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Primordial perturbations

Precious information from very early universe
- Nearly scale invariant scalar power spectrum

- Non-Gaussianities



Primordial perturbations: Inflation paradigm
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Primordial perturbations: Inflation paradigm

Model-building approach:
Single-field / multi-field / quasi-single-field. ..
particle / string connections...

Need information of new physics at extremely high energy

Hope: identify / constrain models via precise measurement of
porimordial fluctuations

Reality: very nontrivial constraints, yet still too large degeneracy,
at least at linear level



Primordial perturbations: Non-Gaussianity

Non-Gaussianities: information about interactions

Small for single field slow-roll, fnr < 1
— Very weak self-interaction, dominated by gravity

More exotic models predict large fnr ~ 1 oreven > 1
— more strongly interacting



Primordial perturbations: Non-Gaussianity

Non-Gaussianities: information about interactions

Observationally: (Planck 2015, 68% CL)

oca equil ortho
ZIVL | = 2.0 5.7 NqL = —16 = 70 Nzh = —34 £ 33

Future probe:

LSS fnr ~ O(0.1) 21cm tomography fxr ~ O(0.01)
Munoz et al., 1506.04152; Meerburg et al., 1610.06559

Motivations for going beyond fn ~ 17



Primordial perturbations: Non-Gaussianity

Analogy from particle physics:
past: e, u, p, m,... nowadays: Higgs, heavy quarks, BSM

L
> 2
L
e <
L

Lessons: making use of well-studied “external” particles to
probe unknown “internal” particles and their physics
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Cosmological collider

Using primordial perturbbations as a probe of very high energy
collisions during inflation

Much higher energy than any ground based collider we can ever
dream of (up to 10" GeV)

Not-too-large non-G from inflaton
— “external particles” are not strongly interacting
— More like electrons or photons than protons or jets

New particles interacting with inflaton (scalar perturbation) could
leave signals in inflaton correlators



Cosmological collider

Primordial perturbations (non-G) as a probe of new physics

7T=20

L3 L1 Lo

¢ ) /.
T=0

3 U7 oy

q

‘ s
T=0

s 1 X2

q G ¢

heavy (new) particles

Chen, Wang, 0911.3380;1205.0160

Pi, Sasaki, 1205.0161

Arkani-Hamed, Maldacena, 1503.08043
Chen, Namjoo, Wang, 1509.03930

new strong interactions

via enhanced non-G

Chen, Wang, 0911.3380
Chen, Wang, ZZX, 1703.10166

loop effects

Arkani-Hamed, Maldacena, 1503.08043
Chen, Wang, ZZX, 1612.08122



Cosmological collider: Discovery channels

Most significant channels may not be most sensitive channels
[diphoton channel in Higgs discovery]

In cosmological collider: squeezed limit of bispectrum
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Cosmological collider: Discovery channels

Chen, Namjoo, Wang, 1509.03930
Chen, Wang, 27X, 1703.10166
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Cosmological collider

Before exploring new physics, can we recover known physics?
Known physics: SM
The Hubble scale during inflation >> electroweak scale

Why SM relevant?

‘Aren’t they massless?!”
— A Surprising No.

(or not surprising?)
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Standard Model mass spectrum

Four ways to go massive:

*
¢ OGyuv
AN
Inflaton backgrouna dS background via
via SM-inflaton couplings Gravitational coupling
X
b h

TN

Higgs background Loop corrections

(thermal background?)
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SM-Inflaton couplings

They must exist (for successful reheating)

At least gravitational, but can be much stronger
Very model dependent

Assuming shift symmetry, a simple parameterization:

%5 — fu(X)HH — fpu(X)|D,H?

ST X = (0, 2
o (X)VT Y~ fa, (X) oy L (9u0)

Generalizations: higher spin coupling / no shift symmetry
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SM-Inflaton couplings

%5 — fu(X)HH — fpu(X)|D,HJ?

_ 1 X = (0,0)°
— fo,(X)V; 90, — 7 [ (X) Fapn FG7, "
Corrections from SM-inflaton couplings:
. Xo) .
Mass correction:  AM?Z = fr(Xo Xq = —?
" 1+ fou(Xo) ’ P
Correction to couplings, e.qg.,
1+ fpu(Xo)l? 1+ fw (Xo, ¢0)

“Calibration” limit (Part 1): fou(Xo), fu,(Xo), fa,(Xo) <1
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Gravitational couplings

Expected to be highly suppressed in general (by Planck mass)

The only exception: dimensionless Higgs non-minimal coupling

S D —/d4$\/—g§RHTH

126H? + fu(Xo)
1+ fpu(Xo)

AM; =

Higgs mass: free parameter in inflation (even in “calibration” limit)
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Higgs backgrouna

Very low scale inflation: H < v = 246GeV
— Uninteresting from perspective of cosmological collider

Higgs inflation: Higgs boson = inflaton
1
L — (EMQ + §HTH)R — D, H[? — A\(H'H)?

M? +26eH'H \h*
9uv ? 2 Juv; V(h) — 2 212
Mg 4(1 + &h? /M)

Huge and time-dependent VEV: (h) ~ O(10'°GeV)
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Higgs background: Higgs inflation

SM mass spectrum gets overall uplift
v =246GeV = (h) ~ O(10'°GeV)
Original model in tension with collider data (Higgs instability)
-+ A class of models

More general analysis
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Loop corrections

Loop corrections can generate nonzero mass contribution even
all fields are massless (or very light) at tree level

"hermal analogy
hermal mass in (flat-space) thermal Q

IndS: T = H/2x . Qualitatively AM?* ~

- M3 oc XT?

H2

Analogy only: flat-space thermal QFT inapplicable

1. Background curvature ~ temperature, non-negligible
2. BD vacuum preserves dS isometries. (no Doppler shift)
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Loop corrections

Thermal analogy: Euclidean picture

- % (d5) ~ T°

1

zero-modes dominate
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Loop corrections

Thermal analogy: real-time picture
Massless Ao* in dS

Classical roling-down: ¢* ~ H/(\t) \,

@_

Quantum fluctuation: (¢) ~ H>t

‘

IR growth / late-time divergence

Equilibrium reached at t ~ (VAH) ™! = ($?) ~ H2/VA

—»  m’ ~ A¢?)
~ VIH?
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Loop corrections

Two ways of loop computation:
1. Schwinger-Keldysh formalism 2. Wick rotation

- Schwinger-Keldysh: (in| - - - |in) = Z<1n| .- - lout) (out| - - - |in)

O -O-
T oo
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Loop corrections: SK amplitude

Example: \¢*; 2-point SK amplitude. Tree-level:

1-loop correction:

r NH?2 (1 3H?2 )

o/ — 21.3 | ;- +log I%;
o N . 6(2m)%k fe Zm‘
:\ /' dimensional leading term in
0_____\0/_’ _____ o regulaiization small inass limit
subtracted by IR divergent

local counterterm when m — 0

2

263

log(—2kT)

\

leading term in
late-time limit

'

resummation via
dynamical RG
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Loop corrections: SK amplitude

2

. . H
Example: \¢*; 2-point SK amplitude. Tree-level: o7
Dynamical renormalization group resummation: Burgess et al., 0912.1608
An analogy with RG improvement in ordinary loop calculation

H® H?  \H2 H?
I . 1 _k' « o e *
2k5  a(amyeme 8Lk 243

(_kT)AH2/2(27rm)2

A light massive mode at late-time limit,

2 2 2
(_7_)3/2H151)(_k7_) — (_kT)S—Qu ~ (—]CT)Qm /3H

V3AH?

Compare the time dependence: m* = e
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Loop corrections: SK amplitude

Which loop diagrams does DRG resum?

A direct proof of DRG ansatz in simple cases:

exp<Z. ) / )
-2(x.0..0 . /—

n loops

The key identity for the proof:

2. LO = laor—)_<(Q)

n loops
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Loop corrections: SK amplitude

Diagrams like e Q o are not included in DRG

A partial resummation, giving correct semi-quantitative result
— But exact in large N [imit; - O » IS sSuppressed

Further problems with real-time calculation:
space-time asymmetric (gauge condition) / regularization

[ i) [ dngametin

O~ Jit
. / (27)3 HV (—qm)H (—qro) HE? (—pr ) HY (—pr2)

Alternative method: \Wick rotation
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Loop corrections: Wick rotation

Highly nontrivial in curved space!
— coordinate dependent / not always sensible

ds? = —d¢? | 62thX2 — d82 — dtQE + fiziI_ItEdX2

An appropriate Wick rotation of inflation background:
Wick rotation in imbedding space ~ global coordinates

4
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Loop corrections: Wick rotation

. Higuchi, Marolf, Morrison, 1012.3415
The equivalence between S |

Euclidean dS amplitude & SK amplitude in Poincaré patch

+im/2 +im /2 +

—im /2 —im /24
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Loop corrections: Wick rotation

Fun with spherical harmonics
S%: (G +1)
Yi(z) = _H2L(L +d)Y; () “total angular

momentum”

A scalar of mass m: (00— m?)¢p =0

Propagators in terms of harmonics

m Hd—l—l

A = L(L+d)+ (m/H)?

The zero mode (L = 0) is divergent as m — 0
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Loop corrections: Wick rotation

Example 0: two scalars: ¢ and X, with cubic int. Ay ?

1-loop mass correction to ¢ from X:

/ %/ o YL @Y (@)Y ()Y 5 ()
_Z/)\z 1 z—aiQLG(x,$)
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Loop corrections: Wick rotation

Example 0: two scalars: ¢ and X, with cubic int. Ay ?

0
— 5.3 LG(x,x)

UV divergence readily removed by dimensional regularization

3N2H4
87T2M§

- O(M)

In small mass M, limit: 6M7 =

Zero mode!

Only zero modes are important in small mass limit
Can be calculated by setting loop momentum to zero
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Loop corrections: Wick rotation

Example 1: Higgs boson with tree-level mass M g

Loop correction dominates when Mgo < H due to zero modes
— can be calculated non-perturbatively Rajaraman, 1008.1271

HD |Y_)| <h2> deh h —Vp (L M7 hg+1ARy)
Mg P [ dN hg e~ Yp (3 Muohg+5Ang)

Volume of S”
loop-corrected mass #fields, N=4 for SM Higgs

Finite correction when Mgg = 0 ;

6\
Mg =1 —H?
7'('
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Loop corrections: Wick rotation

Example 1: Higgs boson with tree-level mass M g

Loop correction dominates when Mgo < H due to zero modes
— can be calculated non-perturbatively Rajaraman, 1008.1271

Generally, when Mg # 0: 20 7

1.5?

Lighter Higgs needs fine tuning

0.5

/

6.\
H? N |

7T3 0.0 0.5 1.0 1.5 2.0

M =
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Loop corrections: Wick rotation

Example 2: Gauge boson

1
S =— /d4a:\/—g T Fu F" + D, ®|° + mzqﬁcb]

> - [t Vg[S a2 4 07) slear (90, - wfmaﬁ)}

O
' %

3e2 H* = 0, due to
Ar2m? derivatives

/ero-mode-only
approximation:

M35 =
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Loop corrections: Wick rotation

Example 2: Gauge boson
Possible to keep all modes / compute full 1-loop

L ~O-

>A - A@) )
20¢ ab 1 3
15F AL@@a+b) 1 S
9 102— | 5
_skL .
0 1 2 3 4 6 7 8 9 10




Standard Model mass spectrum

Combining all corrections: Classical input + quantum correction

X X
¢ 00 v h Q
/\ //\\

For non-Higgs inflation:

Higgs mass arbitrary, generally > O(H)
Gauge bosons get mass: due to Higgs zero-mode

Fermions remain massless, If classically so
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Standard Model mass spectrum

Non-Higgs inflation SM spectrum: In general very arbitrary

Calibration [imit: SM mass spectrum not “polluted” by inflaton

couplings

Higgs inflation:

SM spectrum uplifted from

electroweak scale to
Inflation scale, except
the Higgs boson itself

M/H

103 |

10% |

10|

1

1071t

1072}

1073 |

Z_t

N

sN=

SN

M,=0.05H M,=0.5H M,=5H Higgs Inf.
Chen, Wang, ZZX, 1610.06597
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SM background in cosmological collider

How to reveal SM spectrum in cosmological collider?
— always produced In pairs

%5 — fu(X)HH - fpu(X)|D,HJ?

— fu,(X)U, P90, — %an (X) Fap FL”

— 1-loop diagrams at leading order

)
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SM background in cosmological collider

N N

O, w0, — ¢ v + —
J/ "/ /
Discovering channel: loops lines stretched far beyond horizon
Non-local effect, free of UV divergence

Oscillating/scaling behavior in squeezed limit:;
— Late-time expansion as an approximation
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SM background in cosmological collider

Dimensionless non-Gaussianity

Z D — fu(X )HTH—fDH( )|D,H|7 ks

- fo (OTPV; = fa, (O Fup L. )

(X 2 4 Er \2—2un
1 +f1;1§H(();(o)_ Qio [CH(Mh)(%LS) g + (pn — —Mh)]
| fpg(X 1% HA4 kr \2—2pn
fontXo)_]" 2 i Conun)(32)" " + o = )
[ f/ (XO) 17 H4¢O:UJ1 2 kr \ 11212
_1 ‘|‘\I,f\11(X())_ 94 [C\IJ(Ml/2)< ko ) + C.C.]
" (X)) 17 27THBGE kr \2-2m
- _1 +A;A(?)2'O)_ 167T4M% [CA(/M)(%) + (Ml — —M1>]
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SM background in cosmological collider

[ faXe) 1 43 ke, 22
oH = [1 + I;DH(XO)] 2_7TO4 [CH(M)(%> + (b = —hin)

Crr(p) = (2 — p)(3 — 2p) cos(mp) sin® ()

x T'(—4+ 4M)F2(M>F2(% — )T%(2 - 2p)

Very model dependent in general

But consistency relation still exists in most general case:

dlntanQHW_ (1—ns—lr) My%[/ f]‘\//VL _M_% f]%L
dln k 3./3P; sin’ Ow | H? \ Nw|Calpw)[ - H? | Nz|Calpz)




SM background in cosmological collider
Signal strength?

+ fnrz ~ 1 requires fi7(Xg) ~ &62

o (Xo), f§(Xo), f£(Xo) ~H *¢;°
— can be relaxed — Calibrating limit (Part 2)

Calibrating limit in summary:

foa(Xo), fu,(Xo), fa,(Xo) <1
1 (Xo) ~ ¢5°
b Xo), f&(Xo), f2(Xo) ~H g2

Not technically natural as EFT, but can be realized in a model”

42



Example

More concrete predictions can be made for specific models
Example: original Higgs inflation

Heavy fields are suppressed by Boltzmann factor;
Light fields (fermions) are suppressed by small Yukawa couplings

SM background is negligibly small

More examples”?
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Summary

SM particles present a novel mass spectrum during inflation, in
contrast to ordinary case

The SM spectrum in inflation is potentially olbservable from the
squeezed limit of the inflaton bispectrum

A detection of a heavy particle in squeezed bispectrum does not
necessarily tell a new particle beyond SM

The spin structure in bispectrum does not necessarily tell the
spin of the massive particle

Loops are relevant!
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Outlook: Beyond Inflation Paradigm

Spectator fields in alternative-to-inflation scenarios”?
—Primordial standard clocks chen, Namjoo, Wang, 1411.2349, 1509.03930

Generated at low scales in typical bouncing models

Anything interesting about pre-history of universe to be learnt
from non-G? e.g. Li, 1306.0191: Cai et al., 0903.0631

bounce
cosmology
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Outlook: Beyond SM
Spin-0: Axions / moduli”?

Spin-1/2: Neutrinos: seesaw mechanisms?
Chen, Wang, ZZX, Xu, in progress

Spin-1: Gauge symmetry breaking?

Spin-3/2: Supersymmetry?

Delacretaz, Gorbenko, Senatore, 1610.04227

Spin = 2: Higher spin particles / string states?
Lee, Baumann, Pimentel, 1607.03735

Missing energy”?
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Beyond SM: Neutrino mass

- Example: Type | seesaw Chen, Wang, ZZX, Xu, in progress
h 3y2H2 M, iMy iMy
AM, = (2 - I'(2
14O7T2M}% ( H T2+ H )
[ s iMy iMy 5 _ 9
F (2 _ 9 D.q Y. 1).
25 N VL 3 gt T 9%

large M n limit: Weinberg operator

h
A —
: UV, v,
3y? H?
AM, ~
14O7T2M2MN
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Thank youl




