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Horizons

Event horizon

Black hole region, B, of an asymptotically flat spacetime is defined
as
B=M-I(T").

e The event horizon H is defined as the boundary of B. So H is
the boundary of the past of ZT.

e Other spacetimes with different asymptotical behavior. For
example, asymptotically AdS spacetime

e We do not know how to define the event horizon if we can not
get the information of the future infinity of a spacetime.
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The definition of event Horizon

Figure: The definition of event horizon

Conclusion
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Fail to describe strong gravity property
A special Vaidya spacetime (Ashtekar and Krishnan 2004):

g = —f(v,r)dv? + 2dvdr + r*dQ3, (1)
with
1 v < 0;
flo,r) =< 1—=m((v)/r 0<v<0<uvy,m >0

1—mgo/r v >wvy,mp is a constant.
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Killing horizon

A null hypersurface K is a Killing horizon of a Killing vector field ¢
if, on IC, £ is normal to K.

Figure: Killing Horizon

However, in reality, black holes in our universe and our universe
itself are all dynamical. There are no stationary Killing vectors
associated with the spacetimes.
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Killing horizon

Stationary black hole mechanism:

e Zeroth Law: Surface gravity is a constant on Killing horizon

GV = —rE", (2)

e First law: Killing horizon
SM = 2 5A+ (3)
87
e Second law: Event horizon with some energy condition

SA>0. (4)
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The thermodynamics of stationary black holes

Hawking radiation: Quantum particles creation effects. a black
hole radiates particles to infinity with a perfect body spectrum with
a temperature

K
T=—.
27 (5)
This is just “Hawking temperature”. The entropy of the system is
given by
A

which is called “Bekenstein-Hawking” entropy.
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Apparent horizon

The definition of an apparent horizon depends on the slicing of a
spacetime.

Time direction

n wppedsce

Figure: Apparent horizon
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Trapped region and marginal trapped surface

Trapped region inside a slice: Defined by the extrinsic geometry of
an 2-surface

00 p(n) (7)

For a sphere embedded in a flat spacetime, one gets

9“>:2>0, o — _2 <. (8)

T T
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Figure: Two expansions

However, for a curved spacetime, one may find some region in a
slice of the spacetime which satisfies:

00 <0, 6™ <o. (9)
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Quasi-local horizons

Recent years, people have proposed several quasi-local horizons:
e Trapping horizon (Hayward, 1994)

e Isolated horizon (Ashtekar, 1999)

e Dynamical horizon (Ashtekar and Krishnan, 2002)

e Slowly evolving horizon (Booth)

These horizons are generalization of the apparent horizon, and
their definitions do not depend on the slicing of the spacetime.

Similar to the definition of the apparent horizon, these
horizons can be defined by the extrinsic geometry of codimension-2
spacelike surface.
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Thermodynamics of quasi-local horizons

Balance equations (Similar to the first law of the stationary black
hole):

/(“surface gravity” )des = / [(matter)—k(gravitational radiation)] .
S S (10)
The relation between energy flux and the geometric variation of
marginal trapped surface (or generalized apparent horizon).
The energy flux and the variation of the marginal trapped
surfaces are linked together by focusing and cross focusing
equations.
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Rindler horizon in Minkowski spacetime

It's a special Killing horizon: The Killing horizon corresponding to
the Lorentz boost of the Minkowski spacetime.

ii\ yz
AN - // a = const
A
\ AN [ 2 const

. f\ X
/ /// ~_\
/// \\\

Figure: Rindler horizon in flat spacetime
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Unruh temperature

The orbits of the Lorentz boost are the worldlines of an
uniformly accelerating observers.

An uniformly accelerating observer can observe the therm
spectrum of vacuum fluctuation, and the temperature is
proportional to its acceleration:

_a
o

T (11)

W. G. Unruh, Phys. Rev. D 14, 870 (1976)
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Local Rindler horizon of a curved spacetime

For a curved spacetime, we can construct the Rindler horizon in
the local Riemann normal coordinates, and the corresponding
horizon is called “local Rindler horizon" .

Figure: Local Rindler horizon
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The work of Jacobson et. al.
Based on the local Rindler horizon, and considering Clausius
relation
0Q =T6S (12)

Jacobson gets Einstein equation

1
Rab - §Rgab + Agab = Tab . (13)

T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995)

it
S
yel
Q
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The work of Jacobson
The heat flux 6Q is defined from energy-momentum tensor 1.
The entropy S is assumed to be the area of the local Rindler
horizon (cross section). The temperature is assumed to be the

Unruh temperature of an uniformly accelerating observer. By using
Raychaudhuri equation

T - . a a “ ) 14
h 29 4+ 004 — Rapk®k ( )
He gets Einstein equation from 6Q = T'6S.
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Focusing and cross focusing equations

Raychaudhuri equation is a kind of focusing equation. So, once we
hope to study the thermodynamics of the horizons qusi-locally or
locally, the focusing and cross focusing equations are important.
They link the matter flux and the variation of the horizon:

1
L8O = k0D — G 000b — g0 _ 5000,
La00 = —xp0 — Gyt — oM gmab _ %9(”)9(”) ,
—

L2090 = 1,00 4w — Do + Guplonl — %R g

1
L™ = —k0™ + 0w + Do + Gyyn ™ — SR 9O
(15)
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Submanifold

For a spacelike submanifold, from the submanifold theory, one can
always decompose the metric of the spacetime into

dab = hab + Qab » (16)
The second fundamental tensor K ;¢ is defined as
Ko® = ¢,%0,°V 4q.% , (17)

and it can be defined without introducing any local frame of the
spacetime (B.Carter, 1992).
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Submanifold

The second fundamental tensor can be decomposed into a
traceless part (C,,) and a trace part (K°), i.e.,

1
Kabc = 7Qach + Cabc y (18)
n—2
K¢ = g™ K_,C is called extrinsic curvature vector or mean
curvature vector. For an arbitrary normal vector X, we can define

(X)

Ky ' =-Ku'Xc= 4.9,V eXa,

a

This is the usual second fundamental tensor along X direction, the
expansion and the shear tensor are respectively given by

Q(X) = _KCXC7 J(f) = - achc .

ermodynamics Cosmology Conclusion
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Submanifold

After introducing the covariant derivative on the submanifold and
normal covariant derivative, we have
Gauss equation:

Raved = Kea* Kode — Kav* Kade + 0a°0” 0.998" Regon,  (19)
Ricci equation:
Qabed = qaeqyfhcghdhézéfgh + Kaed K c — Kped K,°c. (20)
Codazzi equation:
DoKped — DyKoyeq ==-—qaeqbchhhﬂ95%2fhg- (21)

For an arbitrary normal vectorY, it gives

(525) Db =D K Y = DY = 00 .
(22)



Horizons Deformation of submanifolds Quasi-local horizons Horizon thermodynamics Cosmology Conclusion
000 00000000
©00 000000000
000000000000

The deformation defined by Andersson et al

L. Andersson, M. Mars and W. Simon, Phys. Rev. Lett. 95, 111102
(2005); Adv. Theor. Math. Phys. 12, 853 (2008).

P, :Sxl - M

Jx oM =g g™

7=0
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Our definition of the deformation

The deformation operator is Lie derivative constrained by
EX(qab) =0.




Horizons Deformation of submanifolds Quasi-local horizons Horizon thermodynamics Cosmology Conclusion

000 00000000
ooe 000000000
000000000000

Our definition of the deformation

By this definition of deformation, we have

LxGab = 0,50 Lxqed = —2K ;7 X = QK(i() . (23)

a
Similarly, one finds the expansion along X can be expressed as
Lxeg = Q(X)eq, (24)

where ¢, is the area element of the (n — 2)-dimension submanifold
S.
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Deformation equation with an arbitrary codimension

By using our requirement EX(qab) =0, we have
ﬁXKL(zZ/) = qacqbdXer‘%ecdf + K(SY)cKlEj() — YCDanXC
+Kach (Ydﬁch) — Kape (dedyc> . (25)
and

LXG(Y) _ quXer«@ecdf . K(Y)abKéi()
YD DX, — K, (XdVch> . (26)
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Deform along tangent direction

For a tangent vector, for example, ¢%, the Lie derivative of

0(Y) along ¢“ is constrained by the Codazzi equations (21) and
(22):

n—3 n—3 ~
<n — 2) L,0Y) = ¢2 Dy )b — <n 2) ¢ KyD,Y*

+ ¢°CL DY+ qTIY " R o, (27)
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Codimension-1

In the case of codimension-1, we can set h,, = —ugup, where u® is
an unit timelike normal vector of the hypersurface. So the extrinsic
curvature is simply given by K. = Kgpuc. In this case, X is just
the evolution vector X, = Nu, with lapse function N. We can
select Y, = u, such that ) is given by

oY) = K = —K%,,
then we have
LXKy = 0, 0 g+ R+ K Ky — 2K — DDy N
(28
— i,cXK = Bapuu® + KKy — iDaDaN. (29)
N N

These are just the evolution equations of hypersurface in Einstein
gravity theory.
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Codimension-2

From the Gauss equation (19), we find that eq.(26) becomes
L) = (%b + chachb) [X“Yb _ peb (XeYe)]

1
+5 (R = Kane K™ = KK - (X,Y°)
~Y°D.DX, — K, (X°V,Y°) . (30)
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Local frames

For codimension-2 case, we can introduce two null vector fields ¢
and n such that the Lorentz part of the metric has a form

hab B —fanb — naﬁb = 6]J€£€;)7 . (31)

where I and J take values {1,2}, and e! = ¢, ¢ = n. The symbol
€1 represents a constant matrix given by

€11 = €22 =0, €12 =¢€91 = —1
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Local frame

For an arbitrary normal vector X, = af, + Bn,, it's easy to
find

DaXb = (Daa + WQOC)EI; + (Daﬁ - waﬁ)nb , (32)
where w,, is defined as
wa = —q, gVl . (33)

wq is the SO(1,1) connection of the SO(1, 1) normal bundle.



Horizons Deformation of submanifolds Quasi-local horizons Horizon thermodynamics Cosmology Conclusion
000 00000000
000 000000000
000000e00000

Local frame

After some calculation, we find

YDDX, = 1y (VIDDXT) + 261y (wCepaY e D X7

+ Dt (edebXd> + wew(X.Y©). (34)
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Focusing and cross focusing equations

By setting Y, = ¢, and X, = Al, — Bn,, we have X .Y¢ = B. So
eqgs.(30) and (34) give result

Lx0Y = kx0Y — D.DB + 2w°D.B
-B [wcwc — Dow® + Gupln® — %R — 9(6)0(”)}

~A [%w%b +olgOab 4 5%%“)] : (35)

Here, we have introduced an important quantity— "surface gravity”
kx = —n°XVl,, (36)

In the case where A =1, B =0, eq.(35) just the so called focusing
equation. In the case where A =0, B = —1, eq.(35) gives the
cross focusing equation
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Focusing and cross focusing equations

Similarly, by setting Y, = n, and X, = A¢, — Bng, we get
Lx0™ = —kx0™ 4+ DDA + 2w°D.A
1
+A [wcwc + Do + Gyl = SR - 9@9(")]

1
+B |G + 0l o mm")e(")} . @7



Horizons Deformation of submanifolds Quasi-local horizons Horizon thermodynamics Cosmology Conclusion

Y is dual to X
we have
ix0) = G XY 1ol L))
+D,(AD°B — BD°A — 2ABw®) + ALx0"Y) + BLx0™
(38)
and
/ kxLxe, — / 5 [%b XY 4 o) Mab ni29<x>@<y)]
n / € [AﬁXW) +B£Xe<”>} : (39)

This is a very important equation to study the thermodynamic of
quasi-local horizon.
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Damour-Navier-Stokes like Equation
From the definition of w, in eq.(33), it's not hard to find
_ b 1y (.cd o 1 byd cegp
Lxw, = K,” .Dyp(€““Xy) + Dakix 5 X€“Rapee - (40)

From the generalized Codazzi equation (22), we have

n—3
n—2

Lxwg = DaﬁX+< ) Dae(y)—DCO'(};)C—FKCD@YCﬂ-qabYCgbC,
(41)
where Y, = e, X°.
In the case where X is self-dual or anti-self-dual, i.e.,
X = 1Y, by considering the Einstein equation, this equation is a
kind of Damour-Navier-Stokes equation.
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Damour-Navier-Stokes like Equation

Let 9% be a tangent vector which satisfies £x¢® = 0 and
Dy¢p* = 0, then we get

1
Ly / € ("wa) = / € { 5 (Daqab + D%“) ol + "Y',
+A¢°D, 0 + B¢“Da0(”)} : (42)

The angular momentum can be defined as

Jo= [ o).

So, from Damour-Navier-Stokes equation, we can get the
deformation equation of angular momentum.



Quasi-local horizons

Trapping horizon

e The codimension-2 spacelike surface with 899" = 0 is called
marginal trapped surface.

e The surface with 009 > 0 is called trapped, and V9 < 0
is called untrapped.

e A trapped (untrapped) region is the union of all trapped
(untrapped) surfaces.

We can give similar definitions by using the extrinsic curvature
vector K* from the relation

KK,.=—2009M



Quasi-local horizons

Trapping horizon

e A marginal trapped surface is called future if 8©) =0, (") < 0.

(i). if £,0) <0, we call the future marginal trapped surface is
outer.
(ii). if £,0) > 0, the future marginal trapped surface is called inner.

e The past marginal trapped surface is defined by #(® = 0,
0 > 0.
(i). The past marginal trapped surface with £,6(™) > 0 is called
outer.

(ii). The past marginal trapped surface with L6 <0 is called
inner.

The so called trapping horizon is the closure of a hypersurface
foliated by the marginal trapped surfaces|Hayward,1994].

The classification of the trapping horizon inherits from the
classification of the marginal trapped surfaces.
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Conclusion

Evolution vector

The trapping horizon is foliated by marginal trapped surfaces
Sr. Here 7 is called the foliation parameter of the tapping horizon.
Assume X is the so called “evolution” vector, i.e., the vector
which is tangent to H and normal to S, and satisfies Lx7 = 1.

Figure: The evolution vector on
trapping horizon
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Methods to study horizon thermodynamics

There are two ways to study the thermodynamics of quasilocal
horizons:

e The method with quasi-local energy

This method heavily depend on some quasilocal energy inside a
given codimension-2 surface. By using Einstein equation and the
quasilocal energy, one may directly gets some first law like
equation or balance equation.

deformation of energy =- matter flux + gravitational
radiation
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Methods to study horizon thermodynamics

e The method without quasi-local energy

(i). Focusing (cross focusing) equations + energy flux=-Clausius like

equation

(ii). Damour-Stokes equation = vaiation of angular momentum of
the horizon.

(iii). First law of thermodynamics is still valid on the quasilocal
horizon

The first law like equation will give the energy of the horizon.
We need not introduce some quasilocal energy in advance.
Contrarily, the energy of the horizon can be regarded as a
byproduct of the theory
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Conclusion

The method with quasi-local energy: spherically

symmetric case

For generally spherically symmetric spacetime
9= Bu()dy"dy” + r(y)*yij(2)d="d7 ,
We have generalized Misner-Sharp energy:

—2)Q,_9
(n ) 2,,,n 3

e Te

(1—=VrVor),
By defining
1
Yo =TuV'r+wVar,  w=—sh"Ty,

we get
Lx& =P, X" +wLlx ¥,

(43)

(44)

(45)

(46)



Horizons Deformation of submanifolds Quasi-local horizons Horizon thermodynamics Cosmology Conclusion
0®000000
000000000

The method with quasi-local energy: spherically
symmetric case

By selecting X to be the evolution vector on the trapping horizon ,
on the trapping horizon, we have

K

S Pa X = (277

)EXS, (47)

The surface gravity is defined as

K 4G n—3 &
5= [<9n2> rnz—wr} . (48)

The evolution of & on the trapping horizon becomes

K
Lx& = (g) LxS +wlx? . (49)

This is a first law like equation.
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The method with quasi-local energy: general cases

For general case, we can define a generalized energy

& — (fﬁq)? { feqliél _(n—3> fquCnK:}-
167G (Qn—2)7=2 (n = 3) | ([ ¢) "2 n—2 ([ e)n

(50)

e for n = 4, this energy reduces to usual four dimension Hawking
energy (mass).

e In spherically symmetric case, this energy reduces to
Misner-Sharp energy ( n > 4).
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The method with quasi-local energy: general cases

The deformation of the energy is given by

Lx& = (”_3> (f{) ﬁxﬂ+wﬁcx< ‘. —yzf) (51)

n—2

n—2

if Lx# =0, where

7= L L
167G (Qy—2)"2 (n — 3) (f eq) =2

and on the horizon, by selecting X to be the evolution vector of
the horizon, we have

Lx& = (Z : 2) (j;) Ly . (53)
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The method with quasi-local energy: general cases

Since we have

Lt ~ (Z:;)/eq{R <£§Q{+K6Xe>}, (54)

e Obviously, the right hand of above equation is identically

n—4
vanished in the four dimension because that [e,R/([€,)2 is
just the Euler number of some two dimensional closed manifold.

e If the codimension-2 surface is assumed to be a closed Einstein
manifold (R is a constant).

e Selecting a special deformation vector X such that K*X, is a

constant on the codimension-2 surface, then we have
Lxo | + KX, =0.
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The method with quasi-local energy: general cases

More detailed, the deformation of the energy is given by

B £\ [Lxst .
e fof (55) (52 mr) )
1 L ey 7C
e <n_2)/eq{K D.D°X,

1
— (%b 4 Ccdaccdb) [K“Xb - 5h (KeXe)}

+ (Guh®) - (KX) } : (55)

1

where L = %ﬁ/ (Qp—g)n—2,
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The method with quasi-local energy: general cases

and

S N

Here, £ is a quantity like an energy density.

e In the general spherically symmetric cases, it reduces to the one
given in eq.(46).

e If n =4, the energy & is the Hawking mass, and eq.(55) reduces

to the one given by Bray et.al[Bray,2006]. Of course, we can also
consider the cases with cosmological constant as in [Bray,2006].

e It's interest to study the monotonicity of this energy & as in
[Bray,2006,Mizuno,2009].
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The method with quasi-local energy: general cases

If we introduce null frames, generally, the evolution of the energy
on the trapping horizon is given by

1 GaG*
_ a b () o(Oab a, b
Lx& /eq[ <%b€ 0+ Pl >+ﬁ <<7 0n’ + 87rG>

(57)
where o and (§ are determined by the components of X, and ¢ has
close relation to the SO(1,1) connection wy.

e The contribution of the usual matter fields — 7,4 and
Tapl®n
e The contribution of the gravitational radiation — a((li)a(e)“b

CaC®.

and
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Method without quasi-local energy: equilibrium state

Equilibrium state: Null trapping horizon.
The evolution vector X is null. From focusing and cross
focussing equations, we find: On the null future trapping horizon,

we have
o =0, @yt =o, (58)

and on the null past trapping horizon, we have
oM =0,  Guynn"=0. (59)

Gp00° = 0 and Z,;n*n® = 0 just imply that there are no matter
flux across the codimension-2 surface. a((]f)) =0 and O'C(LZ) =0
means that there are no gravitational radiation across the

codimension-2 surface.
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Method without quasi-local energy: equilibrium state

While, from Damour-Navier-Stokes equation, we find
Lxwg— Dorx =0. (60)

if one requires that w, does not evolve, i.e., Lxw, = 0, then, from
above equation, one gets D,k x = 0 on the codimension-2 surface.
Furthermore, if Lxkxx = 0 is required, then kx is a constant
on the null trapping horizon.
In these null cases, we have

XV X0 = +rx X", (61)
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Method without quasi-local energy: equilibrium state

Conclusively, on these null trapping horizons, there are no
gravitational radiation and matter flux, and kx's are constants.
These properties correspond to the equilibrium state of the
thermodynamics of the horizon. Further, now eqs.(39) and (42)
just mean

(%) LxS =0, [,X<]¢:0, (62)

where S ~ [¢e, and J, ~ [ €, (¢*w,) can be explained as the
entropy and the angular momentum associated with the null
trapping horizons.
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Method without quasi-local energy: Near equilibrium

state
The near equilibrium means that X is almost a null vector.
X*=¢*—Cn®, (63)

For the future trapping horizon, Booth et.el.(2003) give three
slowly expanding conditions :
(F-i). The so called evolving parameter € < 1 with
2 1
£z = max |1C1 (oI + (576) Tane + L5609 ) |
(64)
(F-ii). The Ricci scalar, the SO(1, 1) normal connection and the
energy-momentum tensor satisfy

1
Bl Jwal? and  (87G) Tupt'n® < =5
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Method without quasi-local energy: Near equilibrium
state

(F-i). The derivatives of horizon fields are at most the same order
in € as the (maximum of the) original fields. For example,

C C

m m
ID.CI =S, DDl = T

Here, || - || is the norm of (tangent) tensor fields on the
codimension-2 Riemannian manifold, while | - | is the absolute

value of some scalar. The quantity L is some length scale of the
codimension-2 surface. For example, the radius of the closed

(n — 2) manifold: L = (& /Q0_2)7 which has been defined just
bellow eq.(55). Cp, is the maximum value of |C| on the
codimension-2 surface. The relation £ < F means E < koF for
some constant kg of order one.
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Method without quasi-local energy: Near equilibrium
state

The slowly evolving parameter ¢ defined in the condition (F-i) is
independent of the relabeling of the foliation and the rescaling of
the null frame.

Remembering in the case of future null trapping horizon, to
ensure that some physical quantities do not evolve, we have
required the condition Lxw, = 0 and Lxkxx = 0. These just
mean that w, and kx do not evolve respect to the evolution vector
X®. Similarly, here there are also slowly evolving conditions :

(F-i"). ||[Lxwal|l and |Lxrx]| < €/L?;
(F-ii"). [£x0™)| < €/L2.



thermodyrlamlcs Cosmology Conclusion

1ation of submanifolds Quasi-local horizons H i
OOOOO0.00

Horizons

Method without quasi-local energy: Near equilibrium

state
For the past trapping horizon, we can gives similar conditions to
describe the slowly expanding properties:
(P-i). The evolving parameter ¢ < 1 with
2

€ 1

3 = max [\C| <||a<f>||2 + (87G) T 04" + mm%( >>] ;
The Ricci scalar, the SO(1, 1) normal connection and the
energy-momentum tensor satisfy

(P-i).
1
lwal? and  (87G)Tplon® < =

R,
(P-iii). The derivatives of horizon fields are at most the same order
in € as the (maximum of the) original fields. For example,

Cim

Cm
HDaCH = T) HDanCH = ﬁ
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Method without quasi-local energy: Near equilibrium
state

The slowly evolving conditions are given:

(P-i"). ||Lxwall and |Lxrx| =< €/L?;

(P-ii"). |£x0©| < ¢/L2.
With these conditions, one can find that xx is nearly a constant
on the past trapping horizon. So it can also be expanded as

Kx = Ko + O(€)
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Method without quasi-local energy: Near equilibrium
state

Clausiu like equations:
For the future slowly evolving trapping horizon

(8 G) Ly = / o | Tt + o) o] (65)

Similarly, for the past slowly evolving horizon, we have

(n) _(n)ab
(87TG EXW /eq Tpnn® ‘o0 } . (66)
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Geometry of FRW universe
The metric of the FLRW universe (M, g) is

g=—dt* + dr® 4 a*r?dQ2_,, (67)

lfk:r2

by introducing two null vectors £ and n

1 a
bodx® = \/7 —dt + ——dr | , 68
v 2 < v1—kr? T) (68)

1 a
odz® = \/7 —dt — ——dr | . 69
ngdx 2< — r> (69)

So we have hy, = —fqny — nely, while ggp is just the metric for the
sphere part, i.e.,
qapdz®dz® = a r2dQ
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Geometry of FRW universe

The expansions of the sphere along these two null directions are
given by

1k
0 = ¢V, 0, = V2 (H 5 - a2> : (70)

0 = ¢®Vny = V2 (H — ri — k) : (71)

Here 7 is defined as 7 = ar.
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Geometry of FRW universe

It's also easy to find

.1 1k
£) _
L =H— o —H\ & ——.
o g 1 1 K
L:na :H—i‘T—H 2,
a
L™ =1 1
? — +72 GQ’

Conclusion

n g 1
£,,0 ):H_?T2 \/ (72)

From these equations, we can find trapping horizons and

realize the classification of the horizons.



Cosmology

Null trapping horizons

Null trapping horizons exist only when k = 0. Further, only inner
horizon exists in the future case, and only outer horizon exists in
the past case. In the following discussions, we always set k£ = 0.
On the null trapping horizons (future and past), the Hubble
parameter H is always a constant.

We only consider the past outer case.
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Slowly past evolving trapping horizons in FRW universe

The evolution vector X can be expressed as

X=al* —n", (73)
where .
H
H +2H?

From the definition, the evolving parameter € in the condition (P-i)
becomes (we only consider the four dimension case, and choose L
to be the radius 7 = 1/|H| for k = 0.)

€2

1
= =la (%beaeb + 2(9(@0(@)) . (75)



Cosmology

Straightforward calculation shows: on the trapping horizons, €'s are

given by '
e = |a (4 - ;) : (76)
By defining '
5= —% >0, (77)

then, from the expression of « in eq.(74), we have

S

(1:—2_8.

(78)

The evolution parameter € now has a simple form

62—3(4“). (79)

2—s




Cosmology

So, the requirement of the evolving parameter € < 1 automatically
implies that s = —H /H? is very small.
It's not hard to find

EXHX:(22[_{25 [2—8+S + (HHH>] . (80)

So the slowly evolving condition of xx requires that |H /H3| is
also a small quantity.
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Thermodynamics on slowly evolving trapping horizon in
FRW

For the past horizon, from eq.(66), we have

87rG €qTun’n®. (81)

Up to second order of € (or the first order of s).
The temperature of the system can be expanded as

KX H(

2 4
o ~or U 2)+ﬁ(6)'
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Temperature from the formalism with quasi-local
energy

The surface gravity x in eq.(48) becomes

3r =2 (173). )

where s is defined in eq.(77). So the temperature of the past outer
trapping horizon is
k|  H s
= (1 - 7>
2T 2w 2

The Clausius relation is

Ay X = %5)(5- (83)



Conclusion

Questions and Discussions

e How to define a slowly evolving quasi-local horizon without
using a local frame?

e The detailed relation between slowly evolving quasi-local horizon
in FRW universe and slow-roll inflation is still not clear.

e How to establish a first law (on the general quasi-local horizon )
which has a similar form like the one for stationary black hole?
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Thanks for your attention!
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