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Introduction

• Two kinds of D-branes in Type II superstring theories:

−Stable or BPS branes : supersymmetric, RR charged

−Unstable or non-BPS branes : non-susy, uncharged

• The low energy dynamics of D-branes can be captured by the Dirac-Born-Infeld

(DBI) type effective action

−For a non-BPS D-brane, there is a tachyon field T in the DBI action

−For a BPS D-brane, there are only stable fields in the DBI action
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• The DBI effective action for a non-BPS D-brane (in the absence of other

worldvolume fields) is given by

S = −
∫

dp+1xC(T )
√

1 + ηµν∂µT∂νT , (1)

where C(T ) is the runaway tachyon potential which has the maximum value

Cm at T = 0 and the minimum value 0 as |T | → ∞.

− Non-BPS D-branes can decay into BPS ones of fewer dimensions ——

the tachyon condensation process [a series of work by Sen], which can be

described by this DBI action

− Applications of this action to understand inflation, dark matter, the

producation and evolution of cosmic strings [Gibbons02,Choudhury02,Frolov02,

Kofman02,Sarangi02,Dvali03] has been investigated. It is shown that the

detailed models are problematic [Kofman02]
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• Singularities

The quation of motion from the above tachyon field action is:

(1 + ∂T · ∂T )

(
�T − C′

C

)
= ∂µT∂νT∂µ∂νT, (2)

where � = ηµν∂µ∂ν and C′ = ∂C(T )/∂T .

Both analytical and numerical calculations have shown that the time evolution of

the tachyon field in this equation develops into two featured regions:

−kinks and anti-kinks (T = 0), corresponding to the produced stable

D-branes and anti-D-branes at the end of tachyon condensation

−extrema (|T | → ∞), the vacuum
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Figure 1: The static kink solution in the p = 1.
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Further studies show that there develope singularities in these two regions:

−Around (anti-)kinks [Cline03]: the field gradients grows to infinity in finite

time

−Around extrema [Felder et al 02,04,Hindmarsh&Li09]: caustic development,

i.e., the second order derivatives of the tachyon field blow up in finite time

The existence of the singularities makes it hard to get complete numerical

simulations based on this theory in the spacetime-dependent case. So it is hard to

apply this theory.

• In this work, we try to explore exact analytical solutions in the DBI effective

theory.
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Exact solutions in the DBI effective theory

For completeness, we generalise the DBI effective action of a real tachyon field T to

the action of a general real scalar field X :

S = −
∫

dp+1xC(X)
√

1 + ηµν∂µX∂νX, (3)

where C(X) is the potential.

−For a tachyon , we denote X = T . It describes an unstable D-brane

−For a massless scalar , we denote X = Y . It can describe the fluctuations

of a stable D-brane in a transverse direction

−For a massive scalar , we denote X = Φ. It may describe confined

fluctuations (probably!) of a stable D-brane ——- less interesting
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• Equation of motion

(1 + ∂X · ∂X)

(
�X − C′

C

)
= ∂µX∂νX∂µ∂νX, (4)

where C′ = ∂C(X)/∂X .

• The energy-momentum tensor

Tµν(X) = C(X)

[
∂µX∂νX√

1 + ∂X · ∂X
− ηµν

√
1 + ∂X · ∂X

]
, (5)
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• Exact solution

Now we try to get exact solutions in the above DBI effective theory using the

field redefinition technique.

Adopt the following field redefinition relation:

X = f(φ) (6)

The equation of motion becomes

1

f ′2

[
�φ +

(
f ′′

f ′
− C′

C f ′

)
(∂φ · ∂φ)−C′

C
1

f ′

]
(7)

+[(∂φ · ∂φ)�φ − ∂µφ∂νφ∂µ∂νφ] = 0,

where f ′ = ∂f(φ)/∂φ and C′ = ∂C(f)/∂f .
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Consider the case:
f ′′

f ′
− C′

C f ′ = 0, −C′

C
1

f ′
= αφ. (8)

Under these two conditions, the equation of motion (7) is

1

f ′2
(�φ + αφ) + [(∂φ · ∂φ)�φ − ∂µφ∂νφ∂µ∂νφ] = 0. (9)

Obviously, this equation has the following exact solution of a single momentum

mode k

φ = φ+eik·x + φ−e−ik·x, k2 = α. (10)

− α = 0, φ is a massless scalar

− α < 0, φ is a massive scalar

− α > 0, φ is a tachyon

To derive the solution, we need to determine the mapping relation f and the

potential C under these two conditions, depending on the sign of α:
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− Massless scalar

α = 0 : Y = f = φ, C = Cm (11)

− Massive scalar

α = −γ2 < 0 : Φ = f(φ) =
1

γ
sin−1(γφ), C(Φ) =

Cm

cos(γΦ)
(12)

− Tachyon

α = β2 > 0 : T = f(φ) =
1

β
sinh−1(βφ), C(T ) =

Cm

cosh(βT )
a (13)

aThis potential has been derived in string field theory [Kutasov03] and is widely adopted in studies of

tachyon condensation
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After the field redefinition, the DBI action of X becomes:

S = −
∫

dp+1xV (φ)
√

U(φ) + ∂µφ∂µφ. (14)

where

V (φ) = |f ′|C(f) =
Cm

1 + αφ2
, (15)

U(φ) =
1

(f ′)2
= 1 + αφ2. (16)

This action for a tachyon field case has been derived in string field theory

[Kutasov03].
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• More about the exact solution :

φ = φ+eik·x + φ−e−ik·x, k2 = α, (17)

(a) For a tachyon field α = β2 > 0, no real solution has been found in

the full spacetime-dependent case (because for a tachyon field of growing

mode, k0 is imaginary but ~k is real). But real solutions can exist in the

time-dependent and the space-dependent cases, which are respectively

T (t) =
1

β
sinh−1[Tsh sinh(βt) + Tch cosh(βt)], (18)

and

T (~x) =
1

β
sinh−1[Ts sin(~k · ~x) + Tc cos(~k · ~x)], ~k2 = β2.a (19)

aIn the p = 1 case, it is the well known kink-anti-kink solution.
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(b) For a massless scalar α = 0, besides the above oscillating mode

solution, there exists an extra zero mode solution:

∂µY = ∂µφ = aµ, (20)

with a2 ≥ −1. It describes a p-dimensional plane moving with the velocity

Ẏ = a0.

In contrast to the mode expansions of strings , here the exact solution implies:

the Dp-brane moves or oscillates in a single mode.
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• The energy-momentum tensor from the exact solution

− The energy-momentum tensor from the exact solutions shows that the

pressure of massless and massive scalars is generically negative on stable

D-branes.

For example, for the oscillating mode solution of the massless scalar, the

energy-momentum tensor is

Tµν = Cm(∂µY ∂νY − ηµν). (21)

− The energy-momentum tensor of tachyon field on unstable D-branes

cannot be obtained from the exact solution, but has been determined in

previous work. The result shows that the tachyon field evolves into a

pressureless state, probably corresponding to some unknown tachyon matter .
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Exact solutions in the presence of worldvolume massless fiel ds

In the presence of worldvolume massless fields, the DBI effective action (for a single

Dp-brane) is given by [Garousi00,Sen03,04]:

S = −
∫

dp+1xC(X)
√
− det(ηµν + ∂µX∂νX + ∂µY I∂νY I + Fµν),

(22)

where

Y I (I = p + 1, · · · , D − 1): a set of massless scalars transverse to the

worldvolume of the Dp-brane, describing the fluctuations of the Dp-brane

in transverse directions

Fµν = ∂µAν − ∂νAµ: the field strength of the U(1) gauge field Aµ on the

Dp-brane
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Coupling to transverse massless scalars

Dropping the gauge fields, we can write the action in the explicit form:

L = −C(X)

[
1 + M + ∂µX∂µX +

1

2
HIJ

µν HIJµν +
1

2
HI

µν(X)HIµν(X)

] 1

2

,

(23)

where

M =
∑

I

∂µY I∂µY I , (24)

HI
µν(X) = ∂µX∂νY I − ∂νX∂µY I , (25)

HIJ
µν = ∂µY I∂νY J − ∂νY I∂µY J . (26)
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After the field redefinitions X = f(φ) adopted in the previous section, the action is

rewritten

L = −V (φ)

[(
1 + M +

1

2
HIJ

µν HIJµν

)
U(φ) + ∂µφ∂µφ +

1

2
HI

µνHIµν

] 1

2

,

(27)

where

U(φ) =
Cm

V (φ)
= 1 + αφ2, (28)

HI
µν = ∂µφ∂νY I − ∂νφ∂µY I , (29)

α = 0: φ massless scalar; α < 0: φ massive scalar; α > 0: φ tachyon.
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• Equations of motion

The equations of motion of Y I and φ from this Lagrangian are respectively

∂µ

(
∂µY I + HIJ

µν ∂νY J − V (φ)HI
µν∂νφ

y

)
= 0, (30)

∂µ

(
∂µφ + HI

µν∂νY I

y

)
+

(
1 + M +

1

2
HIJ · HIJ

)
αφ

y
= 0, (31)

where y is the kinetic part of the DBI action: L = −V (φ)y.
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• Exact solutions in the time-dependent case

For a massless scalar α = 0, φ has the massless scalar solution.

For a tachyon α = β2,

φ = φsh sinh (ωt) + φch cosh (ωt), ω2 = (1 − a2
0)β

2, (32)

For a massive scalar α = −γ2,

φ = φs sin (ωt) + φc cos (ωt), ω2 = (1 − a2
0)γ

2, (33)

where a0 is the velocity of the whole brane

a2
0 =

∑

I

(Ẏ I)2. (34)

Implications:

−D-branes move or not: massless scalar propagate with the same speed.

−Unstable D-branes (like D-particles) decay slower when moving faster;

−Massive scalar oscillates slower on a stable D-brane moving faster;
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• Exact solutions in the spacetime-dependent case

We find exact solutions from the equations of motion

∂µY I(xµ) = aI
µ, a2 =

∑

I

aI
µaIµ ≥ −1, (35)

φ(xµ) = φ+eik·x + φ−e−ik·x, k2 = (1 + a2)α, (36)

with their momenta satisfying the coupling relations

aI
µ

aI
ν

=
aJ

µ

aJ
ν

=
kµ

kν

, (37)

which equivalently give

aI
0

aJ
0

=
aI
1

aJ
1

= · · ·
aI

p

aJ
p

= const,
aI
0

k0

=
aI
1

k1

= · · · =
aI

p

kp

= const, (38)
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Coupling to gauge fields

Dropping the transverse massless scalars Y I , we get the DBI action of X

coupling to gauge fields

S = −
∫

dp+1xC(X)
√
− det(ηµν + ∂µX∂νX + Fµν). (39)

We take the p = 3 brane as an example. In this case, this action can be written

explicitly

S = −
∫

d4xC(X)

[
1 + ∂µX∂µX +

1

2
FµνFµν − 1

16
(FµνF̃µν)2 − G2

X

] 1

2

,

(40)

where

F̃µν =
1

2
ǫµνρλFρλ, (41)

G2
X = (F̃µν∂νX)(F̃µρ∂

ρX). (42)
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After field redefinition, the action becomes

L = −V y = −V

[(
1 +

1

2
F · F − 1

16
(F · F̃ )2

)
U + ∂µφ∂µφ − G2

] 1

2

,

(43)

where

U =
Cm

V
= 1 + αφ2, (44)

G2 = GµGµ = (F̃µν∂νφ)(F̃µρ∂
ρφ). (45)
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• Equations of motion

∂µ

(
Fµν − 1

4
(F · F̃ )F̃µν

y

)
= V ǫµνρλ∂µ

(
Gρ

y

)
∂λφ, (46)

and

∂µ

(
∂µφ + F̃µνGν

y

)
+

(
1 +

1

2
F · F − 1

16
(F · F̃ )2

)
αφ

y
= 0. (47)
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• Exact solutions in the time-dependent case

For a tachyon α = β2

φ = φsh sinh (ωt) + φch cosh (ωt), ω2 = (1 − r)β2, (48)

For a massive scalar α = −γ2

φ = φs sin (ωt) + φc cos (ωt), ω2 = (1 − r) γ2, (49)

where

r =
E · E

1 + B · B
. (50)

Implications:

−The electric fields tend to slow down while the magnetic fields tend to

expedite the decay process of unstable D-branes.

−Similar results apply to the massive scalar.
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• Exact solutions in the presence of constant EM fields

In the spacetime-dependent case, setting all components of the EM fields E and

B to be constant, we can have the exact solution from the equations of motion

φ = φ+eik·x + φ−e−ik·x, (51)

with

k2 = (F̃µνkν)(F̃µρkρ) + [1 + B2 − E2 − (E · B)2]α, (52)

Implications:

The first term of the expression of k2 is non-negative. Thus a tachyon (α > 0)

will be always a tachyon (k2 > 0) in the presence of constant EM fields.

However, the massless and massive scalars (α ≤ 0) may become tachyonic

(k2 > 0) in the presence of the constant EM fields. To avoid this, massless and

massive scalars on D-branes must oscillate in some specific modes such that

k2 ≤ 0.
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• Exact solutions in the presence of EM wave

For simplicity, we switch on a single gauge field component A3 which satisfies

the Lorentz gauge condition ∂3A3 = 0 (i.e., A3 is homogeneous along the x3

direction). Then the non-vanishing components of the field strength are:

F03 = ∂0A3 = E3, F13 = ∂1A3 = B2, F23 = ∂2A3 = −B1.(53)

For convenience, we denote A3 by A and m = 0, 1, 2.
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In this case, the solutions of A and φ from the above two field equations can be:

A = A+eiqmxm

+ A−e−iqmxm

, q2
0 = q2

1 + q2
2 , (54)

φ(xµ) = φ+eikµxµ

+ φ−e−ikµxµ

,
k0

q0

=
k1

q1

=
k2

q2

, k2
3 = α, (55)

Features:

− When α = 0, the solutions are valid, indicating that the massless scalar φ

propagates together with the gauge field A;

− When α = β2, k3 is real. To keep φ real, k0, k1 and k2 must be all real as

well. Thus φ oscillates, describing a scalar propagating faster than light

——- problematic;

− When α = −γ2, k3 is imaginary. To keep φ real, k0, k1 and k2 must be

all imaginary. Thus φ grows ——- problematic.
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Summary

• It is possible to obtain exact solutions in the DBI effective theory, even in the

presence of worldvolume massless fields, which makes it possible to extract

exact information in this theory

• From the exact solutions, we found that the pressure of massless and massive

scalars on D-branes was generically negative

• By deriving the exact solutions, we can determine the dynamics of D-branes that

are moving at different angles, and that contain EM fields or EM waves on them

• Massless fields (like massless scalars and gauge fields) and the couplings

between them are well described in the DBI effective theory (as an action at low

energy). In any case, we found valid exact solution
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