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Introduction

Motivations of quantum gravity

From the beginning of last century to now, two fundamental theories of
physics, QM and GR, have destroyed the coherent pictures of the physical
world.
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Introduction

Classical Gravity - Quantum Matter Inconsistency

Rαβ[g ]− 1

2
R[g ]gαβ = κTαβ[g ].

In quantum field theory the energy-momentum tensor of matter field
should be an operator-valued tensor T̂αβ.

Singularity in General Relativity
In 1960s Penrose and Hawking proved that singularities are inevitable
in general spacetimes with certain reasonable conditions on energy
and causality by the well-known singularity theorem.
Thus general relativity can not be valid unrestrictedly.

Infinity in Quantum Field Theory
It is expected that some quantum gravity theory, playing a
fundamental role at Planck scale, would provide a natural cut-off to
cure the UV singularity in quantum field theory.
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Introduction

The interpretation of black hole thermodynamics

SBH =
kBc3ArBH

4G~
.

This equation brings together the three pillars of fundamental physics.
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Introduction

The basic ideas of LQG

? GR-Notions of space, time and causality: Spacetime is dynamical;
QM-Notions of matter and measurement: Dynamical entity is made
up of quanta and in probabilistic superposition state.

? The application of perturbative quantization to GR fails due to its
nonrenormalizability.

gab = ηab + hab.

The separation of the gravitational field from background spacetime
is in strident contradiction with the very lesson of GR.

? The viewpoint of background independence:
GR’s revolution: particle and fields are neither immersed in external
space nor moving in external time, but live on one another.
The quanta of the field cannot live in background spacetime. They
should build spacetime themselves.
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Introduction

? LQG inherits the basic idea of Einstein that gravity is fundamentally
spacetime geometry.
Hence the theory of quantum gravity is a quantum theory of
spacetime geometry with diffeomorphism invariance.

? Idea: combine the basic principles of GR and QM.

? The choice of the algebra of field functions to be quantized:
Not the positive and negative components of the field modes as in
conventional QFT; but the holonomies of the gravitational connection
and the electric flux.

? The physical meaning of holonomies:
Faraday - lines of force: the relevant variables do not refer to what
happens at a point, but rather refer to the relation between different
points connected by a line.

A(c) = P exp
(
−
∫ 1

0
[Ai

aċaτi ] dt
)
.
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Classical Connection Dynamics of GR

The Lagrangian formulation

• The generalized Palatini action in which we are interested is given by
[Holst 1996]:

SG [eβK , ω
IJ
α ] =

1

2κ

∫
M

d4x(e)eαI eβJ (Ω IJ
αβ +

1

2β
εIJKLΩ KL

αβ ), (1)

where β is the Barbero-Immirzi parameter.

• The variation of SG with respect to the connection ω IJ
α leads to the

conclusion that the connection ω IJ
α is the unique torsion-free

Levi-Civita spin connection compatible with the tetrad eαI .

• As a result, the second term in the action SG is vanishing.
So the generalized Palatini action returns to the Palatini action,
which will certainly give the Einstein field equation.
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Classical Connection Dynamics of GR

Classical Connection Dynamics of GR

• After the 3+1 decomposition and the Legendre transformation, the
generalized Palatini action can be expressed as:

SG =

∫
R

dt

∫
Σ

d3x [P̃a
i LtAi

a −Htot(Ai
a, P̃

b
j ,Λ

i ,N,Nc)],

where the configuration and conjugate momentum are defined
respectively by:

Ai
a := Γi

a + βK i
a,

P̃a
i :=

1

2κβ
η̃abcεijke jbekc =

1

κβ

√
det qeai .

• The Hamiltonian density Htot is a linear combination of constraints:

Htot = ΛiGi + NaVa + NS ,

where Λi ≡ −1
2ε

i
jkω

jk
t .
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Classical Connection Dynamics of GR

The Hamiltonian formulation

• The three constraints are expressed as:

Gi = DaP̃a
i := ∂aP̃a

i + ε k
ij Aj

aP̃a
k ,

Va = P̃b
i F i

ab −
1 + β2

β
K i
aGi ,

S =
κβ2

2
√

det q
P̃a
i P̃b

j [εij kF k
ab − 2(1 + β2)K i

[aK j
b]]

+ κ(1 + β2)∂a
( P̃a

i√
det q

)
G i ,

here the configuration variable Ai
a performs as a su(2)-valued

connection on Σ, and F i
ab is the su(2)-valued curvature 2-form of Ai

a.
The constraints are all of first class.

• Thus general relativity is cast as a dynamical theory of connections
with a compact structure group.
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Classical Connection Dynamics of GR

A new understanding of the Barbero-Immirzi parameter

• An alternative action for Poincare gauge theory of gravity:

S =

∫
d4x

(
e eµI eνJ Ω IJ

µν (ω)− 1

8β

[
εµνρσT I

µνTIρσ

])

where T I
µν is the torsion of the connection ω.

• In the vacuum case, this action gives exactly the same
SU(2)-connection dynamics of GR as the generalized Palatini action
[Yang, Banerjee, YM, 2013].

• Thus the Barbero-Immirzi parameter acquires its meaning as the
relative contribution of torsion in comparison with curvature in the
action.
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Fundamental Structure of LQG

Kinematical Structure of LQG

Classical configurations:
A = {A|Σ, smooth, suitable boundary condition}.

Build the infinite dimensional integration theory from the finite one.

Quantum configuration space and Hilbert space: Hkin = L2(A, dµ0).
[Ashtekar and Isham, 1992; Ashtekar and Lewandowski, 1995]
Uniqueness Theorem [LOST, 2005]:
There is a unique gauge and diffeomorphism invariant representation
of the holonomy-flux ∗−algebra on Hkin.
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Fundamental Structure of LQG

Geometric operators

Area operator [Rovelli and Smolin, 1995; Ashtekar and Lewandowski,
1997]
Given a closed 2-surface or a surface S with boundary, its area can be
well defined as a self-adjoint operator ÂS on Hkin:

ÂSψγ = 4πβ`2
p

∑
v∈V (γ∩S)

√
(Ĵ

(S,v)
i(u) − Ĵ

(S,v)
i(d) )(Ĵ

(S ,v)
j(u) − Ĵ

(S ,v)
j(d) )δij ψγ .

One can find some finite linear combinations of spin network basis in
Hkin which diagonalize ÂS with eigenvalues given by finite sums,

aS = 4πβ`2
p

∑
I

√
2j (u)(j (u) + 1) + 2j (d)(j (d) + 1)− j (u+d)(j (u+d) + 1), (2)

where j (u), j (d) and j (u+d) are arbitrary half-integers subject to the
standard condition

j (u+d) ∈ {|j (u) − j (d)|, |j (u) − j (d)|+ 1, ..., j (u) + j (d)}. (3)
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Fundamental Structure of LQG

Thus the spectrum of the area operator is fundamentally pure
discrete, while its continuum approximation becomes excellent for
large eigenvalues.

Volume operator [Ashtekar and Lewandowski, 1995, 1997; Rovelli and
Smolin, 1995]
The volume of a compact region R can also be well defined as a
self-adjoint operator with discrete spectrum.

Other geometric operators:
Length operator [Thiemann 1998; YM, Soo, Yang, 2010].
Q̂ operator [YM and Y. Ling, 2000].
Quasi-local energy operator [Yang and YM, 2009].
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Fundamental Structure of LQG

Implementation of Quantum Constraints

The Gaussian constraint operator can be defined in Hkin.
The kernel of the operator is the internal gauge invariant Hilbert
space: HG = ⊕α,jH′α,j,l=0 ⊕ C.

In the strategy to solve the diffeomorphism constraint, the so-called
group averaging technique is employed to obtain the diffeomorphism
invariant Hilbert space [Ashtekar el, 1995].

Hamiltonian constraint operators can be well defined in Hkin or HG

[Thiemann 1998].
Thus there is no UV divergence in the background independent
quantum theory of gravity with diffeomorphism invariance.

The quantization technique for the Hamiltonian constraint can be
generalized to quantize the Hamiltonian of matter fields coupled to
gravity [Thiemann 1998].
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Fundamental Structure of LQG

Black hole entropy in LQG

If one considers the spacetimes which contain an isolated horizon as
an internal boundary, the action principle and the Hamiltonian
description are well defined.

By imposing the horizon boundary condition quantum mechanically
and employing the spectrum of the area operator in bulk Hilbert
space, one can obtain the (black hole) horizon entropy, whose leading
term is indeed proportional to the horizon area [Ashtekar el, 2000,
2005; Engle el, 2009].
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Applications of LQG

Loop Quantum Cosmology

The idea that one should view holonomies rather than connections as
basic variables for the quantization of gravity is successfully carried
out in the symmetry-reduced models, known as Loop Quantum
Cosmology.

One freezes all but a finite number of degrees of freedom by imposing
symmetries.
The simplified framework provides a simple arena to test ideas and
constructions.

Symmetries: homogeneity and (or) isotropy.

Example: Spatially flat FRW universe

Spatial 3-manifold: R3

Isometry: Euclidean group
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Applications of LQG

The Kinematical Setting of LQC

One has to introduce an elementary cell V and restricts all
integrations to this cell.

Fix a fiducial flat metric oqab and denote by Vo the volume of V in
this geometry.
The gravitational phase space variables —the connections and the
density weighted triads — can be expressed as

Ai
a = c V

−(1/3)
o

oωi
a and P̃a

i = p V
−(2/3)
o

√
oq oeai ,

where (oωi
a,

oeai ) are a set of orthonormal co-triads and triads
compatible with oqab and adapted to V.

To pass to the quantum theory, one constructs a kinematical Hilbert
space Hgrav

kin = L2(RBohr, dµBohr), where RBohr is the Bohr
compactification of the real line and dµBohr is the Haar measure on it.

There exists no operator corresponding to c , while holonomy
operators are well defined.
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Applications of LQG

The Improved Scheme

It is convenient to introduce new conjugate variables by a canonical
transformation:

b :=

√
∆

2

c√
|p|
, ν :=

4

3
√

∆
sgn(p)|p|

3
2 ,

where ∆ (∼ 4
√

3πγ l2
p ) is the smallest non-zero eigenvalue of area

operator in full LQG.

In the kinematical Hilbert space Hgrav
kin , eigenstates of ν̂, which are

labeled by real numbers v , constitute an orthonormal basis as:
〈v1|v2〉 = δv1,v2 .

The fundamental operators act on |v〉 as:

ν̂ |v〉 = (8πγl2
p/3)v |v〉 and ê ib |v〉 = |v + 1〉.
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Applications of LQG

Alternative Dynamics for LQC

APS Dynamics

The gravitational part of the APS Hamiltonian operator was given in
the v representation by [Ashtekar, Pawlowski, Singh, 2006]:

Ĉgrav |v〉 = f+(v)|v + 4〉+ fo(v)|v〉+ f−(v)|v − 4〉. (4)

To identify a dynamical matter field as an internal clock, one takes a
massless scalar field φ with Hamiltonian Cφ = |p|− 3

2 p2
φ/2, where pφ

denotes the momentum of φ.

Alternative Dynamics

LQC Gravitational Hamiltonian operator with Lorentz and Euclidean
terms [Yang, Ding, YM, 2009]:

ĤF
grav|v〉 = F ′+(v)|v + 8〉+ f ′+(v)|v + 4〉+ (F ′o(v) + f ′o (v)) |v〉

+f ′−(v)|v − 4〉+ F ′−(v)|v − 8〉. (5)

The new proposed Hamiltonian constraint operator ĤF
grav contains

more terms with step of different size comparing to the original APS
Hamiltonian operator.
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Applications of LQG

Big Bang Singularity Resolution
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Applications of LQG

Quantum Bounce
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Applications of LQG

Effective Scenarios of LQC

Effective Hamiltonian and Friedmann Equation

We can further obtain an effective Hamiltonian of ĤF = ĤF
grav + Ĥφ

with the relevant quantum corrections of order ε2, 1/v 2ε2, ~2/σ2p2
φ as

HF
eff = − 32

√
6

23
~1/2

γ3/2 κ1/2 L |v |
(

sin2(2b)
(
1− (1 + γ2) sin2(2b)

)
+ 2ε2

)
+
(
κγ~

6

)3/2 |v |
L ρ
(

1 + 1
2|v |2ε2 + ~2

2σ2p2
φ

)
, (6)

where ρ = 1
2

(
6
κγ~

)3 (
L
|v |

)2

p2
φ is the density of the matter field.

The modified Friedmann equation can then be derived under certain
condition as:

H2
F =

κ

3

ρc
4(1 + γ2)2

(
1−

√
1− χF

)(
1 + 2γ2 +

√
1− χF

)
(1− χF ) ,

where

χF = 4(1 + γ2)

(
ρ

ρc

(
1 +

~2

2σ2p2
φ

)
− 2ε2

)
. (7)
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Applications of LQG

Effective Scenarios of LQC

Yongge Ma (BNU) Introduction to LQG 27.3.2014 24 / 36



Applications of LQG

Cyclic Universe
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Applications of LQG

LQC Extension of the Inflationary Scenario
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Applications of LQG

Radio of LQC scalar power spectrum to that of standard
inflation
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Applications of LQG

Challenges from Cosmology and Astrophysics

• Dark Universe: There are great challenges to GR coming from
astronomic observations.

Cosmology - Dark energy problem: Our universe is currently
undergoing a period of accelerated expansion.
Dark Matter: There are indirect evidences suggesting that the bulk of
the matter of the universe is invisible or dark.

• A large variety of models of f (R) modified gravity have been
proposed to account for the present cosmic acceleration.
Some models of f (R) gravity may even account for the dark matter
problem.
[For a review on f (R) theories, see Sotiriou and Faraoni 2010.]
• The action of f (R) theories reads:

S [g ] =
1

2

∫
d4x
√
−gf (R), (8)

where f is a general function of the scalar curvature R, and we set
8πG = 1.

Yongge Ma (BNU) Introduction to LQG 27.3.2014 28 / 36



Applications of LQG

Challenges from Cosmology and Astrophysics

• Dark Universe: There are great challenges to GR coming from
astronomic observations.

Cosmology - Dark energy problem: Our universe is currently
undergoing a period of accelerated expansion.
Dark Matter: There are indirect evidences suggesting that the bulk of
the matter of the universe is invisible or dark.

• A large variety of models of f (R) modified gravity have been
proposed to account for the present cosmic acceleration.
Some models of f (R) gravity may even account for the dark matter
problem.
[For a review on f (R) theories, see Sotiriou and Faraoni 2010.]

• The action of f (R) theories reads:

S [g ] =
1

2

∫
d4x
√
−gf (R), (8)

where f is a general function of the scalar curvature R, and we set
8πG = 1.

Yongge Ma (BNU) Introduction to LQG 27.3.2014 28 / 36



Applications of LQG

Challenges from Cosmology and Astrophysics

• Dark Universe: There are great challenges to GR coming from
astronomic observations.

Cosmology - Dark energy problem: Our universe is currently
undergoing a period of accelerated expansion.
Dark Matter: There are indirect evidences suggesting that the bulk of
the matter of the universe is invisible or dark.

• A large variety of models of f (R) modified gravity have been
proposed to account for the present cosmic acceleration.
Some models of f (R) gravity may even account for the dark matter
problem.
[For a review on f (R) theories, see Sotiriou and Faraoni 2010.]

• The action of f (R) theories reads:

S [g ] =
1

2

∫
d4x
√
−gf (R), (8)

where f is a general function of the scalar curvature R, and we set
8πG = 1.
Yongge Ma (BNU) Introduction to LQG 27.3.2014 28 / 36



Applications of LQG

Extension of LQG to f (R) Theories
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Applications of LQG

Alternative Expression of f (R) Theories

• By introducing an independent variable s and a Lagrange multiplier
φ, an action equivalent to (8) of f (R) theories is proposed as

S [g , φ, s] =
1

2

∫
d4x
√
−g(f (s)− φ(s −R)). (9)

• The variation of (9) with respect to s yields φ = df (s)/ds ≡ f ′(s).

• Assuming s could be resolved from the above equation, action (9) is
reduced to

S [g , φ] =
1

2

∫
d4x
√
−g(φR− ξ(φ)) ≡

∫
d4xL (10)

where ξ(φ) ≡ φs − f (s).

• The virtue of (10) is that it admits a treatable Hamiltonian analysis
[Deruelle el, 2009; Zhang, YM, 2011].

Yongge Ma (BNU) Introduction to LQG 27.3.2014 30 / 36



Applications of LQG

Alternative Expression of f (R) Theories

• By introducing an independent variable s and a Lagrange multiplier
φ, an action equivalent to (8) of f (R) theories is proposed as

S [g , φ, s] =
1

2

∫
d4x
√
−g(f (s)− φ(s −R)). (9)

• The variation of (9) with respect to s yields φ = df (s)/ds ≡ f ′(s).

• Assuming s could be resolved from the above equation, action (9) is
reduced to

S [g , φ] =
1

2

∫
d4x
√
−g(φR− ξ(φ)) ≡

∫
d4xL (10)

where ξ(φ) ≡ φs − f (s).

• The virtue of (10) is that it admits a treatable Hamiltonian analysis
[Deruelle el, 2009; Zhang, YM, 2011].

Yongge Ma (BNU) Introduction to LQG 27.3.2014 30 / 36



Applications of LQG

Loop Quantum Scalar-Tensor Theory and Cosmology

Nonperturbatve loop quantization of scalar-tensor theories (STT)

The Hamiltonian connection dynamics of STT of gravity has been
obtained [Zhang, YM, 2011].
The variational principle for this connection dynamical formalism is also
found [Zhou, Guo, Han, YM, 2013].
Due to the su(2)-connection dynamical formalism, the 4-dimensional
STT have been quantized by extending LQG scheme.

Loop quantum Brans-Dicke cosmology
[Zhang, Artymowski, YM, 2013]

The scalar may play the role of emergent (internal) time.
The notion of time emerges from gravity itself rather than an outside
matter field.
The effective Hamiltonian can also be obtained and confirm the correct
classical limit.
The classical big bang singularity is again replaced by a quantum
bounce.
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Summary and Outlook

Success of LQG

? It is remarkable that, as a non-renormalizable theory, GR can be
non-perturbatively quantized by the loop quantization procedure.
The idea of background independence is successful realized in the
construction of LQG.

? The success of canonical LQG relies on the key observation that
classical GR can be cast into the connection-dynamical formalism
with a compact structure group.

? Geometrical operators in LQG, such as area and volume, have discrete
spectrum.

? There is no UV divergence in LQG with standard matter fields.
Thus the divergence of QFT could be cured by LQG without
renormalization.
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Summary and Outlook

Advances

? The idea and technique of LQG have been successfully carried out in
the symmetry-reduced models, known as Loop Quantum Cosmology.

Alternative Hamiltonian operators for LQC have been proposed, which
have correct classical limit.
The big bang singularity of classical GR can be resolved by a quantum
bounce of LQC.
There is an amazing possibility that quantum gravity manifests itself in
the large scale cosmology
The inflationary scenario can be extend to Planck scale with a small
window of novel effects.

Other Advances:
LQG is applicable to higher dimensional GR [Bodendorfer, Thiemann,
Thurn, 2011], as well as higher dimensional scalar-tensor theories of
gravity [Han, Ma, Zhang, 2013].
The path integral formulation of LQG: Spin foam models.
Inflation in loop quantum cosmology [Bojowald 2002; Ashtekar and
Sloan, 2009, 2011].
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Summary and Outlook

Outlook

Applicable Scope:

? The non-perturbative loop quantization procedure can also be extended
to f (R) theories and more general scalar-tensor theories.

? Our Conservative Observation: Metric theories of gravity (with
well-defined geometrical dynamics) in arbitrary dimensions.

Open Problems:

The classical limit of LQG: Semiclassical analysis.
Contact with low energy phys, QFT on curved spacetime.
Singularity resolution in full LQG.
Hawking effect and the information issue from first principles.
Contact between the full LQG and the symmetric models.
Contact between canonical and spin foam programs.
Applications of loop quantum f (R) theories and Brans-Dicke theory to
cosmology and black holes are desirable [Guo, Han, Zhang, YM...].
Contact with string (or M-) theory, noncommutative geometry...
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Summary and Outlook
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