependence with increasing temperatures. (d) MC
curves of Cr 0.14Bi1.86Te3 thin film shows a WL dominated behavior. (e) HLN model fitting of MC curves with different Cr content at temperature of
1.9 K. (f) and (g) HLN model fitting of MC curves of pure Bi2Te3 and heavily doped Cr0.14Bi1.86Te3 thin films, showing that both WAL and WL can be
fitted well to the HLN model. (h) Pre-factor of a in HLN model of thin films with different Cr concentrations.
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FIG. 6. (Color online) MC of Mn-Bi2Se3 in field perpendicular to the sample plane. (a) MC of the most lightly doped sample (Bi/Mn = 23.6)
shows a crossover from weak antilocalization to weak localization at T ∼ 3.0 K, consistent with the TC obtained from SQUID measurements.
(b) MC of the Bi/Mn = 12.5 sample shows larger positive MC, which survives up to ∼5 K. (c) MC of the Bi/Mn = 10.3 sample. (d) MC of
the most highly doped sample (Bi/Mn = 8.3). The insets in panels (a)–(d) plot temperature-dependent !σxx at fixed perpendicular magnetic
field. (e) MC of four Mn-Bi2Se3 and one undoped Bi2Se3 sample. (f) Simulation using Eq. (2) showing crossover from weak antilocalization
to weak localization as parameter !/(2EF ) changes.

the bulk states dominate the conductivity because of the large
Fermi energy: a simple estimate using the surface-state energy
dispersion and a Fermi energy 300 meV above the Dirac point
shows that the surface carrier density (∼1.3 × 1013 cm−2) is
about an order of magnitude smaller than that of the bulk in
our samples. Thus, an important question to address is the

coexisting surface and bulk conduction in our samples. The
classical contribution to the MC from bulk channels is well
known to result in a parabolic positive magnetoresistance or a
negative MC. According to diagrammatic calculations,28 the
quantum corrections to the conductivity of the lowest 2D bulk
quantum well states in Bi2Se3 are purely in the orthogonal
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FIG. 6. (Color online) MC of Mn-Bi2Se3 in field perpendicular to the sample plane. (a) MC of the most lightly doped sample (Bi/Mn = 23.6)
shows a crossover from weak antilocalization to weak localization at T ∼ 3.0 K, consistent with the TC obtained from SQUID measurements.
(b) MC of the Bi/Mn = 12.5 sample shows larger positive MC, which survives up to ∼5 K. (c) MC of the Bi/Mn = 10.3 sample. (d) MC of
the most highly doped sample (Bi/Mn = 8.3). The insets in panels (a)–(d) plot temperature-dependent !σxx at fixed perpendicular magnetic
field. (e) MC of four Mn-Bi2Se3 and one undoped Bi2Se3 sample. (f) Simulation using Eq. (2) showing crossover from weak antilocalization
to weak localization as parameter !/(2EF ) changes.

the bulk states dominate the conductivity because of the large
Fermi energy: a simple estimate using the surface-state energy
dispersion and a Fermi energy 300 meV above the Dirac point
shows that the surface carrier density (∼1.3 × 1013 cm−2) is
about an order of magnitude smaller than that of the bulk in
our samples. Thus, an important question to address is the

coexisting surface and bulk conduction in our samples. The
classical contribution to the MC from bulk channels is well
known to result in a parabolic positive magnetoresistance or a
negative MC. According to diagrammatic calculations,28 the
quantum corrections to the conductivity of the lowest 2D bulk
quantum well states in Bi2Se3 are purely in the orthogonal
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(a)

directions and apBerry’s phase is accumulated10,11,44. The destructive
interference due to pBerry’s phase leads to an enhancement of MC.
Applying an external magnetic field suppresses the destructive
interference, giving rise to a negative MC11,44,45. One interesting
question to ask is what if the magnetic impurities are incorporated
into the TI materials? Theoretical predictions suggested that when
doping with magnetic impurities, a competing WL effect will be
introduced and the localization behavior is a result of the
competition between WAL and WL27,29,46,47. For the slightly doped
sample (x 5 0.08, Fig. 2b), at T 5 1.9 K the sharp upward cusp
feature of WAL is gone and the magnetoconductance exhibits a
non-monotonic increase with the increase of magnetic field, where
a sharp downward cusp is developed at small magnetic fields. When
the temperature warms up to 3.1 K, the non-monotonic behavior
disappears and the WAL shows up again. Further increasing the
temperature to 3.7 K flattens the cusp feature, indicating that the
WAL is weakened and it can only survive in a small temperature
range. For the sample doped with x 5 0.10 (Fig. 2c), WAL is
completely suppressed and a non-monotonic behavior is presented
up to 3.1 K before a classical parabolic dependence of the magnetic
field (,B2) of the MC appears around 4 K (Supplementary materials
Fig. S1). Further increasing the doping concentration to x 5 0.14
(Fig. 2d), downward cusp feature is persistent up to 10 K, indicative
of a WL dominated behavior.

The quantum corrections to the 2D MC can be described by
the Hikami-Larkin-Nagaoka (HLN) model48 and is given analytically

by the equation Dsxx:sxx Bð Þ{sxx 0ð Þ~a
e2

ph½y 1
2
z

Bw

B

! "
{

ln
Bw

B

! "

$, where e is the electron charge, h is Planck’s constant, B

is the magnetic field, y is the digamma function, and a is a coefficient
whose value is determined by the nature of the corrections being WL

or WAL, or having contributions from both effects. Additionally, we
have Bw~

.
4el2

w in which the coherence length is characterized by
lw~

ffiffiffiffiffiffiffiffi
Dtw

p
, D is the diffusion coefficient and tw is the dephasing

time. The undoped samples show a WAL behavior (Fig. 2a) and can
be fitted well to the HLN model (Figs. 2e and 2f). The resultant a
value ranges from 20.65 to 20.75 (black squares in Fig. 2h) with
increasing temperatures, consistent with the typical values of WAL
originated from 2D surface states of TI11,49–51. And for the heavily
doped samples with x 5 0.14, the MC has an excellent fit to the HLN
model (Fig. 2g) with a values from 0.25 to 0.09 (blue triangles in
Fig. 2h) suggesting a typical WL behavior28,51–53. However, the fit
becomes challenging for the lightly (x 5 0.08, Fig. 2b) and inter-
mediate doping (x 5 0.10, Fig. 2c) samples, primarily because of the
competition between WAL and WL. Under these circumstances, the
weight ratios of competing terms of WAL and WL are difficult to be
extracted. Nevertheless, in low magnetic fields (20.3 T , B ,
0.3 T), the sample with intermediate doping yields avalues ranging
from 1.0 to 0.37 with increasing temperatures (T # 2.8 K) as
opposed to a large deviation from the HLN model at high fields
(for B . 0.3 T, supplementary Fig. S1)27.

It has been proposed that the opening of the surface energy gap
from the TRS breaking is responsible for this crossover from WAL to
WL27,28. Experimental observation in CrxBi2-xTe3 thin films showed
that with x 5 0.23, the surface states were completely suppressed.
Correspondingly the system became a dilute magnetic semi-
conductor (DMS)28. It is well known that the incorporation of mag-
netic impurities leads to the increased disorder in the films causing
localization in the electronic states, known as WL, which is strongly
related to field-induced magnetization29. In our scenario, with a
much lower Cr doping of x 5 0.14, the MC is completely governed
by the WL effect as opposed to the crossover behavior from WL to
unitary parabola with x 5 0.10. This suggests that a long-range

Figure 2 | Crossover of quantum corrections of magnetoconductance (MC) with increasing Cr content in CrxBi2-xTe3 thin films (x # 0.14).
(a) MC curves of pure Bi2Te3 thin films, showing the negative MC features of WAL. (b) MC curves of Cr0.08Bi1.92Te3 thin film, indicating a non-
monotonic behavior with sharp downward cusp at low temperatures (, 3.1 K) and re-presence of WAL at higher temperatures (3.1 and 3.7 K). (c) MC
curves of Cr0.10Bi1.90Te3 thin film, showing a crossover from downward cusp feature to parabolic dependence with increasing temperatures. (d) MC
curves of Cr 0.14Bi1.86Te3 thin film shows a WL dominated behavior. (e) HLN model fitting of MC curves with different Cr content at temperature of
1.9 K. (f) and (g) HLN model fitting of MC curves of pure Bi2Te3 and heavily doped Cr0.14Bi1.86Te3 thin films, showing that both WAL and WL can be
fitted well to the HLN model. (h) Pre-factor of a in HLN model of thin films with different Cr concentrations.
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directions and apBerry’s phase is accumulated10,11,44. The destructive
interference due to pBerry’s phase leads to an enhancement of MC.
Applying an external magnetic field suppresses the destructive
interference, giving rise to a negative MC11,44,45. One interesting
question to ask is what if the magnetic impurities are incorporated
into the TI materials? Theoretical predictions suggested that when
doping with magnetic impurities, a competing WL effect will be
introduced and the localization behavior is a result of the
competition between WAL and WL27,29,46,47. For the slightly doped
sample (x 5 0.08, Fig. 2b), at T 5 1.9 K the sharp upward cusp
feature of WAL is gone and the magnetoconductance exhibits a
non-monotonic increase with the increase of magnetic field, where
a sharp downward cusp is developed at small magnetic fields. When
the temperature warms up to 3.1 K, the non-monotonic behavior
disappears and the WAL shows up again. Further increasing the
temperature to 3.7 K flattens the cusp feature, indicating that the
WAL is weakened and it can only survive in a small temperature
range. For the sample doped with x 5 0.10 (Fig. 2c), WAL is
completely suppressed and a non-monotonic behavior is presented
up to 3.1 K before a classical parabolic dependence of the magnetic
field (,B2) of the MC appears around 4 K (Supplementary materials
Fig. S1). Further increasing the doping concentration to x 5 0.14
(Fig. 2d), downward cusp feature is persistent up to 10 K, indicative
of a WL dominated behavior.

The quantum corrections to the 2D MC can be described by
the Hikami-Larkin-Nagaoka (HLN) model48 and is given analytically

by the equation Dsxx:sxx Bð Þ{sxx 0ð Þ~a
e2

ph½y 1
2
z

Bw

B

! "
{

ln
Bw

B

! "

$, where e is the electron charge, h is Planck’s constant, B

is the magnetic field, y is the digamma function, and a is a coefficient
whose value is determined by the nature of the corrections being WL

or WAL, or having contributions from both effects. Additionally, we
have Bw~

.
4el2

w in which the coherence length is characterized by
lw~

ffiffiffiffiffiffiffiffi
Dtw

p
, D is the diffusion coefficient and tw is the dephasing

time. The undoped samples show a WAL behavior (Fig. 2a) and can
be fitted well to the HLN model (Figs. 2e and 2f). The resultant a
value ranges from 20.65 to 20.75 (black squares in Fig. 2h) with
increasing temperatures, consistent with the typical values of WAL
originated from 2D surface states of TI11,49–51. And for the heavily
doped samples with x 5 0.14, the MC has an excellent fit to the HLN
model (Fig. 2g) with a values from 0.25 to 0.09 (blue triangles in
Fig. 2h) suggesting a typical WL behavior28,51–53. However, the fit
becomes challenging for the lightly (x 5 0.08, Fig. 2b) and inter-
mediate doping (x 5 0.10, Fig. 2c) samples, primarily because of the
competition between WAL and WL. Under these circumstances, the
weight ratios of competing terms of WAL and WL are difficult to be
extracted. Nevertheless, in low magnetic fields (20.3 T , B ,
0.3 T), the sample with intermediate doping yields avalues ranging
from 1.0 to 0.37 with increasing temperatures (T # 2.8 K) as
opposed to a large deviation from the HLN model at high fields
(for B . 0.3 T, supplementary Fig. S1)27.

It has been proposed that the opening of the surface energy gap
from the TRS breaking is responsible for this crossover from WAL to
WL27,28. Experimental observation in CrxBi2-xTe3 thin films showed
that with x 5 0.23, the surface states were completely suppressed.
Correspondingly the system became a dilute magnetic semi-
conductor (DMS)28. It is well known that the incorporation of mag-
netic impurities leads to the increased disorder in the films causing
localization in the electronic states, known as WL, which is strongly
related to field-induced magnetization29. In our scenario, with a
much lower Cr doping of x 5 0.14, the MC is completely governed
by the WL effect as opposed to the crossover behavior from WL to
unitary parabola with x 5 0.10. This suggests that a long-range

Figure 2 | Crossover of quantum corrections of magnetoconductance (MC) with increasing Cr content in CrxBi2-xTe3 thin films (x # 0.14).
(a) MC curves of pure Bi2Te3 thin films, showing the negative MC features of WAL. (b) MC curves of Cr0.08Bi1.92Te3 thin film, indicating a non-
monotonic behavior with sharp downward cusp at low temperatures (, 3.1 K) and re-presence of WAL at higher temperatures (3.1 and 3.7 K). (c) MC
curves of Cr0.10Bi1.90Te3 thin film, showing a crossover from downward cusp feature to parabolic dependence with increasing temperatures. (d) MC
curves of Cr 0.14Bi1.86Te3 thin film shows a WL dominated behavior. (e) HLN model fitting of MC curves with different Cr content at temperature of
1.9 K. (f) and (g) HLN model fitting of MC curves of pure Bi2Te3 and heavily doped Cr0.14Bi1.86Te3 thin films, showing that both WAL and WL can be
fitted well to the HLN model. (h) Pre-factor of a in HLN model of thin films with different Cr concentrations.
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(f)

FIG. 1. Evolution of MC curve as temperature increases.
(a), (c), (e) are theoretical results and (b), (d) and (f) are
experimental data of reference [21]. For ((a) and (b)) � = 0;
for ((c) and (d)) � = 0.1; for ((e) and (f)) � = 0.14. (d) is
drawn to compare the theory and data on top of each other.
We used �2 = 1717

(µm)2
, vF = 7.5⇥ 104m/s, q� = 7.12.

Magneto-conductance: Now we focus on the
magneto-conductance (MC) of non-ferromagnetic state.
To compare our results with the data for the non-ferro
magnetic material, we take µ = 0 so that M0 = 0. The
longitudinal conductivity in this limit is

�xx =
(F + G

2)(F �H
2)

F2 +H2G2
. (15)

And the MC is defined by

�� ⌘ �xx(H)� �xx(0). (16)

Fig.1 is the colloection of plots of MC as a function
of magnetic field and temperature. Left three figures
(a,c,e) are plots of theoretical results for three di↵erent
magnetic doping parameters � = 0, 0.1, 0.14 and the

right three figures (b,d,e) are corresponding experimen-
tal data. Since our results are analytic we can easily draw
3D graphs while experimental results are 2D curves for a
few discrete temperatures. From Fig.1, we can say that
the overall features of theoretical results are overwhelm-
ingly consistent with the experimental data apart from
the horns in Fig 1(b). Especially for the medium doping
case shown in Fig.1(c,d), MC changes nontrivially from
one temperature slice to the other and this has been the
region of hard-to-fit by any theory so far. Remarkably,
our theoretical result fits the details of data as one can
see in figure 1(d), where the theoretical curves are drawn
on top of the experimental data.
The non-trivial behavior of magneto-conductivity in

crossover regime can be understood by the competition
between the enhancement in conductivity by Witten ef-
fect and the suppression by external magnetic fields. The
interaction term gives Witten e↵ect: external magnetic
field generates extra charge carriers in the presence of q�
giving enhancement of conductivity. The result of the
competition is the sign change in the curvature of MC
curve near H = 0, where

�� ⇠ �
2(1� 4✓2/9)

r
2
0�

2
H

2 +O(H4). (17)

and ✓ = q��
2
�/r

2
0. It also explains why crossover from

WAL to WL appears only in relatively low but not very
low temperature region, because r0 ⇠ T for high tem-
perature and ✓ becomes small so that 1 � 2✓/3 cannot
change the sign. The fundamental reason for the appear-
ance of the Witten e↵ect is the Berry potential which in
turn is due to the spin-orbit interaction. That our theory
is good only for the strongly interacting systems suggests
that the electrons in this regime are strongly interacting.
In fact, as the gap increases, the density of states below
Fermi energy decreases and the condition µ/kT << 1
holds, providing the validity of hydrodynamic descrip-
tion.
On the other hand, for the very low or very high dop-

ing region, where conventional theory can explain the
data well, our results agree with data only qualitatively.
The most problematic feature is the horns of the Fig.
1(b), which is missing in our result Fig 1(a,e). Actu-
ally such sharp peak in MC curve is the hall-mark of
weak anti-localizaion(WAL) in usual (weakly interacting)
topological insulators. Here we suggest that the horns are
smoothed out by strong interaction: the suppression of
backward scattering is due to the relative Berry phase
of ⇡ between the localization amplitudes of a trajectory
and its time reversal pair [31]. Trajectories are fuzzy if
quasi-particles disappear by strong interaction, then so
is the cancellation argument. Finally we show our MC
formula as a function of magnetic field and the doping
parameter � as a 3D graph in FIG.2, from which we can
see the evolution of the magneto-conductivity along the
change of magnetic doping, which agrees with the data
of ref. [21]. Our result predict how the MC curve should
behave outside the experimented region.

4

FIG. 2. Evolution of MC curve from WAL to WL as one
increases doping parameter �.

Future directions: In this letter, we only examined
the Magneto-conductance in non-ferromagnetic phase,
That is, we need to investigate the regime for nonzero
charge parameter q. Other transport coe�cients like

thermal conductivities and Seeback coe�cients with or
without magnetic fields are also important aspects that
request future investigations. The graphene has even
number of Dirac cones, weak spin-orbit interaction and
di↵erent mechanism for WL/WAL. Because of such dif-
ferences, we need to find other interaction term in holo-
graphic model for graphene. It is also interesting to clas-
sify all possible pattern of interaction that provides the
fermion surface gap in the presence of strong e-e correla-
tion in our context.
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not	only	for	Cr	doped	Bi2Te3		but	also			Mn	doped	Bi2Se3		
		

○○○○○○○ ○○
○○

○○
○○○○

○○ ○
○○

○○○ ○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○
○○○○○○○○

○○ ○○○○○○○○
○○○○○○○○○○○ ○○○○○○○○ ○○○○○○○○○

○○○○○ ○ ○○○○○○○○○

○○○○ ○○○○○○○○○○○○ ○○ ○ ○○○○○ ○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○ ○○
○ ○○○○ ○○○○○○

○○○○○○○○○○
○
○○ ○○○○

○○
○
○
○○○

○
○
○○

○

T=3
T=4
T=5
T=7

0.0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0.0

0.2

H(T)
Δσ

○
○
○○
○○○○

○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○
○○○

○○
○○○

○○○
○○○○○○○○○○○○○○○○○○○○○○

○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○○
○○
○○○
○○
○○○
○○○
○○○

○○○
○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○

○○○○○
○○○
○○○○○○○○○○

○○
○○
○○
○○○
○○
○○

○○
○○
○○
○○

○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

T=2.5K
T=3.1K
T=6K

-0.4 -0.2 0.0 0.2 0.4

-0.6

-0.4

-0.2

0.0

0.2

H(T)

Δσ



results	

27	

Strong Correlation E↵ects on Surfaces of Topological Insulators via Holography
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(Dated: March 21, 2017)

We investigate e↵ects of strong correlation on the surface state of topological insulator (TI). We
argue that electrons in the regime of crossover from weak anti-localization to weak localization, are
strongly correlated and calculate magneto-transport coe�cients of TI using gauge gravity principle.
Then, we examine, magneto-conductivity (MC) formula and find excellent agreement with the data
of chrome doped Bi2Te3 in the crossover regime. We also find that cusp-like peak in MC at low
doping is absent, which is natural since quasi-particles disappear due to the strong correlation.

PACS numbers: 11.25.Tq, 71.10.-d, 72.15.Rn

Introduction: Understanding strongly correlated
electron systems has been a theoretical challenge for sev-
eral decades. Typically, such systems lose quasi-particles
and show mysteriously rapid thermalization [1–4], which
provide the hydrodynamic description [5, 6] of them near
quantum critical point (QCP). Recently, the principle of
gauge-gravity duality [7–9] attracted much interest as a
possibility of the paradigm for strongly interacting sys-
tems, where the system near QCP is mapped to a black
hole. More recently, large violation of Widermann-Frantz
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the fermi sea small. Then, the logic for strong cou-
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where q� is the coupling and 
2 = 8⇡G and L is the

AdS radius. From now on, we set 22 = L = 1. The
action contains two pairs of bosons, one for the magnetic
impurities and the other for the non-magnetic ones. To
encode the e↵ect of SOC in the presence of the magnetic
doping, we introduced the last term which is a coupling
between the impurity density and the instanton density.
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So	far,	transport,			What	about	spectrum?	
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Motivation
Physics at strong interaction

Introduction (I)

Strongly coupled electron systems show many interesting phases

Non-Fermi liquid(or Strange metal)

High Tc superconuctivity

Pseudo-gap phases · · ·

One of the key observable to detect these phases is transport coe�cient
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Spectral	data-ARPES		

•  It	comes	from	fundamental	fermion’s	two	point	function	.		

•  Mott	transition	is	first	candidate	to	understand		

•  DMFT	is	successful	to	an	extend	so	we	can	compare	
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Coupling	=	U/t	

대부분의 실험은	t	를 조절한다.		

e:	To	move	or	not	to,	that	is	the	problem	
Real	problem	to	human	:	unsolvable!		
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Holography	is	effective	tool.	
	
Can	we	replace	the	Hubbard	Model	by	a	calculable	h-model?	
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(p,m) in the holographic model that gives qualitatively
the same spectral density. As a result, we can consider p
and m as functions of the Hubbard model parameter U .
As U change the trajectory (p(U),m(U)) in the phase
space defines a Embedding of the Hubbard model into
the holographic model. Any line connecting a point in
fermi-liquid phase and a point in the gapped phase would
give an holographic model describing a Mott transition.
Therefore we may say that one embedding defines one
holographic Hubbard model. We will give a few simple
embeddings and give the evolution of the model along the
increasing U/t. Comparing with DMFT results for Hub-
bard model, two features agree: the appearance of ‘three
peaks’ and ‘transfer’ of the density of state(DOS) to the
shoulders. However, the way gap disappears is di↵erent
from each other after the critical strength of interaction,
where both DMFT and holography calculations can not
be trusted completely. Comparing with the experiment,
the vanadium oxides data seem to fit quite well to out
theory.

The holographic model : Our starting point is the
fermion action with non-minimal dipole interaction,

SD =

Z
d
4
x
p
�gi ̄

�
�MDM �m� ip�MN

FMN

�
 + Sbd,

(1)

where the subscript D denotes the Dirac fermion and the
covariant derivative is

DM = @M +
1

4
!abM�ab � iqAM . (2)

For fermions, the equation of motions are first order
and we can not fix the values of all the component
at the boundary, which make it necessary to introduce
‘Gibbons-Hawking term’ Sbd to guarantee the equation
of motion which defined as
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where h = �gg
rr,  ± are the spin-up and down compo-

nents of the bulk spinors. The sign is to be chosen such
that, when we fix the value of  + at the boundary, �Sbd

cancel the terms including � � that comes from the to-
tal derivative of �SD. Similar story is true when we fix
 �. The former defines the standard quantization and
the latter does the alternative quantization. The back-
ground solution we will use is Reisner-Nordstrom black
hole in asymptotic AdS4 spacetime,
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where L is AdS radius, r0 is the radius of the black hole
and Q = r0 µ,M = r0(r20 + µ

2). The temperature of the

boundary theory is given by T = f
0(r0)/4⇡ and it can

be solved for r0 to give r0 = (2⇡T +
p

(2⇡T )2 + 3µ2)/3.
In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
appendix.

It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
tral peak is higher or lower than the shoulder. See Figure
2(b) and (e). The di↵erence of semi-metal and Gapped
phase is whether they have central peak or not. See Fig-
ure 2(c) and (f).

(a)fermi liquid (FL) (b)bad metal prime

(BM’)

(c)semi-metal (SM)

(d)bad metal (BM) (e)pseudogap (PG) (f)gapped (G)

FIG. 2. (a)-(e):Typical Fermion Phases and their Tempera-
ture evolutions. a) FL with (p=0.5, m=0.2), (b) BM’ with
shoulder (p=2, m=0.1,0.4), (c) SM (p=6, m=0.45), (d) BM
without shoulder (p=0.5, m=0.1), (e) PG (p=2.5,m=0.15),
(f) G (p=6, m=0.15)
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of discussion we want to maintain the positivity of the
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symmetrized version A(!) + A(�!) of the spectral den-
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and semi-metal is also whether or not there is a shoul-
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bard model, two features agree: the appearance of ‘three
peaks’ and ‘transfer’ of the density of state(DOS) to the
shoulders. However, the way gap disappears is di↵erent
from each other after the critical strength of interaction,
where both DMFT and holography calculations can not
be trusted completely. Comparing with the experiment,
the vanadium oxides data seem to fit quite well to out
theory.

The holographic model : Our starting point is the
fermion action with non-minimal dipole interaction,

SD =

Z
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x
p
�gi ̄

�
�MDM �m� ip�MN

FMN

�
 + Sbd,

(1)

where the subscript D denotes the Dirac fermion and the
covariant derivative is

DM = @M +
1

4
!abM�ab � iqAM . (2)

For fermions, the equation of motions are first order
and we can not fix the values of all the component
at the boundary, which make it necessary to introduce
‘Gibbons-Hawking term’ Sbd to guarantee the equation
of motion which defined as
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where h = �gg
rr,  ± are the spin-up and down compo-

nents of the bulk spinors. The sign is to be chosen such
that, when we fix the value of  + at the boundary, �Sbd

cancel the terms including � � that comes from the to-
tal derivative of �SD. Similar story is true when we fix
 �. The former defines the standard quantization and
the latter does the alternative quantization. The back-
ground solution we will use is Reisner-Nordstrom black
hole in asymptotic AdS4 spacetime,
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where L is AdS radius, r0 is the radius of the black hole
and Q = r0 µ,M = r0(r20 + µ

2). The temperature of the

boundary theory is given by T = f
0(r0)/4⇡ and it can

be solved for r0 to give r0 = (2⇡T +
p

(2⇡T )2 + 3µ2)/3.
In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
appendix.

It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
tral peak is higher or lower than the shoulder. See Figure
2(b) and (e). The di↵erence of semi-metal and Gapped
phase is whether they have central peak or not. See Fig-
ure 2(c) and (f).

(a)fermi liquid (FL) (b)bad metal prime

(BM’)

(c)semi-metal (SM)

(d)bad metal (BM) (e)pseudogap (PG) (f)gapped (G)

FIG. 2. (a)-(e):Typical Fermion Phases and their Tempera-
ture evolutions. a) FL with (p=0.5, m=0.2), (b) BM’ with
shoulder (p=2, m=0.1,0.4), (c) SM (p=6, m=0.45), (d) BM
without shoulder (p=0.5, m=0.1), (e) PG (p=2.5,m=0.15),
(f) G (p=6, m=0.15)
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(p,m) in the holographic model that gives qualitatively
the same spectral density. As a result, we can consider p
and m as functions of the Hubbard model parameter U .
As U change the trajectory (p(U),m(U)) in the phase
space defines a Embedding of the Hubbard model into
the holographic model. Any line connecting a point in
fermi-liquid phase and a point in the gapped phase would
give an holographic model describing a Mott transition.
Therefore we may say that one embedding defines one
holographic Hubbard model. We will give a few simple
embeddings and give the evolution of the model along the
increasing U/t. Comparing with DMFT results for Hub-
bard model, two features agree: the appearance of ‘three
peaks’ and ‘transfer’ of the density of state(DOS) to the
shoulders. However, the way gap disappears is di↵erent
from each other after the critical strength of interaction,
where both DMFT and holography calculations can not
be trusted completely. Comparing with the experiment,
the vanadium oxides data seem to fit quite well to out
theory.
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fermion action with non-minimal dipole interaction,
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covariant derivative is
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For fermions, the equation of motions are first order
and we can not fix the values of all the component
at the boundary, which make it necessary to introduce
‘Gibbons-Hawking term’ Sbd to guarantee the equation
of motion which defined as
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where h = �gg
rr,  ± are the spin-up and down compo-

nents of the bulk spinors. The sign is to be chosen such
that, when we fix the value of  + at the boundary, �Sbd

cancel the terms including � � that comes from the to-
tal derivative of �SD. Similar story is true when we fix
 �. The former defines the standard quantization and
the latter does the alternative quantization. The back-
ground solution we will use is Reisner-Nordstrom black
hole in asymptotic AdS4 spacetime,

ds
2 = �r
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2 +
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where L is AdS radius, r0 is the radius of the black hole
and Q = r0 µ,M = r0(r20 + µ

2). The temperature of the

boundary theory is given by T = f
0(r0)/4⇡ and it can

be solved for r0 to give r0 = (2⇡T +
p

(2⇡T )2 + 3µ2)/3.
In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
appendix.

It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
tral peak is higher or lower than the shoulder. See Figure
2(b) and (e). The di↵erence of semi-metal and Gapped
phase is whether they have central peak or not. See Fig-
ure 2(c) and (f).

(a)fermi liquid (FL) (b)bad metal prime

(BM’)

(c)semi-metal (SM)

(d)bad metal (BM) (e)pseudogap (PG) (f)gapped (G)

FIG. 2. (a)-(e):Typical Fermion Phases and their Tempera-
ture evolutions. a) FL with (p=0.5, m=0.2), (b) BM’ with
shoulder (p=2, m=0.1,0.4), (c) SM (p=6, m=0.45), (d) BM
without shoulder (p=0.5, m=0.1), (e) PG (p=2.5,m=0.15),
(f) G (p=6, m=0.15)
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,

9

without and with bulk mass. which is contrasted with the
nonzero mass case where the fermi surface is remained at
substantially high temperature. See the Figure 11(c).
That is, the fermi liquid behavior is enhanced by the
presence of the bulk mass. Here again, we can see the
role of mass is the stabilizer of the quasi-particle nature
in holographic matter.

(a)Fast decay of FS by T (b)Mass as FS stabilizer

FIG. 11. Role of mass in stabilizing the fermi surface(FS):
(a)T = 0, 0.1, 0.4 at m = p = 0. (b)m = 0, 0.224, 0.448 at
T = 0.1 and p = 0.

As m ! 1/2, such ‘quasi-particle stabilizing tendency’
increases infinitely so that the system is a fermi liquid
whatever strength of the dipole term. In fact, the spec-
tral function shows that the dispersion curve is straight
line just as if we study a free fermions. Therefore it is
natural to think the bulk fermions with mass near 1/2
describe a weakly interacting system, i.e, quasi-particles.
For applications to the realistic material, having such a
dial to make the system fermi liquid in a limit is very use-
ful and in fact essential because in the real experiments,
one can tune the coupling by applying pressure or dop-
ing rate. In fact, for p = 0, it can be understood if we
notice that  is the dual of the operator with dimension
� = d/2 � m which is dimension of free fermion when
m = 1/2 so that the fermion with m = 1/2 in alternate
quantization is dual to the free fermion [7, 10]. In the
presence of the dipole coupling whose role is to introduce
a gap which break the conformal symmetry dynamically,
there is no guarantee that such trend continue to hold.
Our observation is that, nevertheless, such free fermion
nature at m = 1/2 persists even in the presence of the
dipole interaction regardless of its strength. We call it
Free fermion Wall in m-p phase diagram. After care-
ful examination of full range of phase diagram, we found
that at mass region m > 0.35, some metalic phases exist
always.

5. Hyperboic Embeddings

Following embedding is interesting since it illuminate
many hidden aspects of the theory including the physical
origin of the bulk mass. We set V 6= 0 but fixed instead
of being related to U .

p = (U + V )/t, and 2m = V/U  1. (13)

The constraint V/U  1 comes since the o↵-site repul-
sion is weaker than the on-site one. The corresponding
holographic Hubbard model is a hyperbola

p = �(
1

2m
+ 1), with � =

V

t
= fixed. (14)

This embedding has following consistency properties.

• In large U limit, both t-U -V model and its gravity
dual m-p model are in Gapped phase and even in
the smallest U limit, it does not pass the obvious
free fermion point (m, p) = (1/2, 0) because U � V .

• The first embedding with � = 4/3 (Blue curve)
passes SM ! BM

0 ! PG ! G and the sec-
ond one with � = 8/9 (Green curve) passes FL !
BM

0 ! PG ! G phases as U increases, The lat-
ter is also qualitatively consistent with evolution of
Hubbard model calculated with multi-site DMFT.
The graph is given below.

(a) (b) (c) (d)

FIG. 12. U -evolutions for Straight line Embedding ( V << U
). (a)-(d) are at marked point on Red line in the Figure 3(b).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 13. U -evolutions at kc for V 6= 0 cases (Hyperbolic
Embedding) . (a)-(d) for upper (Blue) curve, (e)-(h) for lower
(Green) curve, Spectral functions at kc for V 6= 0 (Green
Curve) in the Embedding diagram Figure 3(b).

Although we know the reason for the free fermion na-
ture of m = 1/2 by counting the conformal weight, it
is still somewhat mysterious from the interaction point
of view: How such freeness is achieved in a theory of
strong interaction? The bulk mass enter into dynamics
only in a combination mL with L being the AdS radius
which encodes the interaction strength of the boundary
theory through L ⇠ �

1/4. In fact, 1/2 is the maximal
value of mL within the unitarity bound. The most natu-
ral way to identify the mL’s gauge coupling dependance
is the o↵-site coulomb interaction V , and following ar-
gument shows a plausible way to understand the free

�FF = (d� 1)/2

m=1/2	is	the	Free	fermionic		
regardless	of	dim.	
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,

(a) p = 1 (b) p = 2 (c) p = 3 (d) p = 6

-3 -2 -1 0 1 2 3 ω

0.5

1.0

1.5

2.0
A(ω)

(e) p = 1

-3 -2 -1 0 1 2 3 ω

0.2

0.4

0.6

0.8
A(ω)

(f) p = 2

-3 -2 -1 0 1 2 3 ω

0.5

1.0

1.5

A(ω)

(g) p = 3

-3 -2 -1 0 1 2 3 ω

0.5

1.0

1.5

A(ω)

(h) p = 6

Figure 9. (a)-(d):p-evolution of the DOS at m = 0.45 shows appearance of and bad metal prime and
semi-metal; (e)-(h) spectral function along vertical red line in each figure (a)-(d).

The figure 11(a) shows that in the absence of the bulk mass, the DOS peak in !-plot goes

away very rapidly as soon as we turn on temperature. That is, quasi-particles are fragile at

finite temperature, which is the character of non-fermi liquids. On the other hand, if we turn on

the mass, the fermi surface peaks becomes sharper as we can see in the Figure 11(b). The same

phenomena can be seen in the k-plot: in Figure 11(c) and (d), we contrasted the temperature

evolution of the fermi surface without and with bulk mass. which is contrasted with the nonzero

mass case where the fermi surface is remained at substantially high temperature. See the Figure

11(c). That is, the fermi liquid behavior is enhanced by the presence of the bulk mass. Here

again, we can see the role of mass is the stabilizer of the quasi-particle nature in holographic

matter.

As m ! 1/2, such ’quasi-particle stabilizing tendency’ increases infinitely so that the system

is a fermi liquid whatever strength is the dipole term. In fact, the spectral function shows that

the dispersion curve is straight line just as if we study a free fermions. Therefore it is natural

to think the bulk fermions with mass near 1/2 describe a weakly interacting system, i.e, quasi-

particles. For applications to the realistic material, having such a dial to make the system fermi

liquid in a limit is very useful and in fact essential because in the real experiments, one can tune

the coupling by applying pressure or doping rate. In fact, for p = 0, it can be understood if we

notice that  is the dual of the operator with dimension � = d/2 � m which is dimension of

free fermion when m = 1/2 so that the fermion with m = 1/2 in alternate quantization is dual

to the free fermion [8, 11]. In the presence of the dipole coupling whose role is to introduce a

gap which break the conformal symmetry dynamically, there is no guarantee that such trend

continue to hold. Our observation is that, nevertheless, such free fermion nature at m = 1/2

persists even in the presence of the dipole interaction regardless of its strength. We call it Free
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3

The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,
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Figure 8. (a)-(d) on p-evolution of the DOS along the line m = 0.1 show appearance of and pseudo-gap
and gapped phase; (e)-(h) spectral function along vertical red line in each figure (a)-(d).

The overall feature of the evolution is from metalic to the insulating phase with pseudo gap

phase in the middle and it agrees with our expectation.

We now show the evolution along the line of m = 0.45 with increasing p to demonstrate the

changes of phase in the upper half part of the phase diagram. The !-plots in Figures 9(e)-(h)

are is along the red vertical redlines in Figure 9(a)-(d) respectively. We can see three di↵erent

phases:

1. Gapless metalic phase with linear dispersion: it is a fermi liquid (FL) regime.

2. The bad metal phase due to development of incomplete generation of conduction band.

3. New metalic phase which we call semi-metal due to the development of the conduction

band. Semi-metal because half of the DOS at the fermi sea is depleted and moved to

shoulder region.

A.3 Role of the bulk mass

We now study the role of mass more systematically by calculating the evolution of the DOS

at two nonzero fixed values of p, that is along two vertical lines p = 2.5 and p = 6.0 in phase

dragram. In the Figure 10(a)-(h), the m-evolution along p = 0.2 line is drawn, where a few

physically interesting phases appear. From the figures 10(i)-(p), we can see that the bulk mass

sharpens the peak at the fermi surface consistently regardless of the value of p. One can see that

increasing m pushes up the lower middle band so that gap is reduced. When the middle band

crosses the fermi level, central peak appears signaling the creation of the semi-metalic phase.

For both cases the final stage is SM phase.
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(a) m = 0 p = 2.5 (b) m = 0.15 p = 2.5 (c) m = 0.3 p = 2.5 (d) m = 0.45 p = 2.5

(e) m = 0 p = 2.5 (f) m = 0.15 p = 2.5 (g) m = 0.3 p = 2.5 (h) m = 0.45 p = 2.5

(i) m = 0 p = 6 (j) m = 0.15 p = 6 (k) m = 0.3 p = 6 (l) m = 0.45 p = 6

(m) m = 0 p = 6 (n) m = 0.15 p = 6 (o) m = 0.3 p = 6 (p) m = 0.45 p = 6

Figure 10. (a)-(h): m- evolution of the spectral density with increasingm with p = 2.5. (i)-(p):Evolution
of the spectral density at p = 6.0. For both cases the final stage is SM phase.

fermion Wall in m-p phase diagram. After careful examination of full range of phase diagram,

we found that at mass region m > 0.35, some metalic phases exist always.

A.4 Hyperboic Embeddings

Following embedding is interesting since it illuminate many hidden aspects of the theory includ-

ing the physical origin of the bulk mass. We set V 6= 0 but fixed instead of being related to

U .

p = (U + V )/t, and 2m = V/U  1. (A.15)

– 15 –

Now	as	we	decreases	m	further,	the	lower	one	goes	down		upper	one	goes	
up	à	gap	creation,	i.e,		As	(½-m)	increases,	gap	is	created.		

3

The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,
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(a) m = 0 p = 2.5 (b) m = 0.15 p = 2.5 (c) m = 0.3 p = 2.5 (d) m = 0.45 p = 2.5
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(m) m = 0 p = 6 (n) m = 0.15 p = 6 (o) m = 0.3 p = 6 (p) m = 0.45 p = 6

Figure 10. (a)-(h): m- evolution of the spectral density with increasingm with p = 2.5. (i)-(p):Evolution
of the spectral density at p = 6.0. For both cases the final stage is SM phase.

fermion Wall in m-p phase diagram. After careful examination of full range of phase diagram,

we found that at mass region m > 0.35, some metalic phases exist always.

A.4 Hyperboic Embeddings

Following embedding is interesting since it illuminate many hidden aspects of the theory includ-

ing the physical origin of the bulk mass. We set V 6= 0 but fixed instead of being related to

U .

p = (U + V )/t, and 2m = V/U  1. (A.15)
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,
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without and with bulk mass. which is contrasted with the
nonzero mass case where the fermi surface is remained at
substantially high temperature. See the Figure 11(c).
That is, the fermi liquid behavior is enhanced by the
presence of the bulk mass. Here again, we can see the
role of mass is the stabilizer of the quasi-particle nature
in holographic matter.

(a)Fast decay of FS by T (b)Mass as FS stabilizer

FIG. 11. Role of mass in stabilizing the fermi surface(FS):
(a)T = 0, 0.1, 0.4 at m = p = 0. (b)m = 0, 0.224, 0.448 at
T = 0.1 and p = 0.

As m ! 1/2, such ‘quasi-particle stabilizing tendency’
increases infinitely so that the system is a fermi liquid
whatever strength of the dipole term. In fact, the spec-
tral function shows that the dispersion curve is straight
line just as if we study a free fermions. Therefore it is
natural to think the bulk fermions with mass near 1/2
describe a weakly interacting system, i.e, quasi-particles.
For applications to the realistic material, having such a
dial to make the system fermi liquid in a limit is very use-
ful and in fact essential because in the real experiments,
one can tune the coupling by applying pressure or dop-
ing rate. In fact, for p = 0, it can be understood if we
notice that  is the dual of the operator with dimension
� = d/2 � m which is dimension of free fermion when
m = 1/2 so that the fermion with m = 1/2 in alternate
quantization is dual to the free fermion [7, 10]. In the
presence of the dipole coupling whose role is to introduce
a gap which break the conformal symmetry dynamically,
there is no guarantee that such trend continue to hold.
Our observation is that, nevertheless, such free fermion
nature at m = 1/2 persists even in the presence of the
dipole interaction regardless of its strength. We call it
Free fermion Wall in m-p phase diagram. After care-
ful examination of full range of phase diagram, we found
that at mass region m > 0.35, some metalic phases exist
always.

5. Hyperboic Embeddings

Following embedding is interesting since it illuminate
many hidden aspects of the theory including the physical
origin of the bulk mass. We set V 6= 0 but fixed instead
of being related to U .

p = (U + V )/t, and 2m = V/U  1. (13)

The constraint V/U  1 comes since the o↵-site repul-
sion is weaker than the on-site one. The corresponding
holographic Hubbard model is a hyperbola

p = �(
1

2m
+ 1), with � =

V

t
= fixed. (14)

This embedding has following consistency properties.

• In large U limit, both t-U -V model and its gravity
dual m-p model are in Gapped phase and even in
the smallest U limit, it does not pass the obvious
free fermion point (m, p) = (1/2, 0) because U � V .

• The first embedding with � = 4/3 (Blue curve)
passes SM ! BM

0 ! PG ! G and the sec-
ond one with � = 8/9 (Green curve) passes FL !
BM

0 ! PG ! G phases as U increases, The lat-
ter is also qualitatively consistent with evolution of
Hubbard model calculated with multi-site DMFT.
The graph is given below.

(a) (b) (c) (d)

FIG. 12. U -evolutions for Straight line Embedding ( V << U
). (a)-(d) are at marked point on Red line in the Figure 3(b).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 13. U -evolutions at kc for V 6= 0 cases (Hyperbolic
Embedding) . (a)-(d) for upper (Blue) curve, (e)-(h) for lower
(Green) curve, Spectral functions at kc for V 6= 0 (Green
Curve) in the Embedding diagram Figure 3(b).

Although we know the reason for the free fermion na-
ture of m = 1/2 by counting the conformal weight, it
is still somewhat mysterious from the interaction point
of view: How such freeness is achieved in a theory of
strong interaction? The bulk mass enter into dynamics
only in a combination mL with L being the AdS radius
which encodes the interaction strength of the boundary
theory through L ⇠ �

1/4. In fact, 1/2 is the maximal
value of mL within the unitarity bound. The most natu-
ral way to identify the mL’s gauge coupling dependance
is the o↵-site coulomb interaction V , and following ar-
gument shows a plausible way to understand the free

Hubbard	model		
Competition	of	t	and	U.	

P,	m		play	the	role	of		U,	V.		
None	of	constant	m	or	p	line	has	Mott	transition	
U/t		into		(m,p)		à	Embed	Hubbard	into	Holography			
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,

3

The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X
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†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).
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FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,

3

The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,

One	Embedding	(alpha)		defines	one	
Holographic	Hubbard	model.		
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
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Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,
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without and with bulk mass. which is contrasted with the
nonzero mass case where the fermi surface is remained at
substantially high temperature. See the Figure 11(c).
That is, the fermi liquid behavior is enhanced by the
presence of the bulk mass. Here again, we can see the
role of mass is the stabilizer of the quasi-particle nature
in holographic matter.

(a)Fast decay of FS by T (b)Mass as FS stabilizer

FIG. 11. Role of mass in stabilizing the fermi surface(FS):
(a)T = 0, 0.1, 0.4 at m = p = 0. (b)m = 0, 0.224, 0.448 at
T = 0.1 and p = 0.

As m ! 1/2, such ‘quasi-particle stabilizing tendency’
increases infinitely so that the system is a fermi liquid
whatever strength of the dipole term. In fact, the spec-
tral function shows that the dispersion curve is straight
line just as if we study a free fermions. Therefore it is
natural to think the bulk fermions with mass near 1/2
describe a weakly interacting system, i.e, quasi-particles.
For applications to the realistic material, having such a
dial to make the system fermi liquid in a limit is very use-
ful and in fact essential because in the real experiments,
one can tune the coupling by applying pressure or dop-
ing rate. In fact, for p = 0, it can be understood if we
notice that  is the dual of the operator with dimension
� = d/2 � m which is dimension of free fermion when
m = 1/2 so that the fermion with m = 1/2 in alternate
quantization is dual to the free fermion [7, 10]. In the
presence of the dipole coupling whose role is to introduce
a gap which break the conformal symmetry dynamically,
there is no guarantee that such trend continue to hold.
Our observation is that, nevertheless, such free fermion
nature at m = 1/2 persists even in the presence of the
dipole interaction regardless of its strength. We call it
Free fermion Wall in m-p phase diagram. After care-
ful examination of full range of phase diagram, we found
that at mass region m > 0.35, some metalic phases exist
always.

5. Hyperboic Embeddings

Following embedding is interesting since it illuminate
many hidden aspects of the theory including the physical
origin of the bulk mass. We set V 6= 0 but fixed instead
of being related to U .

p = (U + V )/t, and 2m = V/U  1. (13)

The constraint V/U  1 comes since the o↵-site repul-
sion is weaker than the on-site one. The corresponding
holographic Hubbard model is a hyperbola

p = �(
1

2m
+ 1), with � =

V

t
= fixed. (14)

This embedding has following consistency properties.

• In large U limit, both t-U -V model and its gravity
dual m-p model are in Gapped phase and even in
the smallest U limit, it does not pass the obvious
free fermion point (m, p) = (1/2, 0) because U � V .

• The first embedding with � = 4/3 (Blue curve)
passes SM ! BM

0 ! PG ! G and the sec-
ond one with � = 8/9 (Green curve) passes FL !
BM

0 ! PG ! G phases as U increases, The lat-
ter is also qualitatively consistent with evolution of
Hubbard model calculated with multi-site DMFT.
The graph is given below.

(a) (b) (c) (d)

FIG. 12. U -evolutions for Straight line Embedding ( V << U
). (a)-(d) are at marked point on Red line in the Figure 3(b).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 13. U -evolutions at kc for V 6= 0 cases (Hyperbolic
Embedding) . (a)-(d) for upper (Blue) curve, (e)-(h) for lower
(Green) curve, Spectral functions at kc for V 6= 0 (Green
Curve) in the Embedding diagram Figure 3(b).

Although we know the reason for the free fermion na-
ture of m = 1/2 by counting the conformal weight, it
is still somewhat mysterious from the interaction point
of view: How such freeness is achieved in a theory of
strong interaction? The bulk mass enter into dynamics
only in a combination mL with L being the AdS radius
which encodes the interaction strength of the boundary
theory through L ⇠ �

1/4. In fact, 1/2 is the maximal
value of mL within the unitarity bound. The most natu-
ral way to identify the mL’s gauge coupling dependance
is the o↵-site coulomb interaction V , and following ar-
gument shows a plausible way to understand the free

ii) the recovery of fermi liquid [12–14] with bulk mass near 1/2, iii) holographic gap generation

mechanism [15–19] with the dipole term

p ̄F
µ⌫
�µ⌫ . (1.2)

Notice that with the gap generation mechanism alone, one can not discuss the Mott transition

in holography, because the fermions in AdS generically describe non-Fermi liquid. That is, while

the Hubbard model starts from the free fermion at U = 0, the holographic theory is strongly

interacting even at the absence of the gap generating term. The resolution to this problem comes

by utilizing the free fermion behavior near m = 1/2 mentioned above. What we show in this

paper is that indeed this is the case. As a by-product, we will get all the phases that has been

anticipated desperately for strongly interacting systems. For example, we will get pseudo-gap

which can not be obtained by single site DMFT calculation of the Hubbard model.

Furthermore, as it will be shown later, the MIT by the dipole at a fixed bulk mass is

qualitatively di↵erent from that of Hubbard model. It is either from bad metal to insulator (

at low mass ) or no insulator at all (for high mass). The detail of the transition has another

di↵erence: DMFT calculation [20] of Hubbard model shows that the quasi-particle peak is

narrowed but maintained until the moment of the gap creation as one can see in Figure 1(a).

On the other hand, the dipole interaction in the holographic model suppresses the quasi-particle

peak from the beginning as one can see in Figure 1(b). We suggest that we can simply resolve

this problem if we follow ‘diagonal’ lines in the phase space of the holographic model along which

both m and p vary. The evolution along one of the line is given in Figure 1(c).

disappears continuously (at T=0) at a critical value
Uc2/D.2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=`), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G~ ivn!at5
1/2

ivn1U/2
1

1/2
ivn2U/2

. (232)

Since ImG(v1i01) also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [D(v=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G~ ivn!.
1/2

G 0
21~ ivn!2U/2

1
1/2

G 0
21~ ivn!1U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in D/U . This implies that G(iv);iv for small

v, and the substitution into the self-consistency condi-
tion implies that G 0

−1;iv , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(ivn):

D4G328D2vG214~4v21D22U2!G216v50.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc5D for (234) (Uc5)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.

The spectral density of insulating solutions vanish
within a gap 2Dg/2,v,1Dg/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that S(v+i0+)
must be purely real inside the gap, except for a
d-function piece in ImS at v=0, with

ImS~v1i01!52pr2d~v! for vP@2Dg/2,Dg/2#
(235)

and that ReS has the following low-frequency behavior:

ReS~v1i01!2U/25
r2

v
1O~v!. (236)

In these expressions, r2 is given by

1
r2

5E
2`

1`

de
r~e!

e2 . (237)

r2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap Dg vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U,Uc1(T50), with Uc1

ED

. 2.15D (while the iterated perturbation theory method
yields Uc1

IPT . 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density pDr(v) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.
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Figure 1. Mott transition in various approaches. (a) Hubbard model in single site DMFT characterised
by Transfer of degree f freedom from quasi-particle peak to Hubbard side band and three peak structure.
The quasi-particle peak remains till gap is generated and therefore MIT is a sudden first order phase
transition. The figure is from [20]. (b) Holographic analogue of single site DMFT. Transfer and three
peak structure agrees with DMFT. (c) Holographic analogue of cluster DMFT, the quasi-particle peak is
suppressed from the beginning.

We will begin with detailed study of phase diagram of holographic fermions as we change

both bulk mass and the dipole term. It turns out that the phase diagram is much more rich

that we expected. We can realize six phases that can appear in the holographic model with bulk

mass and dipole interaction: Fermi liquid, bad metal (without shoulder) and bad metal prime

– 2 –

~single	site	DMFT	 ~Clustre	DMFT	
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Fig. 12: Comparison of the calculated, parameter-free LDA+DMFT(QMC) spectra of SrVO3

(solid line) and CaVO3 (dashed line) with experiment. Left: Bulk-sensitive high-resolution PES

(SrVO3: circles; CaVO3: rectangles). Right: XAS for SrVO3 (diamonds) and Ca0.9Sr0.1VO3

(triangles) [86]. Horizontal line: experimental subtraction of the background intensity; after

Ref. [85].

7 Summary and outlook

Due to the intensive international research over the last two decades the DMFT has quickly

developed into a powerful method for the investigation of electronic systems with strong cor-

relations. It provides a comprehensive, non-perturbative and thermodynamically consistent ap-

proximation scheme for the investigation of finite-dimensional systems (in particular for dimen-

sion d = 3), and is particularly useful for the study of problems where perturbative approaches

are inapplicable. For this reason the DMFT has now become the standard mean-field theory

for fermionic correlation problems, including cold atoms in optical lattices [88–92]. The study

of models in non-equilibrium within a suitable generalization of the DMFT has become yet

another fascinating new research area [93–101].

Until a few years ago research into correlated electron systems concentrated on homogeneous

bulk systems. DMFT investigations of systems with internal or external inhomogeneities such

as thin films and multi-layered nanostructures are still very new [102–107]. They are par-

ticularly important in view of the novel types of functionalities of such systems, which may

have important applications in electronic devices. Here the DMFT and its generalizations will

certainly be very useful.

In particular, the development of the ab initio band-structure calculation technique referred to

as LDA+DMFT has proved to be a breakthrough in the investigation of electronically correlated
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very thin but high peak moves away from the fermi level
instead of disappearing. In the symmetrized density of
states in Figure 4(c,d), it appears as if the quasi-particle
peak is splitted into two peaks with a small gap between
them. In this figure, one should notice the sharpness of
transition between (c) and (d). Note also (d) is close to
the phase boundary. The peak does not disappear but
move away from the fermi sea to give an insulator, and
this is a sharp di↵erence between the DMFT result and
holographic one.

When the embedding line do not pass the SM phase
(Red line), the U -evolution resembles multi-site DMFT
result where the transition is smooth and it passes
through the Bad metal and Pseudo gap phases. Here
also it is manifest that during the U -evolution the degree
of freedom is being moved from from the head (quasi-
particle peak) to shoulder region which is consistent with
DMFT result [20]. See Figure 4. For more example see
Figure 12 in the appendix, where hyperbolic type embed-
dings are also considered.

Comparing with experiment : Our study on m, p

□□□□□
□□□

□□□
□ □
□
□
□

□

□
□
□

□□
□□
□□

□□□□

□
□□□□
□□□□
□□□□
□□
□□
□□□□□
□□□□□□□□

□□□□
□

□□
□□□□□□
□□□
□□□□□□

□□□□□□ □□□□□□□□□□ □□□□□□
□□□□□□□□□□□□

□□□□□

□□□□

□□□
□□□□
□□□□□□□□□

□
□ □□

○○
○○○

○○
○○○○
○○○○

○○○ ○
○○

○

○

○

○
○
○

○○
○○
○
○○○○
○○○○
○
○
○○
○○○○○○○○○○○○○○
○○○
○
○○○○○○ ○○○○○○○○○

○○○○
○○

○
○○
○○○
○○○○○ ○○

○○○
○○
○○
○○○

○○○○○○○○○
○○

○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○

0-1-2-3

ω

A(
ω
)

(a)PES data vs theory

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆◆◆◆
◆
◆
◆
◆◆
◆◆
◆
◆
◆◆

◆
◆
◆
◆

▼

▼

▼

▼

▼

▼▼▼
▼
▼
▼
▼▼
▼▼▼▼

▼▼
▼
▼ ▼▼

▼
▼
▼
▼

▼
▼
▼ ▼

0 1 2 3 4

ω

A(
ω
)

(b)XAS data vs theory

FIG. 5. Experimenal data vs holographic theory: (a) PES
data, (b) XAS data ; In both case (color red) is for SrVO3

and (color blue) is for CaVO3. The data for SrVO3 is from
[26], and that for CaVO3 is from [25].

holographic model will be useful for the interpretation
of experiments in Vanadium Oxides and other transition
metal Oxides. We take Photoemission (PES) data and
X-ray absorpsion spectroscopy data for SrVO3 (red cir-
cles and diamonds) [26] and Ca0.9Sr0.1VO3 (blue boxes
and triangles) [25] following the lecture note of Vollhardt
in [27] and DMFT study in [28, 29] and fit those with

our theory. The result is given in Figure 5. The pa-
rameters values of (m, p, kc) we used for the holographic
theory are as follows : (a) (0.47, 2.2,�2.08) for red line
and (0.47, 2.05,�2.04) for blue line, (b) (0.47, 1.9,�2.05)
for red line and (0.455, 1.7,�2.07) for blue line. We see
that the agreements between the theory and experiment
are remarkable. We recommend the readers to see the
FIG. 6 of ref. [29] to compare the same data with the
LDA+DMFT QMC spectra.

Our study shows that for any holographic Hubbard
model, the transfer of the degree of freedom from
the head(quasi-particle peak) to shoulder under the U -
evolution is manifest and that is consistent with DMFT
result [20]. For the order of phase transition our result
is smooth almost everywhere except the transition from
semi-metal to Gapped phase, where there are extremely
narrow channels of PG and BM’ phases which can be
hardly seen in the phase diagram so that the transition
is mathematically smooth but so rapid so that it can be
regarded as a first order. So the order of phase tran-
sition of a holographic Hubbard model depends on the
embedding trajectory.

The single site result of DMFT result shows that the
transition from metal to insulator is by narrowing of the
quasi particle peak (the central peak) and it remains un-
til it become an insulator. This is very similar to the
particular trajectory that passes through the SM phase.
However, we believe that the presence of the SM phase
is due to lack of back reaction, which is much more dif-
ficult to consider and this is remained as a future work.
The cluster DMFT study of the Hubbard model shows
the appearance of pseudo gap and bad metals but if one
increases the frustration, first order phase transition can
also happen. The authors of ref. [30] reported the coexis-
tence of insulating and metallic state in the intermediate
region of U/t, which is qualitatively similar to our situa-
tion to the case where embedding trajectory pass through
the phase boundary of SM to Gapped phase.
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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(b)Embedding of Hubbard

models

FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,

O



Conclusion	

	
•  	New	field	theory	based	on	holography	

•  Applied	to	Dirac	material,	Transition	metal			
	
•  21	century	physics=highly	interesting	theory	with	exp.	
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Mott transition in single-site DMFT
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	Method	:	quantum	holography	

2d	SIS	(	near	QCP)	hologram  = 			3dim		Black	hole	
																																									à	quantum	black	hole	
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3	dim.	
Classical	
BH	

2	dim.		
Quantum		
Matter 
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 quantum	holography	

QCP		:	dynamical	exponent	
But		
	
BH	:			

	 ßà equilibrium,	fluid	dynamic	behavior			
	 	 										ßà transport(	transport	is	input	in	traditional	fluid	dynamics)		
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 method 

Figure 3: !e sketch of the AdS/CFT correspondence.

Supersymmetric D-brane 

Susy gauge theory  Susy AdS  gravity  
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Theory	of		
Quantum		
Matter 

Classical	
Geometry	 

General case without SUSY 
	
					i.		Find	example	outside	string	theory.	
					ii.	Asumeà	caculate	à	compare	with	exp..	
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Ryu  & Takayanagi (2006) 

1. entanglement entropy calculation in 2d  

 i) Evidence outside string theory  
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2. Tensor network :	(Multiscale	Entanglement	Renormalization	Ansatz)	
��

[Swingle]	
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Ryu  & Takayanagi (2006) by product.   
Presence of dual space time= 

  presence of high entanglement 
 
 
Raamsdonk :  classical .  
Space is  sewn by entanglement.  
Entanglement first law à Linearized gravity equation. 
  

  Comment :  Entanglement and Holography 
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Complete	Einstein	equation	from	the	generalized	First	Law	of	Entanglement		
Eunseok	Oh	(Hanyang	U.),	I.Y.	Park	(Philander	Smith	Coll.),	Sang-Jin	Sin	(Hanyang	U.):		
arXiv:1709.05752	[hep-th]	|	PDF	

A B

A~

Figure 2: According to [9], the entanglement entropy S(A) between regions A and B in
the field theory is related to the area of the minimal surface Ã in the dual geometry such
that the boundary of Ã coincides with the boundary of A: S(A) = Area(Ã)/(4GN).
In the diagram, spatial geometry in the gravity picture is represented by the interior
of the ball, while the geometry on which the field theory lives is identified with the
boundary sphere.

gravity duality are built up by entangling degrees of freedom in the non-perturbative
description.

A disentangling experiment

Let us return to the simpler case of a single CFT on Sd. We would like to do a thought
experiment in which we start with the vacuum state of the field theory, dual to gravity
on pure global AdS spacetime, and see what happens to the dual geometry when we
gradually change the state to disentangle some of the degrees of freedom. To be specific,
we divide the sphere into two parts (e.g. hemispheres) which we label A and B.

Since the CFT is a local quantum field theory, there are specific degrees of freedom
associated with specific spatial regions, so we can decompose the Hilbert space H =
HA⊗HB. A simple quantitative measure of the entanglement between A and B is the
entanglement entropy [8], defined to be the von Neumann entropy

S(A) = −Tr(ρA log ρA)

of the density matrix for the subsystem A,

ρA = TrB(|Ψ⟩⟨Ψ|) .

This is typically a divergent quantity, but we can consider a field theory defined with
a cutoff (e.g. on a lattice), such that the entanglement entropy is finite. Now, starting
with the vacuum state, we can ask what happens to the dual spacetime when we
vary the quantum state in such a way that the entanglement entropy S(A) decreases.
Using the recent proposal of Ryu and Takayanagi [9], we can make a very precise
statement about what happens: the area of the minimal surface Ã in the dual spacetime
which separates the spherical boundary into its two components A and B decreases, in
direct proportionality to the decrease in entanglement entropy (see figure 2). Since the
surface Ã is a dividing surface between two regions of the dual space, we see that as

3

A B

A B

Figure 4: Effect on geometry of decreasing entanglement between holographic degrees
of freedom corresponding to A and B: area separating corresponding spatial regions
decreases while distance between points increases. The boundary geometry remains
fixed (despite appearances in the diagram).

larger
β

Figure 5: Spatial section of eternal black hole for two different temperatures (corre-
sponding to a horizontal line through the middle of the Penrose diagram of figure 1).
For low temperature (large β), where entanglement between the two CFTs is smaller,
the asymptotic regions are further apart and separated by a surface of smaller area.

Combining (3) and (2), we see that as the entanglement between degrees of freedom
in region A and region B (and therefore the mutual information I(C,D)) drops to
zero, the length of the shortest bulk path between the points xC and xD must go
to infinity (figure 3). Together with the result of the previous subsection, we obtain
the following picture. As the entanglement between two sets of degrees of freedom in
a nonperturbative description of quantum gravity drops to zero, the proper distance
between the corresponding spacetime regions goes to infinity, while the area of the
minimal surface separating the regions decreases to zero. Roughly speaking, the two
regions of spacetime pull apart and pinch off from each other, as shown in figure 4. As
seen in figure 5, these quantitative features can be seen explicitly in the example of
the eternal AdS black hole, where we can decrease the entanglement between the two
CFTs by increasing the inverse temperature parameter β.

Conclusions

We have seen that we can connect up spacetimes by entangling degrees of freedom and

5
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Def. of AdS/CMT 

QCP(z,θ) Geometry (z,θ)  

1 Introduction

The AdS/CFT correspondence, sometimes called as gauge/gravity duality, is a conjectured relationship

between quantum field theory and gravity. Precisely, in this correspondence, quantum physics of strongly

correlated many-body systems is related to the classical dynamics of gravity which lives in one higher

dimension. On the other hand according to the AdS/CFT dictionary, an AdS geometry at the gravity

side could only address the conformal symmetry of the dual field theory. However, the generalization of

gauge/gravity correspondence to geometries which are not asymptotically AdS seems to be important

as long as such extension may be related to the invariance under a certain scaling of dual field theory

which does not even have conformal symmetry. Such generalization of AdS is actually motivated by

consideration of gravity toy models in condensed matter physics (the application of such generalization

can be found, for example, in [2]). A prototype of this generalization is a theory with the Lifshitz fixed

point in which the spatial and time coordinates of a field theory have been scaled as

t → ζzt, x⃗ → ζx⃗, r → ζr, (1.1)

where z is the critical dynamical exponent. From the holographic duality point of view, for a (D + 1)-

dimensional theory, the corresponding (D+ 2)-dimensional gravity dual can be defined by the following

metric

ds2D+2 =
−dt2

r2z
+

dr2

r2
+

1

r2

D
∑

i=1

dx2
i , (1.2)

where in this paper the AdS radius is set to be one. Due to the anisotropy between space and time, it is

clear that this metric can not be an ordinary solution of the Einstein equation, in fact one needs some

sorts of matter fields to break the isotropy, e.g., by adding a massive vector field or a gauge field coupled

to a scalar field [3–6]. In general by adding a dilaton with non trivial potential and an abelian gauge

field to Einstein-Hilbert action (Einstein-Maxwell-Dilaton theory), one can find even more interesting

metrics, in particular the following metric has been used frequently [7]

ds2D+2 = r
2θ
D

(−dt2

r2z
+

dr2

r2
+

1

r2

D
∑

i=1

dx2
i

)

, (1.3)

where θ is hyperscaling violation exponent. This metric under the scale-transformation (1.1) transforms

as ds → ζ
θ
D ds. In a theory with hyperscaling violation, the thermodynamic parameters behave in such

a way that they are stated in D− θ dimensions; More precisely, in a (D+1)-dimensional theories which

are dual to background (1.2), the entropy scales with temperature as TD/z, however, in the presence of

θ namely dual to (1.3), it scales as T (D−θ)/z [7, 8]. Therefore one may associate an effective dimension

to the theory and this becomes important in studying the log behavior of the entanglement entropy of

system with Fermi surface in condense matter physics, explicitly it was shown that for θ = D − 1 for

any z, the entanglement entropy exhibits a logarithmic violation of the area law [9]. On the other hand

for such backgrounds time-dependency can be achieved by Vaidya metric with a hyperscaling violating

factor. It is the main aim of this paper to investigate how entanglement (mutual information) spreads

in time-dependent hyperscaling violating backgrounds.

Basically, the AdS-Vaidya metric is used to describe a gravitational collapse of a thin shell of matter

in formation of the black hole. This metric in D + 2 dimensions is given by

ds2 =
1

ρ2

(

− f(ρ, v)dv2 − 2dρdv +
D
∑

i=1

dx2
i

)

, f(ρ, v) = 1−m(v)ρD+1, (1.4)

where ρ is the radial coordinate, xi’s (i = 1, .., D) are spatial boundary coordinates and, here, the

2

Dual? 

Transport coefficients 

Make a unique rule  Exp. data 
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AdS/CFT	:		an	exact	duality	where	dictionary	is	given		
	 	Hydrogen	atom	of	Holographic	Duality	


