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Starting Point

Counting problems
...1 Counting the Dimension of Hilbert space,

e.g. Partition Function, Correlation Function, Central Charge of
field theory, Black Hole entropy, ...

...2 Many Physical observables can be obtained by Correlation
Functions,
e.g. Partition function(0pt), condensation(1pt), conductivity(2pt),
S-matrix(n-pt)...

...3 Counting the effective degree freedom of subset of Hilbert space,
e.g. Entanglement entropy, Rényi entropy (OTOC)...



. . . . . .

Introduction of general back ground Setup of Entanglement Entropy (EE) EE in 2D rational CFTs
. . . . . . .
EE in irrational CFTs EE in deformed CFTs Summary and comments

S.H, Tokiro Numasawa, Tadashi Takayanagi, Kento Watanabe,
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Outline

Entanglement Entropy (EE).

Setup in 2D CFTs.

EE v.s. Quantum dimension in rational CFT.

EE in Liouville field theory.
EE and OTOC in TJ̄/TT̄ deformed CFTs. (If the time is available.)

Summary.
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Basics of EE

EE is a useful quantum information quantity to measure the
degrees of freedom in quantum many body systems.

...1 Using EE to detect the central charge (the coefficient of
logarithmic divergent term in Even dimesion)[C. Holzhey, F. Larsen and

F. Wilczek, 94][P. Calabrese and J. L. Cardy, 04][S. Ryu and T. Takayanagi,06][...].
...2 Detecting the topological degrees of freedom of topological

field theories (finite piece of EE)[A. Kitaev and J. Preskill,05][M. Levin and

X.G.Wen,05].
...3 Measuring the degrees of freedom of local operators

(Quantum dimension).[S. He, T. Numasawa, T. Takayanagi and K. Watanabe,14][P. Capta,

M. Nozaki and T. Takayanagi, 14][M. Nozaki,14][Wu-Zhong Guo, S. He,15][Wu-Zhong Guo, S. He, Zhuxi

Luo,18][L. Apolo, S. He, W. Song, J. Xu and J. Zheng, 18]....

...
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Basics of EE

Consider bi-partite system (A and B) and use entropy as measure
of correlations between subsystems

Integrate out degrees of freedom in outside region (B).
Remaining dof are described by a density matrix ρA.

SA = −TrAρA log ρA (1)
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Replica to calculate EE in QFT

How to calculate EE in quantum system.

A basic method of calculating EE in QFTs is so called the replica
method.

SA = −∂Tr(ρA)
n

∂n
|n=1 = lim

n→1
Sn

A

Other approaches:
...1 AdS/CFT (Well Studied).[S. Ryu and T. Takayanagi, 06]

...2 String theory approach initiated by[L. Susskind, 93]. Exactly realied in
string theory by [S.H, Tokiro Numasawa, Tadashi Takayanagi, Kento Watanabe, 15] [E. Witten,19].
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Motivation I: Time evolution of EE

In Chaotic system, the late time behavior of physical quantities
are very sensitive to the early time input.

Out-of-time order correlation function (OTOC) can diagnose the
chaotic behavior of many body systems

...1 The chaotic behavior characterized by: Lyapnov behavior,
scrambling and Ruelle resonance. [A. Larkin and Y. Ovchinnikov,1969],[A. Kitaev,15]

...2 In integrable CFTs such as RCFT, cannot see such chaotic
behavior[E. Perlmutter,16],[Y. Gu and X. L. Qi,16].

...3 Holographic dual CFTs show maximal chaotical signals,
Lyapnov, OTOC, ETH. [E. Perlmutter,16],[J. L. Karczmarek, J. M. Maldacena and A.
Strominger,16],[J. M. Maldacena, D. Stanford,16].

...4 The essential differences between integrable CFTs and
chaotic CFTs seem to be captured by the Maximal chaotic
signals (time evolutions of REE=OTOC)..

In this talk, we will focus on the time evolution of EE and OTOC
in CFTs and TT/TJ deformations.
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Our Setup

In this talk, we setup in 1+1 dimension space time

wi, w̄i can be expressed by

w1 = i(ϵ− it)− l, w2 = −i(ϵ+ it)− l, (2)

w̄1 = −i(ϵ− it)− l, w̄2 = i(ϵ+ it)− l. (3)
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Replica

Where (w2k+1,w2k+2) for k = 1, 2, ..., n − 1 are n − 1 replicas of
(w1,w2) in the k-th sheet of Σn. We just glue all sheets with
proper boundary conditions to construct Σn.
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EE for Excited State

Where REE for |Ψ(t)⟩ = e−itH−ϵHO(−l)|0⟩,

S(n)[|Ψ(t)⟩] = 1
1 − n

log

[∫
dϕO+(x1)O(x2)...O+(x2n−1)O(x2n)e−S

(
∫

dϕO+(x1)O(x2)e−S)n

]
(4)

The excess of EE ∆S(n)
A = S(n)[|Ψ(t)⟩]− S(n)[|0⟩]

∆S(n)
A =

1
1 − n

[
log

⟨
O†

a (wl, w̄1)Oa(w2, w̄2)...Oa(w2n, w̄2n)
⟩
Σn⟨

O†
a (wl, w̄1)Oa(w2, w̄2)

⟩n

Σ1

− log(1)

]

=
1

1 − n

[
log R(n)

A

]
(5)
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EE for Excited State

We are interested in two different time evolution regions ( Early time and Late
time) [S.H, Tokiro Numasawa, Tadashi Takayanagi, Kento Watanabe, 15]

(z, z̄) → (0, 0) ≡ t < l and t > L (Earlier time)

(z, z̄) → (1, 0) ≡ L > t ≫ l (Late time)
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2D Ising Model

The unitary minimal models are numbered by an integer
m=3,4..., and describe the universality class of the multicritical
Ginzburg- Landau model:

L ∼ (∂ϕ)2 + λϕ2m−2 (6)

For m = 3, the Ising model is in the same universality class.

The central charge of the model is

c = 1 − 6
m(m − 1)

. (7)

All Virasoro primaries are scalar Or,s 1 ≤ s ≤ r ≤ m − 1 whose
dimension is

∆r,s =
(r + m(r − s))2 − 1

4m(m + 1)
(8)



. . . . . .

Introduction of general back ground Setup of Entanglement Entropy (EE) EE in 2D rational CFTs
. . . . . . .
EE in irrational CFTs EE in deformed CFTs Summary and comments

EE in Ising model

We consider primary operator O2,2 in Ising model whose
conformal dimension is

∆2,2 =
3

4m(m + 1)
|m=3 =

1
16

(9)

called spin operator.
For Ising model, the Green function of spin operator can be
expressed by

G(z, z̄) =
1√
2

√√√√√
|z|

|1 − z|
+

1√
|z||1 − z|

+

√
|1 − z|
|z|

. (10)

Using this explicit expression, one can take late time limit
(z, z̄) → (1, 0) to obtain

∆S(2)A = log
√

2. (11)
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EE in Ising model

Through very very highly nontrivial calculation, we can show
that ∆S(2)A = ∆S(3)A = ∆S(4)A = ... = log

√
2.

∆S(2)A = ∆S(3)A = ∆S(4)A = ... = log
√

2 [Wuzhong Guo, S.H.(2015)(with

comformal defects), Bin Chen, Wuzhong Guo, S.H., Jie-Qiang Wu,(2015).(For descendent states),[Wu-Zhong Guo, S.

He, Zhuxi Luo,18](Associated with anyons),[L. Apolo, S. He, W. Song, J. Xu and J. Zheng, 18]]

So it is nature to ask What is the meaning of
√

2.

An: The
√

2 is exact quantum dimension of spin operator σ in
Ising model.



. . . . . .

Introduction of general back ground Setup of Entanglement Entropy (EE) EE in 2D rational CFTs
. . . . . . .
EE in irrational CFTs EE in deformed CFTs Summary and comments

Memory effect of EE in Ising model

Causality argument
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What is quantum dimension

Here we just list the standard alternative definition of quantum
dimension in Minimal model.
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What is quantum dimension

Especially in Ising model, one can easily work out quantum
dimension of spin operator σ.

Comment: In the Ising model, the identity I, the spin σ and the
energy operator ψ.

...1 ∆S(n)
A is always vanishing for I and ϵ, due to quantum dimension

1.
...2 ∆S(n)

A = log
√

2 for any n as dσ =
√

2
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How about EE in irrational CFTs

In irrational CFTs, the spectrum ∆ will be continous V.S.
discrete rational number in rational CFTs .

Infinity dimensional representation of Viasoro symmetry V.S.
finite dimensional representation.

Integral boostrap equation V.S. Algebraic boostrap equation.

Large C limit (Holographic potentially) V.S. No large C count
part.

...
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REE in LFT or SLFT

Observed BTZ entropy (Higher spin BH) = Log of quantum
dimension of primary operator in LFT (Toda).[L. McGough and

H. Verlinde(2013)].

Variation of REE with entangled pair ingoing BTZ = Log of
quantum dimension of primary operator in LFT.[S. Jackson, L. McGough and

H. Verlinde(2014)].

LFT can be reformulated by 3d Gravity with boundary
(AdS/CFT like correspondence??)[H. L. Verlinde(1990)].

To study associated aspects of 2D quantum gravity from
quantum information point of view (REE).
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2nd REE in LFT

Liouville field theory

The Liouville field theory action

SL =
1

4π

∫
d2ξ

√
g
[
∂aϕ∂bϕgab + QRϕ+ 4πµe2bϕ

]
, (12)

where Q = b + 1
b . The conformal dimension of corresponding

primary operator Vα = e2αϕ is

∆(e2αϕ) = ∆̄(e2αϕ) = α(Q − α), (13)

where α ∈ (0,Q)
∪

Q/2 + ip.

Two point Green function.

⟨Vᾱ(x1)Vα(x2)⟩ =
δ(0)

(x12x̄12)
∆α1

. (14)
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2nd REE in LFT

2nd REE in LFT

We mainly focus on 2nd REE in early time or late time limit

R(2)
EE = lim

(z,̄z)→(0,0),or (z,̄z)→(1,0)

⟨VᾱVαVᾱVα⟩Σ2

⟨VᾱVα⟩2
Σ1

(15)

Then

S(2)EE

[
Vα|0⟩] = − log(R(2)

EE ) (16)
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2nd REE in LFT

2nd REE in LFT

S-channel, Early time

⟨VᾱVαVᾱVα⟩ =
1
2
|z13|−4∆|z24|−4∆∫ ∞

−∞

dp
2π

C(ᾱ, α,
Q
2
+ ip)C(ᾱ, α,

Q
2
− ip)

Fs1̄23̄4(∆i,∆p, z)Fs1̄23̄4(∆i,∆p, z̄). (17)

For α = Q/2 + iP, (z, z̄) → (0, 0)

S(2)EE

[
Vα|0⟩] = − log lim

(z,̄z)→(0,0)

⟨VᾱVαVᾱVα⟩Σ2

⟨VᾱVα⟩2
Σ1

= − log 0. (18)

[S. H, Phys.Rev. D99, 026005(2019)]
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2nd REE in LFT

2nd REE in LFT

T-channle, Late time. Boostrap equation

⟨VᾱVαVᾱVα⟩

=

∫ ∞

−∞

dp
2π

C(ᾱ, α,
0
2
+ ip)C(ᾱ, α,

0
2
− ip)∫

dαtFs1̄23̄4(∆i,∆p, z̄)Ft1̄23̄4(∆i,∆p, 1 − z)FL
st
[
ᾱ
α
α
ᾱ

]
(19)

For α = Q/2 + iP, (z, z̄) → (1, 0)

S(2)EE

[
Vα|0⟩] ≃ − log 0. (20)
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2nd REE in LFT

Comments

For Vα|0⟩, α = Q/2 + iP

∆S(n)A

[
Vα|0⟩, 1|0⟩

]
(t = 0) = Divergent

∆S(n)A

[
Vα|0⟩, 1|0⟩

]
(t = ∞) = Divergent (21)

How to resolve the divergence? Why ∆S(n)A

[
Vα|0⟩, 1|0⟩

]
are

divergent?
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2nd REE in LFT

Comments

Why ∆S(n)A

[
Vα|0⟩, |0⟩

]
are divergent?

Very intuitive interpretation to the divergence.

⟨0|∇ϕ|0⟩ = ⟨0|2ebϕ|0⟩ = 0

No translation invariant vacuum due to the positive definite of
exponential.

Choose proper reference state to redefine [S. H, Phys.Rev. D99, 026005(2019)]

∆S(n)A

[
Vα|0⟩,Vαr |0⟩

]
(t) = S(n)A [Vα(t)]|0⟩(t)− S(n)A [Vαr(t)|0⟩](t)

Where Vαr |0⟩ is reference state but not vacuum state as in
RCFTs.
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2nd REE in LFT

Final Results in LFT

The difference between Early and Late time

∆S(2)EE = S(2)EE

[
Vα|0⟩

]
(t → ∞)− S(2)EE

[
Vαr |0⟩

]
(t → 0)

= − log
( FL

Q/2,Q/2

[
ᾱ
α
α
ᾱ

]
FL

Q/2,Q/2

[
ᾱr
αr

αr
ᾱr

])∣∣∣
p→0

,

α, αr ∈ {Q/2 + ip}, p ∈ R. (22)

[S. H, Phys.Rev. D99, 026005(2019)]
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EE in deformed CFTs

The deformed operator

TT
(
z, z′

)
= Tzz(z)Tzz

(
z′
)
− Tzz(z)Tzz

(
z′
)

(23)

The following is true very generally in a reasonably well
behaved 2d QFT which has a local conserved stress tensor.

⟨TT⟩ = ⟨Tzz⟩ ⟨Tzz⟩ − ⟨Tzz⟩2 (24)
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EE in deformed CFTs

The deformation is

L(λ+δλ) = L(λ) + δλTT (25)

dS(λ)
dλ

=

∫
d2xTT(x) (26)

Why we should care about the deformation?
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EE in deformed CFTs

The spectrum of the deformed theory can be solved exactly and
non-perturbatively.[Smirnov-Zamolodchikov; Cavaglia-Negro-Szecsenyi-Tateo]

Deforming an integrable QFT by this operator preserves
integrability. [F. A. Smirnov and A. B. Zamolodchikov,16]

Deforming by TT̄ = Finite cutoff in terms of AdS/CFT.
[McGough-Mezei-Verlinde,18]
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EE in deformed CFTs

Since the excess of EE ∆S(n)
A = S(n)[|Ψ(t)⟩]− S(n)[|0⟩]

∆S(n)
A =

1
1 − n

[
log

⟨
O†

a (wl, w̄1)Oa(w2, w̄2)...Oa(w2n, w̄2n)
⟩
Σn⟨

O†
a (wl, w̄1)Oa(w2, w̄2)

⟩n

Σ1

]
(27)

Up to first order, the conformal symmetry is still hold in Deformed Theory.
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EE in deformed CFTs

Focus on the EE of deformation perturbatively up to first order.

[S.H., Hongfei Shu, 1907.12603.]
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OTOC in deformed CFTs
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OTOC in deformed CFTs

[S.H., Hongfei Shu, 1907.12603.]
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OTOC in deformed CFTs
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Comments and Summary

...1 The time evolutions of the n-th-REE (n ≥ 2) for local excitations
in Rational CFTs, 2D quantum gravity, TT/TJ deformed theory.

...2 OTOC confirm that the TT/TJ deformation preserve the maximal
chaotic behavior in terms of quantum information prespective.
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Future Directions

...1 It is natural to ask how about the generic CFT, e.g. Liouvile
Theory with c<1, large c CFTs, Logrithmic CFTs, Non-diagonal
CFTs...

...2 Conformal defects (ZZ, FZZT )in LFT V.S. the black hole
horizon or not?

...3 Modularity in 4-point correlation function of the deformed
CFTs. [Working in progress.]
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Thanks for your attention!
Welcome to visit the Theoretical Center in Jilin U!!!
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