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1. Introduction

I Extremal black holes: the near-horizon geometry is usually
AdS space

I AdS/CFT: explicit realisation of holography; miricroscopic
interpretation of black hole entropy in the dual CFT

I Near-extremal black holes: viewed as linear excitation of
extremal black holes, CFT at small temperature

I Generic non-extremal black holes: non-linear excitation
and strong backreaction; the near-horizon geometry is usually
taken as Rindler space, but not AdS space any more



1. Introduction

I AdS space and conformal symmetry: AdSp+2/CFTp+1

I AdSp+2 space embedded in (p + 3)-dimensional flat space:

X2
0 + X2

p+2 −XiX
i = R2, (1)

with the metric:

ds2 = −dX2
0 + dX2

p+2 + dXidXi. (2)

Isometry: SO(2, p + 1).
I On the other hand, SO(2, p + 1) is also the conformal group in

(p + 1)-dimensional Minkowski spacetime:
Poincare transformation + scale transformation [xµ → λxµ]
+ special conformal transformation
[xµ → (xµ + aµx2)/(1 + 2a · x + a2x2)].
If we do not involve the Lorentz transformations (Mµν), the
generators for translation (Pµ), scaling transformation (D) and
special conformal transformation (Kµ) obey

[D, Kµ] = iKµ, [D, Pµ] = −iPµ, [Pµ,Kν ] = −2iηµνD
(3)

where µ = 1, · · · , p.
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Coordinate transformations:

I Three kinds of AdS spaces (e.g., [Gibbons 11])
(I) X0/Xp+2 = const:

ds2 = −(r2 + 1)dt2 +
dr2

r2 + 1
+ r2dΩ2

p,1, (4)

where dΩp,1: sphere Sp.

I AdS space in global coordinates.
I Redefinition r = sinh ρ:

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
p,1. (5)

I Globally static because of no Killing horizon.
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(II) X0/(Xp+2 + Xp+1) = const:

ds2 = −r2dt2 +
dr2

r2
+ r2dΩ2

p,0, (6)

where dΩp,0: flat Ep.

I AdS space in Poincare coordinates.

I Globally static with Killing horizon at r = 0.

I Usually the near-horizon geometry of extremal black holes.
The AdS/CFT correspondence is well established in this case.
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(III) X0/Xp+1 = const:

ds2 = −(r2 − 1)dt2 +
dr2

r2 − 1
+ r2dΩ2

p,−1, (7)

where dΩp,−1: hyperbolic space Hp.

I Redefinition r = cosh ρ:

ds2 = − sinh2 ρdt2 + dρ2 + cosh2 ρdΩ2
p,−1. (8)

I Not globally static because of non-degenerate Killing horizon
at r = 1.

I ρ → 0 and so sinh ρ ' ρ: Rindler space with temperature
TH = 1/(2π).

I Usually the near-horizon geometry of near-extremal black
holes.

I We shall focus on this space and show that it could be the
near-horizon geometry of generic non-extremal black holes,
accounting for the “hidden conformal symmetries” observed in
them.



2. Hidden conformal symmetries in
non-extremal black holes

I The symmetry and (thermo)dynamics of black holes are
usually revealed by studying probe fields (like scalars)
propagating in their spacetime

I Conformal symmetry is known to exist in wave equations of
fields propagating near extremal and near-extremal black holes
because their near-horizon geometry is AdS space

I However, conformal symmetry is also found in field equations
near generic non-extremal black holes.

I The near-horizon geometry of generic non-extremal black
holes is usually viewed as Rindler space. So this conformal
symmetry seemingly has no geometric origin and is called
“hidden”.



Hidden conformal symmetries

DDF model of quantum mechanics near horizons:
First introduced by [de Alfaro, Fubini & Furlan 76] and later found
to be a description of dynamics near horizons of extremal RN black
holes [Claus, et al 98] and generic non-extremal black holes
[Govindarajan 00].
For a general black hole solution

ds2 = −F (r)dt2 + F−1(r)dr2 + r2dΩ2, (9)

the Klein-Gordon equation for a massless scalar φ(r) (neglecting
the dependence on other coordinates) is

− 1

F

d

dr

(
F

d

dr

)
φ(r) = 0. (10)



Hidden conformal symmetries

Redefinition:
√

r2Fφ = ψ, the equation becomes

Hψ = − d2

dr2
ψ +

[
(r2F )′′

2F
−

(
(r2F )′

2F

)2
]

ψ = 0. (11)

For non-extremal black holes: F = (r− r−)(r− r+)/r2, taking the
near-horizon limit yields

Hψ =

(
− d2

dx2
− 1

4x2

)
ψ = 0, (12)

where x = r − r+.
Define the dilatation and conformal boost

D =
i

4

(
x

d

dx
+

d

dx
x

)
, K =

1

4
x2. (13)



Hidden conformal symmetries

We have the SL(2, R) algebra:

[D, H] = −iH, [D, K] = iK, [H, K] = 2iD.

The solution from the eigenvalue function Hψ = Eψ is:

ψn(x) =
√

2EnxK0(Enx), (14)

En = exp[
π

2
(1− 8n) cot

z

2
]. (15)

where n is integer, K0 is the modified Bessel function and z is a
variable.
Counting states. . .



Hidden conformal symmetries

New hidden conformal symmetries

I Kerr black holes [Castro, Malnony & Strominger 10]
The Kerr metric for rotating black holes

ds2 = −4
χ2

(dt− a sin2 θdφ)2 +
sin2 θ

χ2
((r2 + a2)dφ− adt)2

+
χ2

4 dr2 + χ2dθ2,

where

4 = (r − r+)(r − r−), r± = M ±
√

M2 − a2

χ2 = r2 + a2 cos2 θ, a =
J

M
.

r± are the radii of the inner and outer horizons, respectively,
and J is the angular momentum of the black hole.



Hidden conformal symmetries

Consider the Klein-Gordon (KG) equation of a massless scalar:

1√−g
∂µ(

√−ggµν∂νΦ) = 0. (16)

Separate the function Φ in terms of symmetries:

Φ = e−iωt+imφR(r)S(θ). (17)

The KG equation in Kerr spacetime:

(∇2
S2 + ω2a2 cos2 θ)S(θ) = −KlS(θ), (18)

[
∂r4∂r +

(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)

+(r + 2M)2ω2
]
R(r) = KlR(r).



Hidden conformal symmetries
If we adopt the low-frequency condition

ωM ¿ 1, (19)

and the “near-region” condition

r ¿ 1

ω
, (20)

the KG equation reduces to

− J2S(θ) = ∇2
S2S(θ) = −l(l + 1)S(θ), (21)

[
∂r4∂r +

(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)

]
R(r) = KlR(r),

with Kl = l(l + 1).
Solution: hypergeometric functions bearing the
SL(2, R)L × SL(2, R)R symmetry.



Hidden conformal symmetries
The SL(2, R)L generators:

H1 = ie−2πTRφ

(
41/2∂r +

1

2πTR

r −M

41/2
∂φ +

2TL

TR

Mr − a2

41/2
∂t

)
,

(22)

H0 =
i

2πTR
∂φ + 2iM

TL

TR
∂t, (23)

H1 = ie2πTRφ

(
−41/2∂r +

1

2πTR

r −M

41/2
∂φ +

2TL

TR

Mr − a2

41/2
∂t

)
,

(24)
and the SL(2, R)R generators

H̄1 = ie−2πTLφ+ t
2M

(
41/2∂r − a

41/2
∂φ − 2M

r

41/2
∂t

)
, (25)

H̄0 = −2iM∂t, (26)

H̄1 = ie2πTLφ− t
2M

(
−41/2∂r − a

41/2
∂φ − 2M

r

41/2
∂t

)
. (27)



Hidden conformal symmetries
The left and right temperatures are defined as

TR =
r+ − r−

4πa
, TL =

r+ + r−
4πa

.

They are related to the Hawking temperature TH via

1

TH
=

1

TL
+

1

TR
. (28)

The generators obey the SL(2, R)L × SL(2, R)R symmetry:

[H0,H±1] = ∓iH±1, [H1,H−1] = 2iH0.

[Hn, H̄m] = 0. (29)

[H̄0, H̄±1] = ∓iH̄±1, [H̄1, H̄−1] = 2iH̄0.

The SL(2, R) Casimir:

H2 = H̄2 = −H2
0 +

1

2
(H1H−1 + H−1H1). (30)

Thus, the radial KG equation can be re-expressed as

H2R(r) = H̄2R(r) = l(l + 1)R(r). (31)



Hidden conformal symmetries

I From the hypergeometric solution of R(r), we can calculate
the scattering amplitude and cross section. They really take
the same form as in 2D CFT at finite temperature.

I Key fact supporting this symmetry:
The CFT dual of extremal (M = a = J/M) and
near-extremal Kerr black holes (Kerr/CFT) can reproduce the
Bekenstein-Hawking entropy. But the result is true for generic
values of M and J . So there should be a general conformal
symmetry for generic Kerr black holes.



Hidden conformal symmetries

I Schwarzschild black holes [Bertini, Cacciatori & Klemm 11]

ds2 = −
(
1− r0

r

)
dt2 +

(
1− r0

r

)−1
dr2 +r2(dθ2 +sin2 θdφ2),

(32)
where r0 = 2M and M is the mass of the black hole.

I Redefining r = r0(1 + ρ2/4) and t̂ = t/(2r0), we get the
Rindler space

ds2 = r2
0(−ρ2dt̂2 + dρ2 + dΩ2

2). (ρ ¿ 1) (33)

It does not accommodate conformal symmetry.
I However, conformal symmetry appears to exist in the KG wave

equation! So this symmetry is hidden.



Hidden conformal symmetries

For a massless scalar Φ = e−iωt+imφR(ρ)S(θ), the KG equation:

∇2
S2S(θ) = −l(l + 1)S(θ), (34)

[
∂r4∂r +

ω2r4

4 − l(l + 1)

]
R(r) = 0, (35)

where 4 = r2 − 2Mr.
Taking the ωr ¿ 1 and Mω ¿ 1 limits:

[
∂r4∂r +

16ω2M4

4
]

R(r) = l(l + 1)R(r), (36)



Hidden conformal symmetries

This equation has the SO(2, 1) or SL(2, R) symmetry, whose
generators are

H1 = ie
t

4M

(
41/2∂r − 4M(r −M)4−1/2∂t

)
, (37)

H0 = −4iM∂t, (38)

H−1 = −ie−
t

4M

(
41/2∂r + 4M(r −M)4−1/2∂t

)
, (39)

They satisfy

[H0,H±1] = ∓iH±1, [H1,H−1] = 2iH0.

Thus, the KG equation can be re-expressed as the SL(2, R)
Casimir:

H2R(r) = [−H2
0 +

1

2
(H1H−1+H−1H1)]R(r) = l(l+1)R(r). (40)



3. The geometrical origin of hidden
conformal symmetry

We suggest that the hidden conformal symmetry should arise from
the AdS space of type (III).

I Schwarzschild black holes
Claim: The reason that there is “hidden conformal symmetry”
in Schwarzschild spacetime is that the near-horizon geometry
has been equivalently taken as the following AdS2 space of
type (III)

ds2 = r2
0(− sinh2 ρdt̂2 + dρ2 + dΩ2

2), (ρ ¿ 1) (41)

instead of the Rindler space (33):

ds2 = r2
0(−ρ2dt̂2 + dρ2 + dΩ2

2). (ρ ¿ 1) (42)

[But this AdS2 space does not provide apparent explanation
to the conformal symmetry in the DDF model.]



The geometrical origin
Why this geometry?
Let’s see this from the RN metric for charged black holes

ds2 = −(r − r+)(r − r−)

r2
dt2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ2

2.

(43)
Redefinitions:

r = r+(1 + λ2), λ2 = δ2 sinh
ρ

2
, δ2 =

r+ − r−
r+

. (44)

The RN metric is exactly rewritten as

ds2 = r2
+

[
− sinh2 ρ

(1 + λ2)2
dt̂2 + (1 + λ2)2dρ2 + (1 + λ2)2dΩ2

2

]
,

where t̂ = δ2t/(2r+). Taking the near-horizon limit

λ = δ sinh(ρ/2) ¿ 1, (45)

we get AdS2 × S2.

I δ → 0: the extremal limit and ρ can be very large
I δ ∼ 1: the off-extremal case (δ = 1: Schwarzschild) and ρ can

only be small values =⇒ Rindler space



The geometrical origin

Adopting this AdS2 space, the KG equation is

[
1

sinh ρ
∂ρ sinh ρ∂ρ +

r4
+ω2

ε2 sinh2 ρ
− l(l + 1)

]
R(ρ) = 0. (46)

It has the SL(2, R) symmetry, with the generators:

H1(ρ, t̂) = iet̂(∂ρ − coth ρ∂t̂),

H−1(ρ, t̂) = −ie−t̂(∂ρ + coth ρ∂t̂), (47)

H0(ρ, t̂) = −i∂t̂.

These vectors are exactly the same as the ones given in Eqs.
(37-39), via the same coordinate redefinitions:
r = r+(1 + δ2 sinh ρ

2) and t̂ = (δ2/2r+)t, given in Eq. (44).



The geometrical origin

I Kerr black holes
Denote:

r0 =
1

2
(r+ + r−), ε =

1

2
(r+ − r−), (48)

Redefine the coordinates:

U = r − r0, t̄ =
t

2r2
+

, φ̂ = φ− r0t̄. (49)

In the new coordinates, the near-horizon geometry of
non-extremal Kerr (16) is

ds2 = r2
+(1 + cos2 θ)

[
−(U2 − ε2)dt̄2 +

dU2

U2 − ε2
+ dθ2

]

+
4r2

+ sin2 θ

1 + cos2 θ

(
dφ̂ + Udt̄

)2
.

This is the warped AdS3 space obtained in the near-extremal
case in [Castro & Larsen 09]. We assume that it still exist in
generic non-extremal cases, replacing the Rindler space.



The geometrical origin

Further redefining: coshα = U/ε and t̂ = εt̄, the warped AdS3

space of type (III) is

ds2 = r2
+(1 + cos2 θ)

[− sinh2 αdt̂2 + dα2 + dθ2

+
4 sin2 θ

(1 + cos2 θ)2
(dφ̂ + cosh αdt̂)2

]
.

In this geometry, the KG equation becomes

[
1

sinh(2ρ)
∂ρ sinh(2ρ)∂ρ +

(2Mr+ω − am)2

ε2 sinh2 ρ
− (2Mr−ω − am)2

ε2 cosh2 ρ

]
R(ρ)

= 4l(l + 1)R(ρ),

where ρ = α/2.



The geometrical origin

This is the Laplacian in the following AdS3 space:

ds2
AdS3

= R2(− sinh2 ρdτ2 + dρ2 + cosh2 ρdσ2), (50)

∇2
AdS3

=
1

sinh(2ρ)
∂ρ sinh(2ρ)∂ρ − ∂2

τ

sinh2 ρ
+

∂2
σ

cosh2 ρ
. (51)

with the coordinate relations between (t, φ) and (τ, σ):

τ =
1

4M
t + π(TR − TL)φ, σ = − 1

4M
t + π(TR + TL)φ, (52)

The temperatures

TL =
r0

2πa
, TR =

ε

2πa
. (53)



The geometrical origin
The generators obtained from the AdS3 space are

H1 = ie2πTRφ

{
∂α − 1

sinhα

[
2M

(
1 + cosh α

TL

TR

)
∂t +

cosh α

2πTR
∂φ

]}
,

H−1 = −ie−2πTRφ

{
∂α +

1

sinhα

[
2M

(
1 + cosh α

TL

TR

)
∂t +

cosh α

2πTR
∂φ

]}
, (54)

H0 = −i

(
2M

TL

TR
∂t +

1

2πTR
∂φ

)
,

and

H̄1 = ie
1

2M
t−2πTLφ

{
∂α − 1

sinhα

[
2M

(
cosh α +

TL

TR

)
∂t +

1

2πTR
∂φ

]}
,

H̄−1 = −ie−
1

2M
t+2πTLφ

{
∂α +

1

sinhα

[
2M

(
cosh α +

TL

TR

)
∂t +

1

2πTR
∂φ

]}
, (55)

H̄0 = −2iM∂t.

where α = 2ρ. They are the same as those given in Eqs. (22-27)
after coordinate redefinitions.



4. Conclusions

I Hidden conformal symmetries in non-extremal black holes do
have geometrical origin: the AdS space of type (III)

I This implies that the near-horizon geometries of generic
non-extremal black holes might be the AdS space of type
(III), but not simply the Rindler space

I If so, the AdS/CFT originally established in extremal case can
be extended to generic non-extremal black holes (but the AdS
spaces in extremal and non-extremal cases are different)



Thank you!


