# Quark and hadron masses from CLQCD ensembles



Yi-Bo Yang







国际理论物理中心-亚太地区



## Outline

#### Lattice QCD background



Investigation on the charm quark



#### Light quark and hadron masses







### Background



BMWc, Science 322(2008)1224

### **Other high precision LQCD inputs**



CalLAT, Nature 558(2018)7708,91-94



### Background Idea of Lattice QCD

- Discretize the Euclidean spacetime into a 4-D lattice with finite size and lattice spacing;
- Sample the QCD path integral with the weights from the QCD action;  $\langle O \rangle =$
- Repeat the calculation at different lattice spacing and volume, and then obtain the result in the continuum/infinitevolume limits.





#### hotspot: sparse linear operation, $\xi = D\eta$ **Basic flow** Linear system solver $\xi = D^{-1}\eta = \sum c_i D^i \eta + \mathcal{O}(10^{-12})$ Linear algebra operation, $\xi = c_1 \eta_1 + (\eta_2^{\dagger} \cdot \eta_3) \eta_4$ Generate configurations Square root of sparse matrix, using important $\xi = (D + m_0)^{-1/2} \eta = \sum_{i} \frac{d_i}{D + m_0 + e_i} \eta + \mathcal{O}(10^{-12})$ sampling Derivative of sparse matrix, $\xi = \frac{\partial D}{\partial U} \eta = D_1 D_2 D_3 \eta$

• The major hotspot is linear system solver;

Analysis the configurations to get the physical results

- But after the acceleration of this hotspot, linear algebra operation, square root and derivative of sparse matrix will be the bottlenecks of the performance.
- Configurations are the foundation of all the physical analysis!



$$\left(\gamma_4(\partial_\tau - igA_4)\psi + \sum (\partial_i - igA_i)\gamma_i - m\right)\psi = 0$$

The discretized Dirac equation with the coupling with the non-abelian SU(3) gauge field:

- $\gamma_{1,2,3,4}$  are 4 × 4 complex matrices,  $A_{1,2,3,4}$  are space-time dependent 3x3 complex matrices;
- Can be converted to a problem of sparse matrix inversion.





Computer cores

Internal sites

Boundary sites requiring information from the other cores;

- $L^3 \times T = 4^3 \times 4$  lattice:
- Red point:  $12 \times 12$  diagonal matrix
- Black point:  $12 \times 12$  sparse matrix



• The naive discretization suffers from the doubling problem:

• 
$$\mathscr{S}_{q}^{Naive}(m) = \sum_{x,y} \bar{\psi}(x) D_{Naive}(m;x,y) \psi(y), \ D_{Naive}(m;x,y) = \frac{1}{2a} \sum_{\mu} \gamma_{\mu} \left( U_{\mu}(x) \delta_{y,x+a\hat{\mu}} - U_{\mu}^{\dagger}(x-a\hat{\mu}) \delta_{y,x-a\hat{\mu}} \right) + m \delta_{y,x}$$

- The propagator has 1/m IR poles at  $pa = (0/\pi, 0/\pi, 0/\pi, 0/\pi)$ , which is different from the continuum theory.
- Staggered fermion:
- $\psi^{\text{st}}(x) = \gamma_4^{x_4} \gamma_1^{x_1} \gamma_2^{x_2} \gamma_3^{x_3} \psi(x), \{\gamma_1^{\text{st}}, \gamma_2^{\text{st}}, \gamma_3^{\text{st}}, \gamma_4^{\text{st}}\} = \{(-1)^{x_4} \gamma_2^{x_4} \gamma_3^{x_4} \gamma_3^{x_5} \gamma_3^{x_6} \gamma_4^{x_6} \gamma_4^$
- 16 IR poles  $\rightarrow$  4 IR poles, pion mass in the chiral limit can be  $\mathcal{O}(a^4)$  and then non-zero at finite a.



Cost x10



### Naive and staggered fermion

$$x_4, (-1)^{x_1+x_4}, (-1)^{x_1+x_2+x_4}, 1\};$$

Mixing between IR poles can be suppressed with kinds of the improvement, likes the so-call highly-improved staggered quark (HISQ).





- Wilson fermion action: 0
- $D + m \rightarrow D + aD^2 + m$
- Clover fermion action:
- $D + m \rightarrow D + aD^2 + m + ac_{sw}\sigma_{\mu\nu}F^{\mu\nu}$
- Suppress the additional chiral symmetry breaking into  $\mathcal{O}(\alpha_s^2/a)$ .
- <sup>o</sup> The cost of either Wilson or Clover action is  $\mathcal{O}(10)$  of the Staggered fermion.



### Wilson and clover fermion

• It removes the unphysical IR pole at  $p_i = \pi/a$ , while introduce the additional chiral symmetry breaking at  $\mathcal{O}(\alpha_s/a)$ .





o Ginsparg-Wilson relation:  $\gamma_5 D_{GW} + D_{GW} \gamma_5 = \frac{a}{\rho} D_{GW} \gamma_5 D_{GW}$ .

• 
$$\gamma_5 D_c^{-1} + D_c^{-1} \gamma_5 = 0, D_c^{-1} = D_{GW}^{-1} - \frac{a}{2\rho}.$$

• In  $p \to 0$  region,  $D_{ov} \to a \gamma_{\mu} p_{\mu}$ ;

• 
$$\ln p \to \pi/a$$
 region,  $D_{ov} \to \mathcal{O}(1)$ .

But approximate the sign function  $\frac{\gamma_5 D_w(-\rho)}{\sqrt{D_w(-\rho)D_W^{\dagger}(-\rho)}}$ 

Clover action.

action.

Staggered/HISQ

Cost x10

Wilson/Clover

### **Ginsparg-Wilson fermion**

$$\frac{D_{w}(-\rho)}{V_{w}(-\rho)} = \frac{\gamma_{5}D_{w}(-\rho)}{|\gamma_{5}D_{w}(-\rho)|} \text{ need } \mathcal{O}(100) \text{ cost of the Wilson/}$$

Domain wall fermion action is an approximation of overlap fermion with O(10) cost of the Wilson/Clover











BMWc, Nature 593(2021)51

### **Discretization error**

- Lattice calculation will suffer from the discretization error, which is usually  $\mathcal{O}(a^2 \Lambda_{OCD}^2)$ .
- If we reduce the lattice spacing a by a factor of 2, the cost of calculation will increase by a factor of at least 16.
- The current FLAG "green star" requires at least three lattice spacings and at least two points below 0.1 fm and a range of lattice spacings satisfying  $a_{\max}^2/a_{\min}^2 \ge 2.$







•

Quark mass (MeV)

Time for a quark propagator (second)

### **Chiral extrapolation**

- The cost to simulate light quark can be an order of magnitude larger than that of the strange quark.
  - Non-trivial algorithm likes multigrid can speed up the calculation of the light quark for certain fermion
- The current FLAG "green star" requires  $m_{\pi,\min} < 200$ MeV with at least three  $m_{\pi}$  in the chiral extrapolation, or  $m_{\pi, \text{ case1}} = 135 \pm 10 \text{ MeV} \text{ and } m_{\pi, \text{ case2}} < 200 \text{ MeV}.$





### Finite volume effect

 Hadron mass can have very strong dependence on spatial size L, especially when  $L \leq \Lambda_{\text{OCD}}^{-1}$ ;

 The finite volume chiral perturbative theory suggest an  $e^{-m_{\pi}L}$  correction when  $m_{\pi}L \geq 3$ , it means that the volume required by  $m_{\pi} \sim 135$  MeV is  $\sim 11$  times of that required by  $m_{\pi} \sim 300$  MeV.

• The current FLAG "green star" requires  $m_{\pi}L \sim 3.2$  for  $m_{\pi} \sim 135$  MeV, or at least three volumes.





## **CLQCD** ensembles



### **CLQCD** choice and informations

Features:  $\bigcirc$ 

- Maximum lattice size  $48^3 \times 144$ ,
- Clover fermion action with stout smearing,
- Similar pion mass and volume at different lattice spacing:

Cost:  $\bigcirc$ 

Α

 $\mathcal{A}$ 

- That of an independent configuration (per 10 traj.'s with  $\tau = 1.0$ , converted to A100 GPU hours) is shown on the figure;
- Needs ~1,000 configurations per ensemble;
- Working on the Sugon machines to avoid  $\bigcirc$ the embargo of A100 GPU.







### **CLQCD** ensembles **Southern Nuclear Science Computing Center**

- Start to generate the CLQCD ensembles, when it was still in the container.
- Currently over 50% of the configurations are generated there.







## **CLQCD** ensembles



### **Current status**

#### $\star$ In production:

- a=0.0888(3) fm, mpi=349(2) MeV,
   L=2.49 fm;
- a-0.0683(3) fm, mpi=291(2) MeV,
   L=2.46 fm;
- Aboot 100 independent configurations each.

#### +Parameter tuning:

Α

a

- a-0.04 fm, mpi-300 MeV;
- a-0.20 fm, mpi-300 MeV;
- a-0.08 fm, mpi-135 MeV.



## Outline

#### Lattice QCD background



Investigation on the charm quark



#### Light quark and hadron masses







$$m_q^{\text{PC}} = \frac{m_\pi^2}{2\Sigma/F^2} (1 + \mathcal{O}(\frac{m_\pi^2}{16\pi^2 F^2})) \sim \frac{m_\pi^2}{5 \text{ GeV}}$$



### through PCAC

- Due to the additive  $\alpha_s/a$  correction, the dimensionless bare quark mass  $\tilde{m}_q^{\rm b} = m_q^{\rm b} a$  is negative.
- The renormalized quark mass should be defined as  $m_q^R = Z_m (m_q^b - m_{crti})$ , where  $m_{crti}$  is defined as the  $m_a^{\rm b}$  which vanishes the pion mass.
- One can avoid this difficulty by defining the quark mass through PCAC relation:

$$\langle 0 | \partial_4 A_4 | \mathrm{PS} \rangle = (m_q^{\mathrm{PC}} + m_{\bar{q}}^{\mathrm{PC}}) \langle 0 | P | \mathrm{PS} \rangle$$

T. Ishikawa, et.al., JLQCD, Phys.Rev.D78 (2008) 011502

• And then  $m_q^{\text{PC}}$  is always positive and can be renormalized as  $m_a^R = Z_P / Z_A m_a^{PC}$ .

-0.16







#### **Based on joint fit of pion correlators**





## Hadron masses

• With the same quark propagator, the ratio between the nucleon mass and pion mass is

• Which is quite close to the physical value 0.939/0.135=6.96.



#### Nucleon mass v.s. pion mass

- Using the lattice spacing determined from the gradient flow, we have
- $m_{\pi} = 135.5(1.6)$  MeV,  $m_N = 890(10)$  MeV.
- $m_N$  are ~5% smaller than the physical value, and can be a discretization effect based on the lattice spacing dependence of  $f_{\pi}$ .









### **Renormalization through intermediate scheme**

$$m_q^{\overline{\text{MS}}}(\mu) = \frac{Z_m^{\text{MOM,Lat}}(Q, 1/a)}{Z_m^{\text{MOM,Dim}}(Q, \mu, \epsilon)} Z_m^{\overline{\text{MS}},\text{Dim}}(\epsilon) m_q^{\text{Lat}}(1/a) + \mathcal{O}(a^m, \alpha_s^n)$$

- The RI/MOM renormalization targets to cancel the  $\alpha_{s} \log(a)$  divergences using the off-shell quark matrix element;
- Up to the  $\mathcal{O}(a^2p^2)$  correction which can be eliminated by the  $a^2p^2 \rightarrow 0$  extrapolation.







$$Z_m^{\text{MOM,Lat}}(Q, 1/a, \xi) = (Z_S^{\text{MOM,Lat}}(Q, 1/a, \xi))^{-1} = \langle q \mid \mathcal{O} \mid q \rangle^{\text{Lat}} = 1 + \frac{\alpha_s C_F}{4\pi} [-3\log(a^2 Q^2) - \xi + b_S] + \mathcal{O}(\alpha_s^2, a^2 Q^2);$$

• The RI/MOM and  $\overline{\mathrm{MS}}$  renormalization constants under the dimensional regularization are:

$$Z_m^{\text{MOM,Dim}}(Q,\mu,\epsilon,\xi) = \langle q \mid \mathcal{O} \mid q \rangle^{\text{Dim}} = 1 + \frac{\alpha_s C_F}{4\pi} [\frac{3}{\tilde{\epsilon}} - 3\log(\frac{Q^2}{\mu^2}) - \xi + 5] + \mathcal{O}(\alpha_s^2)$$

$$Z_m^{\overline{\text{MS}},\text{Dim}}(Q,\mu) = 1 + \frac{\alpha_s C_F 3}{4\pi \ \tilde{\epsilon}} + \mathcal{O}(\alpha_s^2)$$

• Thus the renormalized quark mass under the MS scheme can be defined by:

$$m_q^{\overline{\text{MS}}}(\mu) = \frac{Z_m^{\text{MOM,Lat}}(Q, 1/a, \xi)}{Z_m^{\text{MOM,Dim}}(Q, \mu, \epsilon, \xi)} Z_m^{\overline{\text{MS},\text{Dim}}}(\epsilon) m_q^{\text{Lat}}(1/a) + \mathcal{O}(a^{2m}Q^{2m}, \alpha_s^n)$$

#### **Perturbative renormalization**

• The RI/MOM renormalization constant of the quark mass under the lattice regularization is:

- Calculate the RI/MOM renormalization constants non-perturbatively;
- Match the RI/MOM results to  $\overline{\text{MS}}$ scheme at different scale  $\mu^2 = p^2$ ;
- Evaluate the scale from  $\mu^2 = p^2$  to  $\mu = 2$  GeV.
- Extraplate to the  $a^2p^2$  limit to eliminate the discretization error.

#### **Non-Perturbative renormalization**





### **Renormalize mass using different actions**

- Non-perturbative renormalization to  $\overline{\rm MS}$  2 GeV eliminates the regularization scale 1/a dependence of  $m_\pi^2/m_q$ .
- $m_{\pi}^2/m_q$  using the clover fermion also turns out to be consistent with that using the overlap fermion.
- The large uncertainty of the renormalized  $m_{\pi}^2/m_q$  majorly comes from the missing higher order effect of the perturbative matching

$$\frac{Z_P^{\overline{\text{MS}}}}{Z_P^{\text{MOM}}} = 1 + 0.4244\alpha_s + 1.007\alpha_s^2 + 2.722\alpha_s^3 + 8.263\alpha_s^4 + ?,$$
  
J.A. Gracey, Eur.Phys.J.C83 (2023) 181

and can be highly suppressed after the continuum extrapolation.



### **Non-perturbative renormalization** Restore of chiral symmetry in the continuum



- spacings:
- •

• Renormalized quark mass  $m_q^R = Z_A/Z_P m_q^{PC}$  with 317 MeV pion mass at three lattice

• The intermediate renormalization scheme dependence is 3.1(1.5)%.

RI/MOM scheme has smaller discretization error.

• Feynman-Hellman theorem can extract  $g_{S,\pi}$  as

$$g_{S,\pi}^{\rm FH} = \frac{1}{2} \frac{\partial m_{\pi}(m_q)}{\partial m_q} \simeq \frac{Z_P}{Z_A} \frac{m_{\pi}}{4m_q^{\rm PC}} + \mathcal{O}(m_q, a^2)$$

which is 4.04(6)(12) for  $m_{\pi} = 317$  MeV in the continuum.

Renormalized  $g_{S,\pi}^{R,ME} = Z_S \frac{\langle \pi | S | \pi \rangle_{conn}}{\langle \pi | \pi \rangle}$  based on the direct calculation:

• The intermediate renormalization scheme dependence is 7.6(2.3)% (linear  $a^2$ correction) or 2.0(5.8)% ( $a^2 + a^4$  corrections).

•  $g_{S,\pi}^{\rm ME}$  using RI/MOM scheme has smaller discretization error, and agree with  $g_{S,\pi}^{
m R,FH}$ within  $2\sigma$  at all the lattice spacings. Z.C. Hu, B.L. Hu, J.H. Wang, et. al., CLQCD, 2310.00814







### **Global fit of the pion mass**

- Present CLQCD prediction of the u-d averaged light quark masses is consistent with the lattice averages within 5% uncertainty.
- Most of the uncertainties come from the nonperturbative renormalization and further improvements are in progress.
- All the finite volume, discretization and sea quark mass effects have been taken into account.







# Low energy constants determination





$$egin{aligned} m_\pi^2 &= \Lambda_\chi^2 2y \left[ 1+y \left( \ln rac{2y \Lambda_\chi^2}{m_{\pi,\mathrm{phys}}^2} -\ell_3 
ight) + \mathcal{O}(y^2) 
ight], \ F_\pi &= F \left[ 1-2y \left( \ln rac{2y \Lambda_\chi^2}{m_{\pi,\mathrm{phys}}^2} -\ell_4 
ight) + \mathcal{O}(y^2) 
ight], \ y &= rac{\Sigma m_l}{F^2 \Lambda_\chi^2} \simeq rac{m_\pi^2}{32 \pi^2 F^2} \end{aligned}$$





- The CLQCD prediction on the low energy constants can be more precise.
- The precision of the NLO low energy constants are higher than the present lattice averages.





val sea val sea

### **Global fit of the kaon mass**

#### P.Zyla et,al, PTEP(2020)083C01 (PDG2020):

•  $m_p = 938.27 \text{ MeV} = m_{p,\text{OCD}} + 1.00(16) \text{ MeV} + \dots;$ 

•  $m_n = 939.57$  MeV;

•  $m_{\pi}^0 = 134.98$  MeV;

•  $m_{\pi}^{+} = 139.57 \text{ MeV} = m_{\pi}^{0} + 4.53(6) \text{ MeV} + \dots;$ X. Feng, et,al. Phys.Rev.Lett.128(2022)062003

•  $m_K^0 = 497.61(1) \text{ MeV} = m_{K,\text{OCD}}^0 + 0.17(02) \text{ MeV} + \dots;$ 

 $m_{\kappa}^{+} = 493.68(2) \text{ MeV} = m_{K,\text{OCD}}^{+} + 2.24(15) \text{ MeV} + \dots$ 

D. Giusti, et,al. PRD95(2017)114504

Z.C. Hu, B.L. Hu, J.H. Wang, et. al., CLQCD, 2310.00814







0.054 fm, and 16 different volumes up to  $(6 \text{ fm})^3$ .

### **Baryon masses**





mass using multiple interpolation fields:

- The extracted mass is independent of the interpolation fields.
- Agree with the experimental value within a few percents;
- The mass difference between octet and decuplet baryon in the  $N_f = 3$  chiral limit is 0.31(7) GeV.

### **Based on CLQCD ensembles**

Extract the ground state



### **Nucleon mass**



| Parameter     | Value      |  |  |
|---------------|------------|--|--|
| $M_0$         | 0.876(16)  |  |  |
| $C_1$         | 2.13(39)   |  |  |
| $C_2$         | 1.39(59)   |  |  |
| $C_3$         | -6.77(57)  |  |  |
| $C_4$         | 1.85(49)   |  |  |
| $C_5$         | 0.92(38)   |  |  |
| $g_A$         | 0.99(27)   |  |  |
| $g_1$         | -0.03(51)  |  |  |
| $M_{ m phys}$ | 0.9296(91) |  |  |
| $\chi^2$      | 0.73       |  |  |
| Q             | 0.86       |  |  |

theorem:

 $\sigma_{\pi N} \equiv m_l \left\langle p \,|\, \bar{u}u + \bar{d}d \,|\, p \right\rangle = m_l \frac{\partial M_N}{\partial m_l}$ 

=48.8(6.4) MeV;

- Previous Overlap result based on FH theorem:  $\sigma_{\pi N} = 52(8)$  MeV;
- Previous Overlap result based on direct ME calculation:

 $\sigma_{\pi N} = 46(7)$  MeV.

### **Based on CLQCD ensembles**



### Outline

#### Lattice QCD background





Investigation on the charm quark



#### Light quark and hadron masses







further suppression on the systematic uncertainties.



### **Stable hadron masses**



- ullet



The  $\eta_c$  mass extrapolated to continuum is consistent with the previous HPQCD results while slightly lower than the experimental value due to the QED and disconnected charm sea effects.

• The  $\Omega_c$  mass extrapolated to continuum is 2745(10)(20) MeV.





### **CLQCD** ensemble applications $D_{c}^{*}$ radiative decay and $V_{cs}$

$$\langle 0|\mathcal{O}_{D_s}(0)|D_s(\vec{p})
angle \ = \ Z_{D_s} \ \langle D_s(p)|J_{\nu}^{\mathrm{em}}(0)|D_{s,\mu}^*(p')
angle \ = \ rac{2V_{\mathrm{eff}}(q^2)}{m_{D_s}+m_{D_s^*}}\epsilon_{\mu
ulphaeta}p_{lpha}p_{eta}'$$

$$V_{\text{eff}}(q^2) = \frac{-(m_{D_s} + m_{D_s^*})E_{D_s}}{2Z_{D_s}m_{D_s^*}}e^{E_{D_s}t}$$
$$\times \int d^3\vec{x} \frac{j_1(|\vec{p}||\vec{x}|)}{|\vec{p}||\vec{x}|} \epsilon_{\mu\nu\alpha0}x_{\alpha}H_{\mu\nu}(\vec{x},t)$$





• Predict  $\Gamma(D_s^* \to D_s \gamma)$ =0.0549(54) KeV and then suppress the uncertainty of the previous HPQCD calculation by a factor of 4;

Combining the recent experiment, one can obtain  $f_{D_s^*}|V_{cs}| = 190.5^{+55.1}_{-41.7} \pm 12.6$  MeV.



# **CLQCD** ensemble applications

#### Scattering length



- At  $m_{\pi} \sim 300$  MeV, there is a virtual state pole; ullet
- When pion mass decreases, it becomes a resonance and the pole position gets close to the experiment.





# Bottom quark mass

- The  $m_Q^2 a^2$  discretization error of the heavy quark can be huge for the bottom quark.
- For example, the bare quark mass at 0.1 fm with physical bottom quark mass (~5 GeV) will be 17 GeV.
- It is obvious that the renormalization constant deviates from 1 by  $m_Q^2 a^2$  correction which is suppressed at a~0.03 fm.



### Using clover fermion



If we use such a bottom quark mass at 0.1 fm:

- The fine splitting  $m_{1P} m_{1S}$  is close to the experimental value thanks to the heavy quark symmetry;
- But the hyperfine splitting  $m_{\Upsilon} m_{\eta_b}$  will be 5% of the experimental value, while the situation will improve significantly at a~0.03 fm.

### **Non-relativistic actions**

٠

$$S_{\psi} = a^3 \sum_{\mathbf{x},t} \psi^{\dagger}(\mathbf{x},t) \big[ \psi(\mathbf{x},t) - K(t) \,\psi(\mathbf{x},t-a) \big],$$

$$K(t) = \left(1 - \frac{a\,\delta H|_t}{2}\right) \left(1 - \frac{aH_0|_t}{2n}\right)^n U_0^{\dagger}(t-a)$$
$$\times \left(1 - \frac{aH_0|_{t-a}}{2n}\right)^n \left(1 - \frac{a\,\delta H|_{t-a}}{2}\right)$$

$$egin{aligned} H_0 &= -rac{\Delta^{(2)}}{2m_b}, \ \delta H &= -c_1 \; rac{\left(\Delta^{(2)}
ight)^2}{8m_b^3} + c_2 \; rac{ig}{8m_b^2} \left( oldsymbol 
abla \cdot \widetilde{f E} - \widetilde{f E} \cdot oldsymbol 
abla 
ight) \ -c_3 \; rac{g}{8m_b^2} \; oldsymbol \sigma \cdot \left( \widetilde{oldsymbol 
abla} imes \widetilde{f E} - \widetilde{f E} imes \widetilde{oldsymbol 
abla} 
ight) - c_4 \; rac{g}{2m_b} \; oldsymbol \sigma \cdot \widetilde{f B} \ +c_5 \; rac{a^2 \Delta^{(4)}}{24m_b} - c_6 \; rac{a \left(\Delta^{(2)}
ight)^2}{16n \; m_b^2}. \end{aligned}$$

### of heavy quark

|               | Data sets                | $am_b$ | $u_{0L}$ | $c_4$   |
|---------------|--------------------------|--------|----------|---------|
| a = 0.111  fm | C104, C14, C24, C54, C53 | 2.52   | 0.8439   | 1.09389 |
| a = 0.083  fm | F23, F43, F63            | 1.85   | 0.8609   | 1.07887 |







### **Relativistic actions**

"Fermilab action"

 $S_{\text{Fermilab}} = S_0 + S_B + S_E,$  $S_0 = a^4 \sum \left[ m_0 \bar{\psi}(x) \psi(x) + \bar{\psi}(x) \gamma_4 D_{\text{lat},4} \psi(x) \right]$  $+ \, \zeta ar{\psi}(x) oldsymbol{\gamma} \cdot oldsymbol{D}_{ ext{lat}} \psi(x) - rac{1}{2} a ar{\psi}(x) \Delta_4 \psi(x) \, .$  $-\frac{1}{2}r_s\zeta aar{\psi}(x)\Delta^{(3)}\psi(x)
ight],$  $S_B = -\frac{1}{2}c_B\zeta a^5 \sum_{x} \bar{\psi}(x)i\mathbf{\Sigma}\cdot \boldsymbol{B}_{\mathrm{lat}}\psi(x),$  $S_E = -rac{1}{2} c_E \zeta a^5 \sum ar{\psi}(x) oldsymbol{lpha} \cdot oldsymbol{E}_{ ext{lat}} \psi(x) \,.$ 

A. X. El-Khadra, A. S. Kronfeld., P. B. Mackenzie PRD55(1997)3933

$$S_Q = a^4 \sum_x \bar{Q}\mathcal{M}Q, \ \mathcal{M} = \left[m_Q + \gamma_4 \nabla_4 - \frac{a}{2}\nabla_4^2 + \nu \sum_{i=1}^3 \left(\gamma_i \nabla_i - \frac{a}{2}\nabla_4^2\right)\right]$$

#### of heavy quark

#### "OK (Oktay-Kronfeld) action"

$$egin{aligned} S_{ ext{OK}} &= S_0 + S_B + S_E + S_6 + S_7 \ , \ &S_6 &= a^6 \sum_x ar{\psi}(x) \Big[ c_1 \sum_i \gamma_i D_{ ext{lat},i} \Delta_{ ext{lat},i} + c_2 \{m{\gamma} \cdot m{D}_{ ext{lat}}, \Delta^{(3)}\} \ &+ c_3 \{m{\gamma} \cdot m{D}_{ ext{lat}}, i m{\Sigma} \cdot m{B}_{ ext{lat}}\} + c_{EE} \{\gamma_4 D_{ ext{lat},4}, m{lpha} \cdot m{E}_{ ext{lat}}\} \Big] \psi(x) \,, \ &S_7 &= a^7 \sum_x ar{\psi}(x) \sum_i \Big[ c_4 \Delta_i^2 + c_5 \sum_{j \neq i} \{i \Sigma_i B_{ ext{lat},i}, \Delta_j\} \Big] \psi(x) \,, \end{aligned}$$

M. B. Oktay, A. S. Kronfeld., PRD78(2008)014504



L. Liu, et. al., PRD81(2010)094505 Z. S. Brown, et. al., PRD90(2014)094507

"tadpole improved anisotropic action"



.



## Why

$$S_Q = a^4 \sum_x \bar{Q} \mathcal{M}Q, \ \mathcal{M} = \left[ m_Q + \gamma_4 \nabla_4 - \frac{a}{2} \nabla_4^2 + \nu \sum_{i=1}^3 \left( \gamma_i \nabla_i - \frac{a}{2} \nabla_i^2 \right) - \frac{1+\nu}{4u_0^3} a \sum_{i=1}^3 \left( \gamma_i \nabla_i - \frac{a}{2} \nabla_i^2 \right) \right]$$





### the anisotropic action works?

 $\sum_{i=1}^{3} \sigma_{i4}F_{i4} - \frac{1}{4u_0^3}a \sum_{i=1}^{3} \sigma_{ij}F_{ij}$ 

L. Liu, et. al., PRD81(2010)094505 Z. S. Brown, et. al., PRD90(2014)094507

 When the quark mass and then hadron mass are large, the difference between  $\sinh(ma)$  and *ma* will be large.

• Effectively it makes the speed of light to be different from 1 by  $O(m^2 a^2).$ 

Such an effect can be compensated by a so-call "bare" speed of light factor in the action.









### Parameter tuning





### of the anisotropic action

L. Liu. et. al., PRD81(2010)094505 Z. S. Brown, et. al., PRD90(2014)094507

bare speed of light factor (anisotropic factor)  $\nu(m_O, a)$ approaches 1 with the form  $1 + \mathcal{O}(a^2)$  when the lattice spacing approaches 0;  $\frac{\sinh(cm_H a)}{cm_H a}$ -, with c = 0.621 due to the impact from the Wilson term.





### **Precision problem**

$$S_{Q} = a^{4} \sum_{x} \bar{Q} \mathscr{M} Q, \ \mathscr{M} = \left[ m_{Q} + \gamma_{4} \nabla_{4} - \frac{a}{2} \nabla_{4}^{2} + \nu \sum_{i=1}^{3} \left( \gamma_{i} \nabla_{i} - \frac{a}{2} \nabla_{i}^{2} \right) - \frac{1 + \nu}{4u_{0}^{3}} a \sum_{i=1}^{3} \left( \gamma_{i} \nabla_{i} - \frac{a}{2} \nabla_{i}^{2} \right) \right]$$

$$\mathcal{M}^{-1}(x, y)Q(y) = \alpha(x_4)\mathcal{M}^{'-1}(x, y)Q^{'}(y),$$
$$Q^{'}(x) = \alpha^{-1}(x_4)Q(x), \ \mathcal{M}^{'}(x, y) = \alpha^{-1}(x_4)\mathcal{M}(x, y)\alpha(y_4), \ \alpha(t) = \cosh\left[\alpha_0\left(t - \frac{1}{2}\right)\left(t - \frac{$$

- Distance pre-conditioning can resolve the problem of  $\mathcal{M}^{-1}(x,0) \propto e^{-m_Q x_4}$  which will be smaller than  $10^{-15}$  at large t:
  - Before the pre-conditioning  $(\alpha_0 = 0)$ ,  $\eta_b$  effective mass will not saturate at large t with double precision;
  - With large enough pre-conditioning factor  $\alpha_0$ , mass becomes a constant at large t.

#### of the heavy quark action

 $\sum_{i=1}^{3} \sigma_{i4}F_{i4} - \frac{1}{4u_0^3}a\sum_{i=1}^{3} \sigma_{ij}F_{ij}$ 

L. Liu, et. al., PRD81(2010)094505 Z. S. Brown, et. al., PRD90(2014)094507



G.M. de Divitiis, et. al., PLB692(2010)157

$$\eta_b$$
 effective



### Improvement

$$S_{Q} = a^{4} \sum_{x} \bar{Q} \mathscr{M} Q, \ \mathscr{M} = \left[ m_{Q} + \gamma_{4} \nabla_{4} - \frac{a}{2} \nabla_{4}^{2} + \nu \sum_{i=1}^{3} \left( \gamma_{i} \nabla_{i} - \frac{a}{2} \nabla_{i}^{2} \right) - \frac{1 + \nu}{4u_{0}^{3}} a \sum_{i=1}^{3} \left( \gamma_{i} \nabla_{i} - \frac{a}{2} \nabla_{i}^{2} \right) \right]$$

★ The anisotropic action can improve the hyperfine splitting significantly and consistently, especially the *bb* case.
 ★ The predictions on the vector meson decay constants are also much better comparing to the isotropic action, using Z<sub>q1</sub>/<sub>1</sub>/<sub>1</sub>/<sub>2</sub> ~ √Z<sub>V<sub>i</sub></sub><sup>q1</sup>Z<sub>V<sub>i</sub></sub><sup>q2</sup>

with 
$$Z_{V_i}^q = Z_{\bar{q}\gamma_i q}$$
.

#### from the anisotropic action

 $\sum_{i} \sigma_{i4} F_{i4} - \frac{1}{4u^3} a \sum_{i} \sigma_{ij} F_{ij}$ 

L. Liu, et. al., PRD81(2010)094505 Z. S. Brown, et. al., PRD90(2014)094507



# Sumary

- Light quark mass and low energy constants have been properly extracted using the CLQCD ensembles, and study on the charm quark and also hadron spectrums are on going.
- Systematic hadron spectrum and structure studies can be carried out reliablely using the CLQCD ensembles.
- We expect more LQCD studies will use the CLQCD ensembles in the near future, based on the techniques we developed on the other ensembles.

