2 dim QED and String Theory

Shigeki Sugimoto (YITP, Kyoto Univ.)

based on arXiv:1812.10064 with Adi Armoni

closely related papers:

1807.00093, 1811.10642 Anber-Poppitz 1905.05781 Misumi-Tanizaki-Unsal

1 Introduction

We can use duality (S-duality, M-theory lift, holography etc.) in string theory to study QFT

Analysis in QFT can be applied to understand non-perturbative phenomenon in string theory ← This talk

Today, we consider 2 dim QED to study non-perturbative brane dynamics in string theory

2 dim QED

- massless case is exactly solvable
- [Schwinger 1962, ...]
- various techniques to analyze
- non-trivial and interesting strongly coupled QFT

It will be interesting to apply it to string theory

O1⁻-D1 system

(Wait for more explanation)

2 dim QED with 8 Dirac fermions of charge 2 (coupled with 8 scalar fields)

This motivated us to consider

2 dim QED with N_f fermions of charge k

The k dependence turns out to be very important!

Consider charge k fermions $x N_f$ $(k \in \mathbb{Z}, k > 0)$

$$S = \int d^2x \left(-\frac{1}{4e^2} F_{\mu\nu}^2 + i\overline{\psi}_i \gamma^{\mu} \left(\partial_{\mu} + i\mathbf{k}A_{\mu} \right) \psi^i \right) \qquad i = 1, \dots, N_f$$

- k dependence cannot be eliminated by the rescaling $k A \mu \rightarrow A \mu$ because of the flux quantization condition $\frac{1}{2\pi} \int F \in \mathbf{Z}$
- k dependence appears in the global symmetry
 - - $\mathbf{Z}_{\pmb{k}}$ 1-form sym : $A_1 \to A_1 + \frac{1}{{\pmb{k}}R}$, $\psi^i \to e^{-ix^1/R}\psi^i$ (Here, the x^1 direction is compactified to S^1 of radius R) It acts on the Wilson loop op. as $W \equiv e^{i\int dx^1A_1} \to e^{2\pi i/{\pmb{k}}}W$

Main Results

New results in 2 dim QED

cf [Anber-Poppitz 2018]

2 dim QED with Nf massless fermions of charge k

$$\langle \det(\psi^{\dagger}_{+j}\psi^{i}_{-}) \rangle \neq 0$$
 (although $\langle \psi^{\dagger}_{+j}\psi^{i}_{-} \rangle = 0$ (for $N_f > 1$)

- \Rightarrow Spontaneous Sym Breaking $\mathbf{Z}_{kN_f} \rightarrow \mathbf{Z}_{N_f}$
- $\Rightarrow \exists k \text{ degenerate vacua}$

Non-perturbative calculations in string theory

 T_Q := tension of (Q,-1)-string (= bound state of Q F1 and 1 $\overline{D1}$)

When (Q,-1)-string is placed near $O1^-$ -plane with distance Y,

$$T_Q = \text{const.} - C_Q g_s^{1/9} \alpha'^{-17/9} Y^{16/9} \qquad (Y^2 \ll g_s \alpha')$$

$$\left(C_Q = \frac{18}{\pi^3} \left(\frac{e^{\gamma}}{2} \right)^{16/9} \times \left\{ \begin{array}{cc} 1 & (Q = \text{even}) \\ \cos^{16/9}(\pi/8) & (Q = \text{odd}) \end{array} \right)$$

<u>Plan</u>

- **✓** Introduction
 - 2 dim QED
 - Application to string theory
 - Conclusion

2 dim QED

Bosonization

non-Abelian bosonization

[Witten 1984]

$$\psi^i = (\psi^i_+, \psi^i_-)^T \qquad \longleftrightarrow \qquad u = (u^i_j) \in U(N_f)$$

Nf Dirac fermions

U(Nf) valued scalar field

$$\psi_{+}^{\dagger}\psi_{-} \sim c u \; , \quad \psi_{-}^{\dagger}\psi_{-} \sim \frac{i}{2\pi}u\partial_{-}u^{-1} \; , \quad \psi_{+}^{\dagger}\psi_{+} \sim \frac{i}{2\pi}u^{-1}\partial_{+}u \; ,$$

• $u = e^{i\varphi}g$ $(e^{i\varphi}, g) \in U(1) \times SU(N_f)$

Identification $\varphi o \varphi - rac{2\pi}{N_f} \;, \quad g o e^{rac{2\pi i}{N_f}} g$

Action for the bosonized description

level 1 WZW action

$$S = \int d^2x \left(-\frac{1}{4e^2} F_{\mu\nu}^2 + \frac{N_f}{8\pi} \partial_{\mu}\varphi \partial^{\mu}\varphi + \frac{kN_f}{2\pi} \varphi F_{01} + S_{WZW}(g) \right)_{8}$$

$$S = \int d^2x \left(-\frac{1}{4e^2} F_{\mu\nu}^2 + \frac{N_f}{8\pi} \partial_{\mu}\varphi \partial^{\mu}\varphi + \frac{kN_f}{2\pi} \varphi F_{01} + S_{WZW}(g) \right)$$

- Identification $\varphi \to \varphi \frac{2\pi}{N_f}$, $g \to e^{\frac{2\pi i}{N_f}}g$: gauged **Z**N_f sym
- $\mathbf{Z}_{k}N_{f}$ axial sym $\varphi \rightarrow \varphi \frac{2\pi}{kN_{f}}$ \mathbf{Z}_{k} 1-form sym $A_{1} \rightarrow A_{1} + \frac{1}{kR}$
- Canonical momenta conjugate to A_1, φ $(A_0 = 0 \text{ gauge})$

$$\Pi_A \equiv \frac{1}{2e^2} \partial_0 A_1 + \frac{kN_f}{2\pi} \varphi , \quad \Pi_\varphi \equiv \frac{N_f}{4\pi} \partial_0 \varphi$$

$$\mathbf{Z}_{kN_f}$$
: $\hat{V} \equiv \exp\left(-\frac{2\pi i}{kN_f}\int dx^1\Pi_{\varphi} + i\int dx^1A_1\right)$

$$\mathbf{Z}_{k}$$
: $\widehat{U} \equiv \exp\left(\frac{2\pi i}{k}\Pi_{A}\right)$

Non-commutative algebra

$$\begin{aligned} \mathbf{Z}_{\pmb{k}N_f} &: & \widehat{V} \equiv \exp\left(-\frac{2\pi i}{\pmb{k}N_f}\int dx^1 \Pi_{\varphi} + i\int dx^1 A_1\right) \\ \mathbf{Z}_{\pmb{k}} &: & & \widehat{U} \equiv \exp\left(\frac{2\pi i}{\pmb{k}}\Pi_A\right) \end{aligned}$$

The classical $\mathbb{Z}_k \times \mathbb{Z}_k \mathbb{N}_f$ symmetry is centrally extended.

→ The vacuum cannot be trivial!

The vacuum states have to be consistent with the above algebra

Vacuum structure

• Nf = 1 case $\langle \overline{\psi}\psi \rangle \neq 0$

- [Anber-Poppitz 2018]
- \Rightarrow the axial \mathbb{Z}_k is spontaneously broken
- \Rightarrow \exists k degenerate vacua

$$\begin{pmatrix} cf & \mathcal{N}=1 \text{ SU(N) SYM in 4 dim} \\ U(1)_R & \xrightarrow{\text{anomaly}} & \mathbf{Z}_{2N} & \xrightarrow{\text{SSB}} & \mathbf{Z}_2 & \Rightarrow \exists \text{ N vacua} \end{pmatrix}$$

- $N_f > 1$ case $\langle \overline{\psi}_i \psi^j \rangle = 0$ \leftarrow Coleman-Mermin-Wagner Theorem bosonize massive scalar But, $\langle \det(\psi^\dagger_{+i} \psi^j_{-}) \rangle \sim \langle \det u \rangle = \langle e^{iN_f \varphi} \rangle \neq 0$
 - \Rightarrow the axial $\mathbf{Z}_{k}N_{f}$ $\left(\varphi \rightarrow \varphi \frac{2\pi}{kN_{f}}\right)$ is spontaneously broken to $\mathbf{Z}N_{f}$
 - \Rightarrow \exists k degenerate vacua

Explicit construction of the k vacua

• Pick a vacuum, which is an eigenstate of $\widehat{U} = \exp\left(\frac{2\pi i}{k}\Pi_A\right)$

$$\widehat{U}|\theta\rangle = e^{i\theta/k}|\theta\rangle$$

comments

- \widehat{U} commutes with the gauge inv. local operators $F_{\mu\nu}, \varphi, \partial_{\mu}\varphi, \cdots$
 - \Rightarrow Superselection sectors are characterized by the eigenvalue of $\,\widehat{U}$
- θ is the θ parameter and $|\theta>$ is the θ vacuum
- The other vacua can be obtained by acting $\hat{V}=e^{i\int dx^1\left(-\frac{2\pi}{kN_f}\Pi_\varphi+A_1\right)}$

$$\left\{ \text{vacuum} \right\} = \left\{ |\theta\rangle, \hat{V}|\theta\rangle, \cdots, \hat{V}^{\pmb{k}-1}|\theta\rangle \right\} \quad \left(\hat{V}^n|\theta\rangle = |\theta+2\pi n\rangle \right) \\ \left(\hat{V}^{\pmb{k}}: \varphi \to \varphi - \frac{2\pi}{N_f} \text{ corresponds to the gauged } \mathbf{Z}_{N_f} \operatorname{sym} \right)$$

 \Rightarrow *k* dim representation of the algebra $\hat{U}\hat{V} = \hat{V}\hat{U}e^{\frac{2\pi i}{k}}$

Mass deformation

for $N_f = 4$, k = 5

ullet Consider adding a fermion mass term ${\,\sim\,} M_0 \overline{\psi} \psi$

 $\mathbf{Z}_k N_f$ sym is explicitly broken \Rightarrow The degeneracy of the k vacua is lifted

13

Q-string states

$$S_{\text{int}} = Q \int dt A_0 \Big|_{x^1 = -L} - Q \int dt A_0 \Big|_{x^1 = +L} = Q \int F \iff \Delta \theta = 2 \pi Q$$

 \rightarrow Q-string tension (= energy density of Q-flux) (for $\theta = 0$) $\sigma(Q) = \mathcal{E}(2\pi Q) - \mathcal{E}(0) \propto (f(2\pi Q) - f(0)) m_h^{\frac{2}{N_f+1}} M_0^{\frac{2N_f}{N_f+1}}$

- screening by charge *k* fermions
- $\sigma(Q) \rightarrow 0$ as $M_0 \rightarrow 0$ Q-string state becomes Qth vacuum

4 Application to String Theory

D-brane & orientifold plane

extstyle ex

Op-plane:

(p+1) dim fixed plane of
$$\mathbf{Z}_2$$
 $\left\{\begin{array}{l} x^{p+1\sim 9} \to -x^{p+1\sim 9} \\ \text{and flip orientation of strings} \end{array}\right.$

• Two basic types: $Op^- \& Op^+$

$$Op^- + n Dp \implies SO(2n)$$
 gauge theory

$$Op^+ + n Dp \longrightarrow USp(2n)$$
 gauge theory

Op^- - \overline{Dp} system

[SS 1999]

(p+1) dim maximally SUSY SO(2n) gauge theory

$$A_{\mu}, \Phi_{I}$$
 of SO(2*n*) gauge scalar Ψ^{i} of SO(2*n*) fermion

(p+1) dim non-SUSY SO(2n) gauge theory

$$A_{\mu}, \Phi_{I}$$
 of SO(2*n*) gauge scalar Ψ^{i} of SO(2*n*) fermion

O1 - D1 system

• $O1^-$ -plane + $\overline{D1}$ -brane x n

		gauge	Lorentz	
		SO(2n)	SO(1,1)	SO(8)
gauge	A_{μ}	adj 📙	2	1
scalar	Φ_I	adj 🛮	1	8_v
fermion $\left\{\right.$	Ψ^i_+	sym 🎞	1_{+}	8+
	Ψ_{-}^{i}	sym 🎞	1_{-}	8_

		gauge	Lorentz	
		U(1) charge	SO(1,1)	SO(8)
gauge	a_{μ}	0	2	1
scalar	ϕ_I	0	1	8_v
(ψ^i_+	2	1_{+}	8+
fermion {	$\psi_{-}^{i^{\prime}}$	2	$1_$	8_

(+ neutral fermions)

 \longrightarrow 2 dim QED with k = 2, $N_f = 8$ coupled with 8 scalar fields

Interpretation

$$Z_{\rm Full} \ = \ \int \mathcal{D}\phi \, e^{i\int d^2x \frac{1}{2} (\partial_\mu \phi_I)^2} Z_{\rm QED}[\phi_I] \ ,$$

$$Z_{\rm QED}[\phi_I] \ \equiv \ \int \mathcal{D}a \mathcal{D}\psi \mathcal{D}\overline{\psi} \, e^{iS_{\rm QED}[a_\mu,\psi^i] + iS_{\rm Yukawa}[\phi_I,\psi^i]}$$
 We focus on this QED part.

• Q-string = (Q,-1)-string = bound state of $\overline{D1}$ and $F1 \times Q$

F1 x 2 can be screened

 01^{-} D1

Prediction

 T_Q := tension of (Q,-1)-string (= bound state of Q F1 and 1 $\overline{D1}$)

When (Q,-1)-string is placed near $O1^-$ -plane with distance Y,

$$T_Q = \text{const.} + \mathcal{E}(2\pi Q) \qquad \text{(valid when } Y^2 \ll g_s \alpha')$$

$$= \text{const.} - C_Q g_s^{1/9} \alpha'^{-17/9} Y^{16/9} \qquad \qquad \text{o1}^- \overline{\text{D1}}$$

$$C_Q \propto -f(2\pi Q) \propto \left\{ \begin{array}{cc} 1 & (Q = \text{even}) \\ \cos^{16/9}(\pi/8) & (Q = \text{odd}) \end{array} \right\}$$
 Recall:
$$\mathcal{E}(\theta) \propto f(\theta) \, m_h^{\frac{2}{N_f+1}} M_0^{\frac{2N_f}{N_f+1}}$$

cf) Behavior at large Y

$$T_Q = \frac{1}{2\pi\alpha'}\sqrt{Q^2 + \frac{1}{g_s^2}}$$

Conclusion

Summary

- We found SSB $\mathbf{Z}_{kNf} \rightarrow \mathbf{Z}_{Nf}$ and k vacua in 2 dim QED with Nf fermions of charge k
- Non-perturbative calculations in O1⁻-D1 system

Discussion

How about 2 dim QCD? 3 dim QED? 4 dim QED?

• Curious relation:
$$\langle \overline{\psi}_i \psi^i \rangle = \pi \alpha' \frac{\partial \mathcal{E}(Y)}{\partial Y}$$

chiral condensate force between O1 and D1

VEV in QFT Brane dynamics

How general can this be?

How much can we learn from such relations?

Thank you!