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For measurements of the Hulse-Taylor binary
system that provides indirect evidence for
existence of gravitational waves.
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Physics 2020

Credit: https://www.nasa.gov/mission_pages/herschel/multimedia/pial7009.html
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The gravitational wave background (GWB) is
formed by many different overlappin
gravitational-wave signals emitted from th
cosmic population of supermassive binary
black holes and/or other cosmological
processes.
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Gravitational-Wave Spectrum and Hellings-Downs Curve

The timing-residual cross-power
spectral density
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NANOGrav 15-year:

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15-year pulsar-timing
data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings—
Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background

with a power-law-spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 1014,
and this same model is favored over an uncorrelated common power-law—spectrum model with Bayes factors of 200-1000,
depending on spectral modeling choices. We have built a statistical back-ground distribution for these latter Bayes factors using

a method that removes inter-pulsar correlations from our data set, finding p = 1073 (approx. 30) for the observed Bayes factors
In the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields

p=5%107—1.9 x 10~ (approx. 3.5 — 40). Assuming a fiducial f~>> characteristic-strain spectrum, as appropriate for an

ensemble of binary supermassive black-hole inspirals, the strain amplitude is 2.4J_r8:g X 10~1° (median +90% credible interval) at

a reference frequency of 1 yr‘l. The inferred gravitational-wave background amplitude and spectrum are consistent with
astrophysical expectations for a signal from a population of supermassive black-hole binaries, although more exotic
cosmological and astrophysical sources cannot be excluded. The observation of Hellings—Downs correlations points to the
gravitational-wave origin of this signal.

NANOGrav collaboration, ApJL 951:L8 (arXiv:2306.16213)



EPTA DR2:

We present the results of the search for an isotropic stochastic gravitational wave background (GWB) at nanohertz frequencies
using the second data release of the European Pulsar Timing Array (EPTA) for 25 millisecond pulsars and a combination with the
first data release of the Indian Pulsar Timing Array (InPTA). A robust GWB detection is conditioned upon resolving the Hellings-
Downs angular pattern in the pairwise cross-correlation of the pulsar timing residuals. Additionally, the GWB is expected to yield
the same (common) spectrum of temporal correlations across pulsars, which is used as a null hypothesis in the GWB search.
Such a common-spectrum process has already been observed in pulsar timing data. We analysed (i) the full 24.7-year EPTA data
set, (ii) its 10.3-year subset based on modern observing systems, (iii) the combination of the full data set with the first data
release of the InPTA for ten commonly timed millisecond pulsars, and (iv) the combination of the 10.3-year subset with the InPTA
data. These combinations allowed us to probe the contributions of instrumental noise and interstellar propagation effects. With
the full data set, we find marginal evidence for a GWB, with a Bayes factor of four and a false alarm probability of 4%. With the

10.3-year subset, we report evidence for a GWB, with a Bayes factor of 60 and a false alarm probability of about 0.1% ( 2 30
significance). The addition of the InPTA data yields results that are broadly consistent with the EPTA-only data sets, with the
benefit of better noise modelling. Analyses were performed with different data processing pipelines to test the consistency of the
results from independent software packages. he latest EPTA data from new generation observing systems show non-negligible
evidence for the GWB. At the same time, the inferred spectrum is rather uncertain and in mild tension with the common signal
measured in the full data set. However, if the spectral index is fixed at 13/3, the two data sets give a similar amplitude of

(2.5x0.7) X 10~1 at a reference frequency of 1 yr‘l . Further investigation of these issues is required for reliable
astrophysical interpretations of this signal. By continuing our detection efforts as part of the International Pulsar Timing Array
(IPTA), we expect to be able to improve the measurement of spatial correlations and better characterise this signal in the coming
years..

Antoniadis et al., A&A (arXiv:2306.16214)



PPTA DRS3:

Pulsar timing arrays aim to detect nanohertz-frequency gravitational waves (GWs). A background of GWs modulates pulsar
arrival times and manifests as a stochastic process, common to all pulsars, with a signature spatial correlation. Here we describe
a search for an isotropic stochastic gravitational-wave background (GWB) using observations of 30 millisecond pulsars from the
third data release of the Parkes Pulsar Timing Array (PPTA), which spans 18 years. Using current Bayesian inference technigques

we recover and characterize a common-spectrum noise process. Represented as a strain spectrum i, = A(f/ lyr_l)“, we

measure A = 3.1J_“(1):g X 1071 and @ = — 0.45 £ 0.20 respectively (median and 68% credible interval). For a spectral index of
a = — 2/3, corresponding to an isotropic background of GWs radiated by inspiraling supermassive black hole binaries, we

recover an amplitude of A = 2.041“8:%; x 10712, However, we demonstrate that the apparent signal strength is time-dependent,

as the first half of our data set can be used to place an upper limit on A that is in tension with the inferred common-spectrum
amplitude using the complete data set. We search for spatial correlations in the observations by hierarchically analyzing
individual pulsar pairs, which also allows for significance validation through randomizing pulsar positions on the sky. For a

process with ¢ = — 2/3, we measure spatial correlations consistent with a GWB, with an estimated false-alarm probability of

p < 0.02 (approx. 20). The long timing baselines of the PPTA and the access to southern pulsars will continue to play an
important role in the International Pulsar Timing Array.

Reardon et al., ApJL (arXiv:2306.16215)



CPTA DR1.:

Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational
waves (GWSs). The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced
pulsar-pairs. The Chinese Pulsar Timing Array (CPTA) is a collaboration aiming at the direct GW detection with observations
carried out using Chinese radio telescopes. This short article serves as a “table of contents” for a forthcoming series of papers
related to the CPTA Data Release 1 (CPTA DR1) which uses observations from the Five-hundred-meter Aperture Spherical radio

Telescope (FAST). Here, after summarizing the time span and accuracy of CPTA DR1, we report the key results of our statistical
inference finding a correlated signal with amplitude logA,. = — 14.43:3 for spectral index in the range of @ € [—1.8,1.5]
assuming a GW background (GWB) induced quadrupolar correlation. The search for the Hellings-Downs (HD) correlation curve

is also presented, where some evidence for the HD correlation has been found that a 4.6 — o statistical significance is achieved
using the discrete frequency method around the frequency of 14 nHz. We expect that the future International Pulsar Timing Array
data analysis and the next CPTA data release will be more sensitive to the nHz GWB, which could verify the current results.

Xu et al., RAA 23:075024 (arXiv:2306.16216)
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SuperMassive Black Hole Binaries
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Gravitational-Wave Background from SMBHBs
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Conclusion and Discussion

- Recently NANOGrav, EPTA, PPTA and CPTA independently reported strong evidence for
a stochastic signal consistent with Gravitational-Wave Background (GWB). Although we
do not have substantial evidence yet, we may be beginning to detect a GWB.

- Supermassive Black Hole Binaries (SMBHBs) provide one of the most promising GW
sources for the stochastic signal detected by PTAs.

~ In addition to SMBHBs, more exotic cosmological sources can also produce detectable

GWBs in the nHz range. [INANOGrav collaboration, Astrophys.dJ.Lett. (2023), Antoniadis et al.,
arXiv:2306.16227]



® Einstein’s general relativity or beyond?

1) The velocity of gravitational wave: Vo = C (massless)

2) Quadrupole radiation

3) Two tensor polarization modes



Massive graviton

K = (w0,K) : a)=\/mgz+|k|2 = fr=m, (< 1/T=82x107% ¢V)

12

ORF

[
o

90% credible interval for Ag, (x 1071°)

ORF

BF

m.=10"23eV | 10—24.5 10—24.3 10—24.1 10—23.9 10—23.7 10—23.5 10—23.3 10—23.1
g
mg/(eV/c?)
Lee et al., ApJ (2010)

Liang & Trodden, PRD (2021) Wu, Chen, Bi & QGH, arXiv:2310.07469
Wu, Chen & QGH, PRD (2023)



Dispersion relation: ® = vk
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Gravitational-Wave Polarization

General Relativity

General relativity predicts that gravitational waves have
two independent tensor polarization modes.

A most general metric gravity theory can allow two
vector modes (VL) and two scalar modes (ST and SL)
besides the two tensor modes in general relativity.

The over-lap reduced function (ORF) for TT and ST
modes are given by

1 3 1
Fgg(f) = 5(1 + 5ab) + Ekab <1H kab — g) ki = (1 —cos¢,,)/2
°I(f) = : 3+46
()= g( +49,, + €08 S )
The ORF for the general transverse mode is defined by
GT 1 o
Fab (f) = §(3 + 45ab + COS fab) + Ekab In kab
which reduced to TT for ¢ = 3 and ST for a = 0.

Closed-form expressions for the SL and VL modes are
not available, and have to be computed numerically.
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NANOGrav 12.5-yr

The common-spectrum process is taken as the fiducial model M,

ephemeris VL SL
DE438 1.94(3) 0.373(5)
BAYESEPHEM 1.31(2) 0.555(7)

TABLE II. The Bayes factors for various models compared
to the UCP model. The digit in the parentheses gives the

uncertainty on the last quoted digit.

Lee & Wagenmakers, 2015

Bayes Factor Interpretation
> 100 Extreme evidence for alternative hypothesis
30- 100 Very strong evidence for alternative hypothesis
10- 30 Strong evidence for alternative hypothesis
3-10 Moderate evidence for alternative hypothesis
1-3 Anecdotal evidence for alternative hypothesis
1 No evidence

Probability Density

Strong Bayesian Evidence

5 - —] DE438
BAYESEPHEM
4_
3_
2_
1_
—d—l_l_l_l_ _I_
. . . ... S
—15.4 —15.2 —15.0 —14.8 —14.6
10g10AST
_ +0.35 —15 ST __ +1.21 -9
Agr = 1.067 5 X 10772, or, Q. = 1.547 5, X 10

(90% confidence level)

Chen, Yuan & QGH, SCPMA 64(2021)12, 120412 (arXiv:2101.06869)



NANOGrav 15-yr

Bayesian Factor compared to TT polarization mode

Modelf ST VL SL TT + STJGT-best
BF ]0.40(3)§0.12(2) 0.002(1) 0.943(5) | 3.9(3)
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