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Introduction

What is gravitational lensing?

The phenomena that the photons deviate from their straight

path in a gravitational field.

What is gravitational lens?

The object which causes a detectable deflection. (such as the

sun, galaxy or black hole.)



Classes of gravitational lensing:

1 Strong gravitational lensing

large deflection angle

2 Weak gravitational lensing

small deflection angle

3 Microlensing

change in time



Why gravitational lensing?

1 provide information about the distant stars.

2 test the exotic objects (like cosmic strings, gravitomagnetic

mass) in the universe.

3 estimate the values of the cosmological parameters.

4 provide a profound verification of alternative theories of

gravity in their strong field regime.

5 ......



Strong gravitational lensing



Einstein ring:



Einstein cross:



Black hole lensing:



Black hole lensing:

(a) standard lensing, and (b), (c) to retrolensing.



Black hole lensing:



Spherically symmetric spacetime

Consider a spherically symmetric spacetime

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where

A(r →∞) = 1− 2M

r
, (2)

B(r →∞) = 1 +
2M

r
, (3)

C(r →∞) = r2. (4)

Lensing described by this metric correctly matches the weak

gravitational field far from the lensing object.



Equations of motion for photon on the equatorial plane

(θ = π/2)

pt = −Aṫ = −E = Const, (5)

pφ = Cφ̇ = L = Const, (6)

uµuµ = 0 = Const. (7)

⇓

ṫ =
E

A
, (8)

ṙ2 =
E2

AB
− L2

BC
, (9)

φ̇ =
L

C
. (10)



Consider the case that a photon incomes from infinity with

the impact parameter u, reaches a minimum distance r0,

then returns to infinity.

The deflection angle

α(r0) = I(r0)− π, (11)

with the total azimuthal angle

I(r0) =

∫
dφ = 2

∫ ∞
r0

[
dφ

dτ

(
dr

dτ

)−1 ]
dr

= 2

∫ ∞
r0

√
B

√
C
√

CA0
C0A
− 1

. (12)



Behavior of the deflection angle



Photon sphere equation

The photon sphere with radius rps is an unstable circular of

light, which satisfies the three conditions

Veff
∣∣
r=rps

= 0, (13)

V ′eff
∣∣
r=rps

= 0, (14)

V ′′eff
∣∣
r=rps

< 0, (15)

with effective potential Veff = −ṙ2 = L2

BC −
E2

AB .

(13) gives the minimum impact parameter ups =
√

Cps

Aps
.

(14) leads to the photon sphere equation

ApsC
′
ps −A′psCps = 0. (16)

(15) is the unstable condition.



The deflection angle formula

Define two new variables

y = A(r), (17)

z =
y − y0

1− y0
. (18)

The total azimuthal angle (12) can be expressed as

I(r0) =

1∫
0

R(z, r0)f(z, r0)dz, (19)

where

R(z, r0) =
2
√
By

CA′
(1− y0)

√
C0, (20)

f(z, r0) =
1√

y0 − [(1− y0) z + y0] C0
C

. (21)



Expanding the argument of the square root in f(z, r0) to the

second order in z (f(z, r0) is singular at z = 0):

f (z, r0) ∼ f0(z, r0) =
1√

αz + βz2
, (22)

α =
1− y0

C0A′0

(
C ′0A0 − C0A

′
0

)
,

β =
(1− y0)2

2C2
0A
′
0

3

[
2C0C

′
0A
′
0

2
+
(
C0C

′′
0 − 2C ′0

2
)
y0A

′
0 − C0C

′
0y0A

′′
0

]
.

1 α 6= 0⇒ f(z, r0) is finite.

2 α = 0⇒ f(z, r0) is unlimited.

Note: α = 0⇒ photon sphere equation (16).



Splitting the total azimuthal angle (19) into two pieces

I(r0) = ID(r0) + IR(r0), (23)

with divergent part ID(r0) and regular part IR(r0)

ID(r0) =

1∫
0

R(0, rps)f0(z, r0)dz, (24)

IR(r0) =

1∫
0

g(z, r0)dz, (25)

where

g(z, r0) = R(z, r0)f(z, r0)−R(0, rps)f0(z, r0). (26)



Divergent part ID(r0) can be solved exactly,

ID(r0) = R(0, rps)
2√
β

log

√
β +
√
α+ β√
α

. (27)

Expanding α and β to order O(r0 − rps), it can be written as

ID(r0) = −a log

(
r0

rps
− 1

)
+ bD +O(r0 − rps), (28)

a =
R(0, rps)√

βps
, (29)

bD =
R(0, rps)√

βps
log

2(1− yps)
A′psrps

, (30)

βps = β|r=rps . (31)



Regular part IR(r0) in powers of (r0 − rps):

IR(r0) =

∞∑
n=0

1

n!
(r0 − rps)n

1∫
0

∂ng

∂rn0

∣∣∣∣
r0=rps

dz, (32)

up to order O(r0 − rps), it is

IR(r0) =

1∫
0

g(z, rps)dz +O(r0 − rps), (33)

and

bR = IR(rps), (34)

which can be easily evaluated numerically.



Combing the two parts,

α(r0) = −a log

(
r0

rps
− 1

)
+ b+O (r0 − rps) , (35)

b = −π + bD + bR. (36)

From α(r0) to α(θ), the deflection angle α(θ)1

α(θ) = −a log

(
θDOL

ups
− 1

)
+ b, (37)

with the strong deflection limit coefficients

a =
R(0, rps)

2
√
βps

, (38)

b = −π + bR + a log
2βps
yps

. (39)

1Bozza, PRD 66, 103001 (2002)





Lens equation: 2

tanβ = tan θ − DLS

DOS

[
tan(α− θ) + tan θ

]
. (40)

Highly aligned case (β, θ ∼ 0)

β = θ − DLS

DOS
∆αn, (41)

with ∆αn = α− 2nπ and n denotes the number of loops done

by the photon.

2Virbhadra, Ellis, PRD 62, 084003 (2000)



Angular positions

θn = θ0
n +

upsen
(
β − θ0

n

)
DOS

aDLSDOL
, (42)

Magnification

µn = en
u2
ps (1 + en)DOS

aβD2
OLDLS

, (43)

with

θ0
n =

ups
DOL

(1 + en) , en = e
b−2nπ
a . (44)

1 For non-zero β the first image is the brightest one among

the relativistic images and its brightness decreases

quickly with the increasing of the distance DOL.

2 It will be no longer valid when β = 0.



Observable quantities

Observable quantities:

1 The angular position θ∞

2 The angular separation s

3 The ratio of the flux r̃



Relation between strong field limit coefficients and

observable quantities:3

1 θ∞ =
ups

DOL

2 s = θ1 − θ∞ = θ∞e
b̄−2π
ā

3 r̃ = µ1/
∑∞

n=2 µn = e2π/ā

3Bozza, PRD 66, 103001 (2002)



Axisymmetric space-time

Kerr black hole pierced by a cosmic string 4

ds2 = −
(

1− 2Mr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dϑ2

+ β2

(
r2 + a2 +

2Mra2 sin2 ϑ

ρ2

)
sin2 ϑdφ2

− β
4Mra sin2 ϑ

ρ2
dtdφ, (45)

where

∆ = r2 − 2Mr + a2, (46)

ρ2 = r2 + a2 cos2 ϑ. (47)

4Wei, Liu arXiv:1107.3023[hep-th]



The photon circle equation in the equatorial plane:

rc(2βrc − 3)2 − 8βa2
∗ = 0, (48)

with a∗ = a/2Mphys = a/2Mβ.



The deflection angle

α(u) = −a log

(
u

uc
− 1

)
+ b (49)





Behavior of the deflection angle with fixed u = uc + 0.0025



Magnification:

µ =
d2AI
d2AS

=
(DOL +DLS)2

DOLDLS

ūuceγ
āK(γ)

, (50)

with eγ = e(b̄+γ)/ā.



Angular positions of the caustic points:

K(γ) = −ū(DLS +DOL)Cn +DOLDLSSn = 0. (51)





Caustic structure:



Caustic structure:



Absorption cross section

A measure for the probability of an absorption process.



Black hole

Low energy: ∼ Ah

High energy: oscillates around the geometrical cross

section of its photon sphere



High-energy absorption cross section

metric (f(r → +∞)→ 1)

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

(D−2), (52)

equatorial hyperplane (θi = π/2)

in the eikonal approximation



High-energy absorption cross section

σabs(ω) = σlim + σosc, (53)

σlim = σgeo =
π
D−2

2 bD−2
ps

Γ(D/2)
,

σosc(ω) = (−1)D−34(D − 2)πηpse
−πηps sin(ωTps)

ωTps
σgeo,

with

bps =
rps√
fps

, ηps =

√
fps −

1

2
r2
psf
′′
ps. (54)

Orbital period: Tps = 2πbps

Geometrical cross section: σgeo



Under metric (52), the strong deflection limit coefficients

ups = L =
rps√
fps

, (55)

ā =

√
2

2fps − r2
psf
′′
ps

, (56)

b̄ = −π + bR + ā ln

[
1

2f3
ps

(
1− fps
ā

)2 ]
. (57)



Relation between high-energy absorption cross section and

gravitational lensing

bps =
ups
c

(58)

ηps =
1

ā
(59)

or, in terms of the observables

ηps =
1

2π
ln r̃, (60)

bps =
DOLθ∞

c
= 2π∆T2,1 (61)

∆T2,1: time delay between the first relativistic image and the

second one.



New expression: 5

σabs(ω) = (2π∆T2,1)D−2 2πK ln r̃√
r̃
· sin(4π2ω∆T2,1)

4π2ω∆T2,1

+
2D−2π(3D−6)/2(∆T2,1)D−2

Γ(D2 )
. (62)

Total energy per unit time and energy interval dω is

d2E(ω)

dωdt
=

(
(4π)

D−1
2 Γ

(D − 1

2

))−1 2σabs(ω)

e
ω
TH − 1

ωD−1, (63)

5Wei, Liu et.al., PRD(R) 84, 041501 (2011)



Thanks for your attention!


