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Event horizon

Black hole region, B, of an asymptotically flat spacetime is defined
as

B = M− I−(I+) .

• The event horizon H is defined as the boundary of B. So H is
the boundary of the past of I+.

• Other spacetimes with different asymptotical behavior. For
example, asymptotically AdS spacetime

• We do not know how to define the event horizon if we can not
get the information of the future infinity of a spacetime.
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The definition of event Horizon

Figure: The definition of event horizon
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Fail to describe strong gravity property
A special Vaidya spacetime (Ashtekar and Krishnan 2004):

g = −f(v, r)dv2 + 2dvdr + r2dΩ2
2 , (1)

with

f(v, r) =


1 v < 0;

1−m(v)/r 0 ≤ v < 0 ≤ v0, ṁ > 0;
1−m0/r v > v0,m0 is a constant.

Figure: Event horizon can exist in
flat region of spacetime
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Killing horizon
A null hypersurface K is a Killing horizon of a Killing vector field ξ
if, on K, ξ is normal to K.

Figure: Killing Horizon

However, in reality, black holes in our universe and our universe
itself are all dynamical. There are no stationary Killing vectors
associated with the spacetimes.
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Killing horizon

Stationary black hole mechanism:

• Zeroth Law: Surface gravity is a constant on Killing horizon

ξb∇aξb = −κξa , (2)

• First law: Killing horizon

δM =
κ

8π
δA+ · · · (3)

• Second law: Event horizon with some energy condition

δA ≥ 0 . (4)
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The thermodynamics of stationary black holes

Hawking radiation: Quantum particles creation effects. a black
hole radiates particles to infinity with a perfect body spectrum with
a temperature

T =
κ

2π
. (5)

This is just “Hawking temperature”. The entropy of the system is
given by

S =
A

4G
, (6)

which is called “Bekenstein-Hawking” entropy.
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Apparent horizon
The definition of an apparent horizon depends on the slicing of a
spacetime.

Time direction

Marginal trapped surface

Figure: Apparent horizon
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Trapped region and marginal trapped surface

Trapped region inside a slice: Defined by the extrinsic geometry of
an 2-surface

θ(`) , θ(n) (7)

For a sphere embedded in a flat spacetime, one gets

θ(`) =
2
r
> 0 , θ(n) = −2

r
< 0 . (8)
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Expansions

Figure: Two expansions

However, for a curved spacetime, one may find some region in a
slice of the spacetime which satisfies:

θ(`) < 0 , θ(n) < 0 . (9)
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Quasi-local horizons

Recent years, people have proposed several quasi-local horizons:

• Trapping horizon (Hayward, 1994)

• Isolated horizon (Ashtekar, 1999)

• Dynamical horizon (Ashtekar and Krishnan, 2002)

• Slowly evolving horizon (Booth)

These horizons are generalization of the apparent horizon, and
their definitions do not depend on the slicing of the spacetime.

Similar to the definition of the apparent horizon, these
horizons can be defined by the extrinsic geometry of codimension-2
spacelike surface.
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Thermodynamics of quasi-local horizons

Balance equations (Similar to the first law of the stationary black
hole):∫

S
(“surface gravity”)δεS =

∫
S

[
(matter)+(gravitational radiation)

]
.

(10)
The relation between energy flux and the geometric variation of
marginal trapped surface (or generalized apparent horizon).

The energy flux and the variation of the marginal trapped
surfaces are linked together by focusing and cross focusing
equations.
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Rindler horizon in Minkowski spacetime
It’s a special Killing horizon: The Killing horizon corresponding to
the Lorentz boost of the Minkowski spacetime.

Figure: Rindler horizon in flat spacetime
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Unruh temperature

The orbits of the Lorentz boost are the worldlines of an
uniformly accelerating observers.

An uniformly accelerating observer can observe the therm
spectrum of vacuum fluctuation, and the temperature is
proportional to its acceleration:

T =
a

2π
(11)

W. G. Unruh, Phys. Rev. D 14, 870 (1976)
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Local Rindler horizon of a curved spacetime
For a curved spacetime, we can construct the Rindler horizon in
the local Riemann normal coordinates, and the corresponding
horizon is called “local Rindler horizon”.

Figure: Local Rindler horizon
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The work of Jacobson et. al.
Based on the local Rindler horizon, and considering Clausius
relation

δQ = TδS (12)

Jacobson gets Einstein equation

Rab −
1
2
Rgab + Λgab = Tab . (13)

T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995)

Figure: Local Rindler horizon
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The work of Jacobson
The heat flux δQ is defined from energy-momentum tensor Tab.
The entropy S is assumed to be the area of the local Rindler
horizon (cross section). The temperature is assumed to be the
Unruh temperature of an uniformly accelerating observer. By using
Raychaudhuri equation

dθ

dλ
=

1
2
θ2 + σabσab −Rabk

akb , (14)

He gets Einstein equation from δQ = TδS.

Figure: Local Rindler horizon
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Focusing and cross focusing equations

Raychaudhuri equation is a kind of focusing equation. So, once we
hope to study the thermodynamics of the horizons qusi-locally or
locally, the focusing and cross focusing equations are important.
They link the matter flux and the variation of the horizon:

L`θ
(`) = κ`θ

(`) − Gab`
a`b − σ

(`)
ab σ

(`)ab − 1
n− 2

θ(`)θ(`) ,

Lnθ
(n) = −κnθ

(n) − Gabn
anb − σ

(n)
ab σ

(n)ab − 1
n− 2

θ(n)θ(n) ,

Lnθ
(`) = κnθ

(`) + ωcω
c −Dcω

c + Gab`
anb − 1

2
R− θ(`)θ(n) ,

L`θ
(n) = −κ`θ

(n) + ωcω
c +Dcω

c + Gabn
a`b − 1

2
R− θ(`)θ(n) .

(15)
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Submanifold

For a spacelike submanifold, from the submanifold theory, one can
always decompose the metric of the spacetime into

gab = hab + qab , (16)

The second fundamental tensor K c
ab is defined as

Kab
c = q d

a q
e

b ∇dq
c

e , (17)

and it can be defined without introducing any local frame of the
spacetime (B.Carter, 1992).
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Submanifold

The second fundamental tensor can be decomposed into a
traceless part (C c

ab ) and a trace part (Kc), i.e.,

Kab
c =

1
n− 2

qabK
c + Cab

c , (18)

Kc = gabKab
c is called extrinsic curvature vector or mean

curvature vector. For an arbitrary normal vector X, we can define

K
(X)
ab = −K c

ab Xc = q c
a q

d
b ∇cXd ,

This is the usual second fundamental tensor along X direction, the
expansion and the shear tensor are respectively given by

θ(X) = −KcXc , σ
(X)
ab = −C c

ab Xc .
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Submanifold
After introducing the covariant derivative on the submanifold and
normal covariant derivative, we have
Gauss equation:

Rabcd = Kca
eKbde −Kcb

eKade + qa
eqb

fqc
gqd

h Refgh , (19)

Ricci equation:

Ωabcd = q e
a q

f
b h

g
c h

h
d Refgh +KaedK

e
b c −KbedK

e
a c . (20)

Codazzi equation:

D̃aKbcd − D̃bKacd = −q e
a q

f
b q

h
c h

g
d Refhg . (21)

For an arbitrary normal vector Y , it gives(
n− 3
n− 2

)
Daθ

(Y )−Dbσ
(Y )b
a +KdD̃aY

d−K b
a dD̃bY

d = q e
a q

bcY dRebcd .

(22)
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The deformation defined by Andersson et al
L. Andersson, M. Mars and W. Simon, Phys. Rev. Lett. 95, 111102
(2005); Adv. Theor. Math. Phys. 12, 853 (2008).
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Figure: Deformation by Andersson
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Our definition of the deformation
The deformation operator is Lie derivative constrained by
LX(q b

a ) = 0.

X

0)( =b
aX q�

S

X

Figure: Our definition of Deformation
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Our definition of the deformation

By this definition of deformation, we have

LXqab = q c
a q

d
b LXqcd = −2K c

ab Xc = 2K(X)
ab . (23)

Similarly, one finds the expansion along X can be expressed as

LXεq = θ(X)εq , (24)

where εq is the area element of the (n− 2)-dimension submanifold
S.
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Deformation equation with an arbitrary codimension

By using our requirement LX(q b
a ) = 0, we have

LXK
(Y )
ab = q c

a q
d

b X
eY fRecdf +K(Y )

a
cK

(X)
bc − Y cD̃aD̃bXc

+Kacb

(
YdD̃

cXd
)
−Kabc

(
Xd∇dY

c
)
. (25)

and

LXθ
(Y ) = qcdXeY fRecdf −K(Y )abK

(X)
ab

−Y cD̃aD̃
aXc −Kc

(
Xd∇dY

c
)
. (26)
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Deform along tangent direction

For a tangent vector, for example, φa, the Lie derivative of
θ(Y ) along φa is constrained by the Codazzi equations (21) and
(22): (

n− 3
n− 2

)
Lφθ

(Y ) = φaDbσ
(Y )b
a −

(
n− 3
n− 2

)
φaKdD̃aY

d

+ φaC b
a dD̃bY

d + qfgφeY hRefgh . (27)
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Codimension-1
In the case of codimension-1, we can set hab = −uaub, where ua is
an unit timelike normal vector of the hypersurface. So the extrinsic
curvature is simply given by Kabc = Kabuc. In this case, X is just
the evolution vector Xa = Nua with lapse function N . We can
select Ya = ua such that θ(Y ) is given by

θ(Y ) = K = −Kaua,

then we have

− 1
N
LXKab = −q c

a q
d

b Rcd +Rab +KKab − 2KacK
c

b − 1
N
DaDbN

(28)

− 1
N
LXK = Rabu

aub +KabKab −
1
N
DaDaN . (29)

These are just the evolution equations of hypersurface in Einstein
gravity theory.
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Codimension-2

From the Gauss equation (19), we find that eq.(26) becomes

LXθ
(Y ) = −

(
Gab +KcdaK

cd
b

) [
XaY b − hab (XeY

e)
]

+
1
2

(
R−KabcK

abc −KcK
c
)
· (XeY

e)

−Y eD̃cD̃
cXe −Kc (Xe∇eY

c) . (30)
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Local frames

For codimension-2 case, we can introduce two null vector fields `
and n such that the Lorentz part of the metric has a form

hab = −`anb − na`b = εIJe
I
ae

J
b . (31)

where I and J take values {1, 2}, and e1 = `, e2 = n. The symbol
εIJ represents a constant matrix given by

ε11 = ε22 = 0, ε12 = ε21 = −1
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Local frame

For an arbitrary normal vector Xa = α`a + βna, it’s easy to
find

D̃aXb = (Daα+ ωaα)`b + (Daβ − ωaβ)nb , (32)

where ωa is defined as

ωa = −q e
a nd∇e`

d . (33)

ωa is the SO(1, 1) connection of the SO(1, 1) normal bundle.
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Local frame

After some calculation, we find

Y eD̃cD̃
cXe = εIJ

(
Y IDcDcX

J
)

+ 2εIJ

(
ωcεbdY

beIdDcX
J
)

+ Dcω
c
(
εbdY

bXd
)

+ ωcω
c(XeY

e) . (34)
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Focusing and cross focusing equations

By setting Ya = `a and Xa = A`a −Bna, we have XeY
e = B. So

eqs.(30) and (34) give result

LXθ
(`) = κXθ

(`) −DcD
cB + 2ωcDcB

−B
[
ωcω

c −Dcω
c + Gab`

anb − 1
2
R− θ(`)θ(n)

]
−A
[
Gab`

a`b + σ
(`)
ab σ

(`)ab +
1

n− 2
θ(`)θ(`)

]
. (35)

Here, we have introduced an important quantity—“surface gravity”

κX = −ncXe∇e`c , (36)

In the case where A = 1, B = 0, eq.(35) just the so called focusing
equation. In the case where A = 0, B = −1, eq.(35) gives the
cross focusing equation
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Focusing and cross focusing equations

Similarly, by setting Ya = na and Xa = A`a −Bna, we get

LXθ
(n) = −κXθ

(n) +DcD
cA+ 2ωcDcA

+A
[
ωcω

c +Dcω
c + Gabn

a`b − 1
2
R− θ(`)θ(n)

]
+B

[
Gabn

anb + σ
(n)
ab σ

(n)ab +
1

n− 2
θ(n)θ(n)

]
. (37)
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Y is dual to X

we have

κXθ
(X) = GabX

aY b + σ
(X)
ab σ(Y )ab +

1
n− 2

θ(X)θ(Y )

+De(ADeB −BDcA− 2ABωe) +ALXθ
(`) +BLXθ

(n) ,

(38)

and∫
κXLXεq =

∫
εq

[
GabX

aY b + σ
(X)
ab σ(Y )ab +

1
n− 2

θ(X)θ(Y )

]
+
∫
εq

[
ALXθ

(`) +BLXθ
(n)
]
, (39)

This is a very important equation to study the thermodynamic of
quasi-local horizon.
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Damour-Navier-Stokes like Equation

From the definition of ωa in eq.(33), it’s not hard to find

LXωa = K b
a cD̃b(εcdXd) +DaκX − 1

2
qa

bXdεceRdbce . (40)

From the generalized Codazzi equation (22), we have

LXωa = DaκX+
(
n− 3
n− 2

)
Daθ

(Y )−Dcσ
(Y )c
a +KcD̃aY

c+q b
a Y

cGbc ,

(41)
where Ya = εabX

b.
In the case where X is self-dual or anti-self-dual, i.e.,

X = ±Y , by considering the Einstein equation, this equation is a
kind of Damour-Navier-Stokes equation.
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Damour-Navier-Stokes like Equation

Let φa be a tangent vector which satisfies LXφ
a = 0 and

Daφ
a = 0, then we get

LX

∫
εq (φaωa) =

∫
εq

{
1
2

(
Daφb +Dbφa

)
σ

(Y )
ab + φaY bGab

+AφaDaθ
(`) +BφaDaθ

(n)

}
. (42)

The angular momentum can be defined as

Jφ =
∫
εq(φaωa) .

So, from Damour-Navier-Stokes equation, we can get the
deformation equation of angular momentum.
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Trapping horizon

• The codimension-2 spacelike surface with θ(`)θ(n) = 0 is called
marginal trapped surface.

• The surface with θ(`)θ(n) > 0 is called trapped, and θ(`)θ(n) < 0
is called untrapped.

• A trapped (untrapped) region is the union of all trapped
(untrapped) surfaces.

We can give similar definitions by using the extrinsic curvature
vector Ka from the relation

KcKc = −2θ(`)θ(n) .
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Trapping horizon

• A marginal trapped surface is called future if θ(`) = 0, θ(n) < 0.

(i). if Lnθ
(`) < 0, we call the future marginal trapped surface is

outer.
(ii). if Lnθ

(`) > 0, the future marginal trapped surface is called inner.

• The past marginal trapped surface is defined by θ(n) = 0,
θ(`) > 0.

(i). The past marginal trapped surface with L`θ
(n) > 0 is called

outer.
(ii). The past marginal trapped surface with L`θ

(n) < 0 is called
inner.

The so called trapping horizon is the closure of a hypersurface
foliated by the marginal trapped surfaces[Hayward,1994].

The classification of the trapping horizon inherits from the
classification of the marginal trapped surfaces.
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Evolution vector
The trapping horizon is foliated by marginal trapped surfaces

Sτ . Here τ is called the foliation parameter of the tapping horizon.
Assume X is the so called “evolution” vector, i.e., the vector
which is tangent to H and normal to Sτ and satisfies LXτ = 1.

X

τS

Figure: The evolution vector on
trapping horizon
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Methods to study horizon thermodynamics

There are two ways to study the thermodynamics of quasilocal
horizons:

• The method with quasi-local energy
This method heavily depend on some quasilocal energy inside a
given codimension-2 surface. By using Einstein equation and the
quasilocal energy, one may directly gets some first law like
equation or balance equation.
deformation of energy ⇒ matter flux + gravitational
radiation
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Methods to study horizon thermodynamics

• The method without quasi-local energy

(i). Focusing (cross focusing) equations + energy flux⇒Clausius like
equation

(ii). Damour-Stokes equation ⇒ vaiation of angular momentum of
the horizon.

(iii). First law of thermodynamics is still valid on the quasilocal
horizon

The first law like equation will give the energy of the horizon.
We need not introduce some quasilocal energy in advance.
Contrarily, the energy of the horizon can be regarded as a
byproduct of the theory
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The method with quasi-local energy: spherically
symmetric case

For generally spherically symmetric spacetime

g = βµν(y)dyµdyν + r(y)2γij(z)dzidzj , (43)

We have generalized Misner-Sharp energy:

E =
(n− 2)Ωn−2

16πG
rn−3 (1−∇ar∇ar) , (44)

By defining

ψa = Tab∇br + w∇ar , w = −1
2
habTab , (45)

we get
LXE = A ψaX

a + wLXV , (46)
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The method with quasi-local energy: spherically
symmetric case

By selecting X to be the evolution vector on the trapping horizon ,
on the trapping horizon, we have

A ψaX
a =

( κ
2π

)
LXS , (47)

The surface gravity is defined as

κ

2π
=

4G
n− 2

[(
n− 3
Ωn−2

)
E

rn−2
− wr

]
. (48)

The evolution of E on the trapping horizon becomes

LXE =
( κ

2π

)
LXS + wLXV . (49)

This is a first law like equation.
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The method with quasi-local energy: general cases

For general case, we can define a generalized energy

E =

(∫
εq
)n−3

n−2

16πG (Ωn−2)
1

n−2 (n− 3)

{ ∫
εqR(∫
εq
)n−4

n−2

−
(
n− 3
n− 2

) ∫
εqKcK

c(∫
εq
)n−4

n−2

}
.

(50)

• for n = 4, this energy reduces to usual four dimension Hawking
energy (mass).

• In spherically symmetric case, this energy reduces to
Misner-Sharp energy ( n ≥ 4).
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The method with quasi-local energy: general cases

The deformation of the energy is given by

LXE =
(
n− 3
n− 2

)(
E

A

)
LXA + A

n−3
n−2LX

(
E

A
n−3
n−2

−K

)
(51)

if LXK = 0, where

K =
1

16πG (Ωn−2)
1

n−2 (n− 3)

 ∫
εqR(∫
εq
)n−4

n−2

 , (52)

and on the horizon, by selecting X to be the evolution vector of
the horizon, we have

LXE =
(
n− 3
n− 2

)(
E

A

)
LXA . (53)
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The method with quasi-local energy: general cases

Since we have

LXK ∼
(
n− 4
n− 2

)∫
εq

{
R

(
LXA

A
+KeXe

)}
, (54)

• Obviously, the right hand of above equation is identically

vanished in the four dimension because that
∫
εqR/(

∫
εq)

n−4
n−2 is

just the Euler number of some two dimensional closed manifold.

• If the codimension-2 surface is assumed to be a closed Einstein
manifold (R is a constant).

• Selecting a special deformation vector X such that KaXa is a
constant on the codimension-2 surface, then we have
LXA /A +KeXe = 0.
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The method with quasi-local energy: general cases

More detailed, the deformation of the energy is given by

LXE =
∫
εq

{(
E

n− 2

)(
LXA

A
+KeX

e

)}

+
1

8πG

(
L

n− 2

)∫
εq

{
−KeD̃cD̃

cXe

−
(
Gab + CcdaC

cd
b

)[
KaXb − 1

2
hab (KeX

e)
]

+
1
2

(
Gabh

ab
)
· (KeX

e)

}
, (55)

where L = A
1

n−2 / (Ωn−2)
1

n−2 ,
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The method with quasi-local energy: general cases

and

E =
L

16πG(n− 3)

[
R−

(
n− 3
n− 2

)
KcK

c

]
. (56)

Here, E is a quantity like an energy density.

• In the general spherically symmetric cases, it reduces to the one
given in eq.(46).

• If n = 4, the energy E is the Hawking mass, and eq.(55) reduces
to the one given by Bray et.al[Bray,2006]. Of course, we can also
consider the cases with cosmological constant as in [Bray,2006].

• It’s interest to study the monotonicity of this energy E as in
[Bray,2006,Mizuno,2009].



Horizons Deformation of submanifolds Quasi-local horizons Horizon thermodynamics Cosmology Conclusion

The method with quasi-local energy: general cases

If we introduce null frames, generally, the evolution of the energy
on the trapping horizon is given by

LXE =
∫
εq

[
α

(
Tab`

a`b +
1

8πG
σ

(`)
ab σ

(`)ab

)
+β
(

Tab`
anb +

ζaζ
a

8πG

)]
.

(57)
where α and β are determined by the components of X, and ζ has
close relation to the SO(1,1) connection ωa.

• The contribution of the usual matter fields — Tab`
a`a and

Tab`
ana ;

• The contribution of the gravitational radiation — σ
(`)
ab σ

(`)ab and
ζaζ

a.



Horizons Deformation of submanifolds Quasi-local horizons Horizon thermodynamics Cosmology Conclusion

Method without quasi-local energy: equilibrium state

Equilibrium state: Null trapping horizon.
The evolution vector X is null. From focusing and cross

focussing equations, we find: On the null future trapping horizon,
we have

σ
(`)
ab = 0 , Gab`

a`b = 0 , (58)

and on the null past trapping horizon, we have

σ
(n)
ab = 0 , Gabn

anb = 0 . (59)

Gab`
a`b = 0 and Gabn

anb = 0 just imply that there are no matter

flux across the codimension-2 surface. σ
(`)
ab = 0 and σ

(n)
ab = 0

means that there are no gravitational radiation across the
codimension-2 surface.
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Method without quasi-local energy: equilibrium state

While, from Damour-Navier-Stokes equation, we find

LXωa −DaκX = 0 . (60)

if one requires that ωa does not evolve, i.e., LXωa = 0, then, from
above equation, one gets DaκX = 0 on the codimension-2 surface.

Furthermore, if LXκX = 0 is required, then κX is a constant
on the null trapping horizon.

In these null cases, we have

Xa∇aX
b = ±κXX

b , (61)
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Method without quasi-local energy: equilibrium state

Conclusively, on these null trapping horizons, there are no
gravitational radiation and matter flux, and κX ’s are constants.
These properties correspond to the equilibrium state of the
thermodynamics of the horizon. Further, now eqs.(39) and (42)
just mean (κX

2π

)
LXS = 0 , LXJφ = 0 , (62)

where S ∼
∫
εq and Jφ ∼

∫
εq (φaωa) can be explained as the

entropy and the angular momentum associated with the null
trapping horizons.
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Method without quasi-local energy: Near equilibrium
state

The near equilibrium means that X is almost a null vector.

Xa = `a − Cna , (63)

For the future trapping horizon, Booth et.el.(2003) give three
slowly expanding conditions :

(F-i). The so called evolving parameter ε� 1 with

ε2

L2
= max

[
|C|
(
‖σ(n)‖2 + (8πG)Tabn

anb +
1

n− 2
θ(n)θ(n)

)]
;

(64)

(F-ii). The Ricci scalar, the SO(1, 1) normal connection and the
energy-momentum tensor satisfy

|R| , ‖ωa‖2 and (8πG)Tab`
anb � 1

L2
;
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Method without quasi-local energy: Near equilibrium
state

(F-i). The derivatives of horizon fields are at most the same order
in ε as the (maximum of the) original fields. For example,

‖DaC‖ �
Cm

L
, ‖DaDbC‖ �

Cm

L2
.

Here, ‖ · ‖ is the norm of (tangent) tensor fields on the
codimension-2 Riemannian manifold, while | · | is the absolute
value of some scalar. The quantity L is some length scale of the
codimension-2 surface. For example, the radius of the closed

(n− 2) manifold: L = (A /Ωn−2)
1

n−2 which has been defined just
bellow eq.(55). Cm is the maximum value of |C| on the
codimension-2 surface. The relation E � F means E ≤ k0F for
some constant k0 of order one.
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Method without quasi-local energy: Near equilibrium
state

The slowly evolving parameter ε defined in the condition (F-i) is
independent of the relabeling of the foliation and the rescaling of
the null frame.

Remembering in the case of future null trapping horizon, to
ensure that some physical quantities do not evolve, we have
required the condition LXωa = 0 and LXκX = 0. These just
mean that ωa and κX do not evolve respect to the evolution vector
Xa. Similarly, here there are also slowly evolving conditions :

(F-i’). ‖LXωa‖ and |LXκX | � ε/L2;

(F-ii’). |LXθ
(n)| � ε/L2.
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Method without quasi-local energy: Near equilibrium
state

For the past trapping horizon, we can gives similar conditions to
describe the slowly expanding properties:

(P-i). The evolving parameter ε� 1 with

ε2

L2
= max

[
|C|
(
‖σ(`)‖2 + (8πG)Tab`

a`b +
1

n− 2
θ(`)θ(`)

)]
;

(P-ii). The Ricci scalar, the SO(1, 1) normal connection and the
energy-momentum tensor satisfy

|R| , ‖ωa‖2 and (8πG)Tab`
anb � 1

L2
;

(P-iii). The derivatives of horizon fields are at most the same order
in ε as the (maximum of the) original fields. For example,

‖DaC‖ �
Cm

L
, ‖DaDbC‖ �

Cm

L2
.
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Method without quasi-local energy: Near equilibrium
state

The slowly evolving conditions are given:

(P-i’). ‖LXωa‖ and |LXκX | � ε/L2;

(P-ii’). |LXθ
(`)| � ε/L2.

With these conditions, one can find that κX is nearly a constant
on the past trapping horizon. So it can also be expanded as

κX = κo + O(ε)

.
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Method without quasi-local energy: Near equilibrium
state

Clausiu like equations:
For the future slowly evolving trapping horizon( κo

8πG

)
LXA =

∫
εq

[
Tab`

a`b + σ
(`)
ab σ

(`)ab
]
, (65)

Similarly, for the past slowly evolving horizon, we have

−
( κo

8πG

)
LXA =

∫
εq

[
Tabn

anb + σ
(n)
ab σ

(n)ab
]
. (66)
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Geometry of FRW universe

The metric of the FLRW universe (M, g) is

g = −dt2 +
a2

1− kr2
dr2 + a2r2dΩ2

n−2 , (67)

by introducing two null vectors ` and n

`adx
a =

√
1
2

(
−dt+

a√
1− kr2

dr

)
, (68)

nadx
a =

√
1
2

(
−dt− a√

1− kr2
dr

)
. (69)

So we have hab = −`anb − na`b, while qab is just the metric for the
sphere part, i.e.,

qabdx
adxb = a2r2dΩ2

n−2.
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Geometry of FRW universe

The expansions of the sphere along these two null directions are
given by

θ(`) = qab∇a`b =
√

2

(
H +

√
1
r̃2
− k

a2

)
, (70)

θ(n) = qab∇anb =
√

2

(
H −

√
1
r̃2
− k

a2

)
. (71)

Here r̃ is defined as r̃ = ar.



Horizons Deformation of submanifolds Quasi-local horizons Horizon thermodynamics Cosmology Conclusion

Geometry of FRW universe

It’s also easy to find

L`θ
(`) = Ḣ − 1

r̃2
−H

√
1
r̃2
− k

a2
,

Lnθ
(`) = Ḣ +

1
r̃2
−H

√
1
r̃2
− k

a2
,

L`θ
(n) = Ḣ +

1
r̃2

+H

√
1
r̃2
− k

a2
,

Lnθ
(n) = Ḣ − 1

r̃2
+H

√
1
r̃2
− k

a2
. (72)

From these equations, we can find trapping horizons and
realize the classification of the horizons.
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Null trapping horizons

Null trapping horizons exist only when k = 0. Further, only inner
horizon exists in the future case, and only outer horizon exists in
the past case. In the following discussions, we always set k = 0.
On the null trapping horizons (future and past), the Hubble
parameter H is always a constant.

We only consider the past outer case.
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Slowly past evolving trapping horizons in FRW universe

The evolution vector X can be expressed as

Xa = α`a − na , (73)

where

α =
Ḣ

Ḣ + 2H2
. (74)

From the definition, the evolving parameter ε in the condition (P-i)
becomes (we only consider the four dimension case, and choose L
to be the radius r̃ = 1/|H| for k = 0.)

ε2

r̃2
= |α|

(
Gab`

a`b +
1
2
θ(`)θ(`)

)
. (75)
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Straightforward calculation shows: on the trapping horizons, ε’s are
given by

ε2 = |α|

(
4− Ḣ

H2

)
. (76)

By defining

s = − Ḣ

H2
> 0 , (77)

then, from the expression of α in eq.(74), we have

α = − s

2− s
. (78)

The evolution parameter ε now has a simple form

ε2 = s

(
4 + s

2− s

)
. (79)
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So, the requirement of the evolving parameter ε� 1 automatically
implies that s = −Ḣ/H2 is very small.

It’s not hard to find

LXκX =
2H2s

(2− s)3

[
2− s+ s2 +

(
Ḧ

ḢH

)]
. (80)

So the slowly evolving condition of κX requires that |Ḧ/H3| is
also a small quantity.
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Thermodynamics on slowly evolving trapping horizon in
FRW

For the past horizon, from eq.(66), we have

− κo

8πG
LXA =

∫
εqTabn

anb . (81)

Up to second order of ε (or the first order of s).
The temperature of the system can be expanded as

T =
κX

2π
∼ H

2π

(
1− s

2

)
+ O(ε4) .
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Temperature from the formalism with quasi-local
energy

The surface gravity κ in eq.(48) becomes

κ

2π
= −H

2π

(
1− s

2

)
, (82)

where s is defined in eq.(77). So the temperature of the past outer
trapping horizon is

T =
|κ|
2π

=
H

2π

(
1− s

2

)
The Clausius relation is

AψaX
a =

κ

2π
LXS . (83)
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Questions and Discussions

• How to define a slowly evolving quasi-local horizon without
using a local frame?

• The detailed relation between slowly evolving quasi-local horizon
in FRW universe and slow-roll inflation is still not clear.

• How to establish a first law (on the general quasi-local horizon )
which has a similar form like the one for stationary black hole?
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Thanks for your attention!
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