

Huan-Xiong

Moduli Stabilization in Type IIB Flux Compactifications

Huan-Xiong Yang

April 24, 2006

Contents

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

1 [Introduction](#page-2-0)

[Contents](#page-1-0)

3 [Type IIB Calabi-Yau Orientifold Compactification](#page-18-0)

4 [KKLT Procedure](#page-28-0)

5 [Beyond KKLT Procedure](#page-31-0)

2 [Calabi-Yau Moduli Space](#page-7-0)

6 [My work](#page-33-0)

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

[Introduction](#page-2-0)

The process of Moduli Stabilization represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

[Introduction](#page-2-0)

- The process of Moduli Stabilization represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.
- In Calabi-Yau compactifications, the moduli fields generically include the dilaton, the Kähler moduli and the complex structure moduli.

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

[Introduction](#page-2-0)

- The process of Moduli Stabilization represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.
- In Calabi-Yau compactifications, the moduli fields generically include the dilaton, the Kähler moduli and the complex structure moduli.
- The main progress in this aspect was made by DRS-GKP and CK-KKLT:

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

[Introduction](#page-2-0)

- The process of Moduli Stabilization represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.
- In Calabi-Yau compactifications, the moduli fields generically include the dilaton, the Kähler moduli and the complex structure moduli.
- The main progress in this aspect was made by DRS-GKP and CK-KKLT:

Flux Stabilization Mechanism $+$ Non-Perturbative **Corrections**

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

[Introduction](#page-2-0)

- The process of Moduli Stabilization represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.
- In Calabi-Yau compactifications, the moduli fields generically include the dilaton, the Kähler moduli and the complex structure moduli.
- The main progress in this aspect was made by DRS-GKP and CK-KKLT:

Flux Stabilization Mechanism $+$ Non-Perturbative **Corrections**

The main references are: K.Dasgupta, G.Rajesh and S.Sethi, JHEP08, 023(1999); S.Giddings, S.Kachru and J.Polchinski, Phys.Rev.D66, 106006(2002); G.Curio and A.Krause, Nucl.Phys.B643, 131(2002); S.Kachru, R.Kallosh, A.Linde and S.Trivedi, Phys.Rev.D68, 046005(2003).

String Compactification

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

Calabi-Yau [Moduli Space](#page-7-0)

The idea of compactification arises naturally to resolve the discrepancy between the critical dimensions $D=10$ and the observed $dimensions$ $d=4$:

$$
\mathcal{M}_{10}=\mathcal{M}_4\times\mathcal{K}_6
$$

To have a minimal number of supersymmetries survived in \mathcal{M}_4 , the manifold K_6 is required to be a Calabi-Yau threefold CY_3 with the properties:

- Compact
- Ricci-flat
- Complex
- Kähler with $SU(3)$ holonomy¹

¹Holonomy group H : Upon parallel transport along a closed curve on \mathcal{CY}_3 , a vector v is rotated into Uv . The set of matrices U forms $\mathcal H$ of \mathcal{CY}_3 .

Moduli Space

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

Calabi-Yau [Moduli Space](#page-7-0)

Consider the zero modes of the metric decomposition,

 $g_{MN} = g_{\mu\nu} \oplus g_{\mu n} \oplus g_{mn}$

The massless scalars q_{mn} determines the size and shape of \mathcal{CY}_3 , of which the fluctuations are called Moduli.

The moduli of CY_3 are usually divided into two classes:

- **4** Kähler moduli
- **2** Complex structure moduli

To make the ideas transparent, we now describe the CY_3 as a special kind of complex Kähler manifold.

Complex Manifold:

A complex manifold is an even-dimensional real manifold, d=2n, such that we can form $\it n$ complex coordinates z^i $(i = 1, 2, \dots, n)$ and the transition functions

$$
z'^i = z'^i(z^j), \hspace{0.5cm} (i, \hspace{0.2cm} j = 1, \hspace{0.2cm} 2, \hspace{0.2cm} \cdots \hspace{0.2cm} n)
$$

are holomorphic between all pairs of patches.

Huan-Xiong Yang

Calabi-Yau [Moduli Space](#page-7-0)

[Compactifi-](#page-18-0)

On a complex manifold we can define the Hermitian metric,

$$
ds^2=g_{i\bar{j}}(dz^i\otimes d\bar{z}^{\bar{j}}+d\bar{z}^{\bar{j}}\otimes dz^i)
$$

i.e., $g_{ij} = g_{\overline{ii}} = 0$.

Complex Manifold

Moreover, we can define the so-called fundamental form on a complex manifold with a Hermitian metric,

$$
-i{\cal J}=2g_{i\overline{j}}dz^i\wedge d\bar z^{\overline{j}}
$$

It is a $(1, 1)$ -form on the complex manifold.

Kähler Manifold:

A Kähler manifold is a special complex manifold on which the fundamental form is closed (Kähler form),

$$
d\mathcal{J}=0
$$

Huan-Xiong Yang

Calabi-Yau [Moduli Space](#page-7-0)

Kähler Manifold

Properties:

1 The metric on a Kähler manifold is locally of the form

$$
g_{i\bar{j}}=\partial_i\partial_{\bar{j}}K(z,\bar{z})
$$

where $K(z, \bar{z})$ is called Kähler potential.

- \bullet The only non-vanishing connection coefficients are Γ^i_{jk} and $\Gamma_{\frac{i}{i}}^{\frac{i}{i}}$ $\frac{\imath}{j \bar{k}}$, i.e., under parallel transport the holomorphic and antiholomorphic indices do not mix.
- ³ Parallel transport takes holomorphic indices only into holomorphic indices. The holonomy group of a Kähler manifold is

$$
\mathcal{H}\subset U(n)\subset SO(2n)
$$

4 The only non-vanishing components of the Riemann curvature tensor are $R_{i\bar{j}k\bar{l}}$ and those related by symmetries. The Ricci tensor reads,

$$
R_{i\bar{j}}=g^{k\bar{l}}R_{i\bar{j}k\bar{l}}=\partial_i\partial_{\bar{j}}(\ln\det g)
$$

Calabi-Yau Manifold

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

Calabi-Yau [Moduli Space](#page-7-0)

Calabi-Yau manifold:

A n-dimensional Ricci-flat Kähler manifold is known as Calabi-Yau manifold \mathcal{CY}_n .

- **1** The Holonomy group of \mathcal{CV}_n is $SU(n)$.
- **2** On a general CY_3 the non-vanishing harmonic forms are: one $(3,0)$ -form Ω and its $(0,3)$ -form conjugate $\bar{\Omega}$; $h^{1,1}$ $(1, 1)$ -form $b_{i\bar{j}}^{\alpha}$; $h^{2,1}$ primitive $(2, 1)$ -form χ_{α} and their $(1, 2)$ form conjugate $\bar{x}_{\bar{\sigma}}$. They satisfy the constraints:

$$
{*6}\Omega=-i\Omega,\quad {}{*6}\chi_\alpha=i\chi_\alpha
$$

3 The Euler number of CY_3 is,

$$
\chi = 2(h^{1,1}-h^{2,1})
$$

Calabi-Yau Manifold

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

Calabi-Yau [Moduli Space](#page-7-0)

Calabi-Yau manifold:

A n-dimensional Ricci-flat Kähler manifold is known as Calabi-Yau manifold \mathcal{CY}_n .

- **1** The Holonomy group of \mathcal{CV}_n is $SU(n)$.
- **2** On a general CY_3 the non-vanishing harmonic forms are: one $(3,0)$ -form Ω and its $(0,3)$ -form conjugate $\bar{\Omega}$; $h^{1,1}$ $(1, 1)$ -form $b_{i\bar{j}}^{\alpha}$; $h^{2,1}$ primitive $(2, 1)$ -form χ_{α} and their $(1, 2)$ form conjugate $\bar{x}_{\bar{\sigma}}$. They satisfy the constraints:

$$
{\ast \, 6} \Omega = -i \Omega, \quad {}{\ast \, 6} \chi_{\alpha} = i \chi_{\alpha}
$$

3 The Euler number of CY_3 is,

$$
\chi = 2(h^{1,1}-h^{2,1})
$$

Having the above preliminary knowledge, we now study the moduli space of $C\mathcal{Y}_3$.

Moduli Space

The question is:

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

[Contents](#page-1-0)

Calabi-Yau [Moduli Space](#page-7-0)

[Compactifi-](#page-18-0)

• Given a Ricci-flat Riemann metric g_{mn} on a CY_3 , what are the allowed infinitesimal variations δq_{mn} such that

 $R_{mn}(q) = 0 \Rightarrow R_{mn}(q + \delta q) = 0$?

There are two types of metric fluctuations:

 \int $\delta g_{i\bar{j}}$ δg_{ij} $(\delta g_{\overline{i}\overline{j}})$

These fluctuations are independent of one another because they satisfy the decoupled equations,

$$
\begin{array}{l} \nabla^a \nabla_a \delta g_{i\bar{j}} - 2 R_{i\bar{l}k\bar{j}} \delta g^{k\bar{l}} = 0 \\ \nabla^a \nabla_a \delta g_{ij} + 2 R_{i\bar{k}j\bar{l}} \delta g^{\bar{k}\bar{l}} = 0 \end{array} \bigg\} \quad \text{decoupled !}
$$

Moduli Space

Huan-Xiong Yang

Calabi-Yau [Moduli Space](#page-7-0)

• Kähler Muduli of CY_3 : The harmonic $(1,1)$ -forms $\delta g_{i\bar{j}}$ describe the fluctuations of the Kähler form

$$
-i{\cal J}=g_{i\bar{j}}dz^i\wedge d\bar{z}^{\bar{j}}
$$

In general, we expand $\delta g_{i\bar{j}}$ in a basis of real (1, 1)-forms,

$$
\delta g_{i\bar{j}}=\sum_{\alpha=1}^{h^{1,1}}t^\alpha b^\alpha_{i\bar{j}},\quad t^\alpha\in\mathbf{R}
$$

 t^α are called the Kähler moduli of \mathcal{CY}_3 , whose number is the Hodge number $h^{1,1}$.

Moduli Space

Huan-Xiong Yang

Calabi-Yau [Moduli Space](#page-7-0)

• Complexified Kähler Moduli of CY_{3} :

In string theories compactified on CY_3 , we have the 0-th modes of the anti-symmetric tensor fields either in NS-NS sector or in RR sector,

$$
\begin{cases}\nB_{mn} & \text{in NSNS sector} \\
C_{mnpq} & \text{in RR sector}\n\end{cases}
$$

Since $h^{2,0}\ =\ h^{0,2}\ =\ 0$, the (complex) index structure of these antisymmetric tensors on \mathcal{CY}_3 should be $B_{i\bar{j}}$ and $C_{i\bar{j}k\bar{l}}$. Equivalently,

$$
\begin{array}{l}B_2=B_{i\bar{j}}dz^i\wedge d\bar{z}^{\bar{j}}\\C_4=C_{i\bar{j}k\bar{l}}dz^i\wedge d\bar{z}^{\bar{j}}\wedge dz^k\wedge d\bar{z}^{\bar{l}}\end{array}
$$

and

$$
{}_{*6}C_4=\epsilon^{i\bar{j}k\bar{l}m\bar{n}}g_{m\bar{q}}g_{p\bar{n}}C_{i\bar{j}k\bar{l}}dz^p\wedge d\bar{z}^{\bar{q}}
$$

Moduli Space

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

[Contents](#page-1-0)

Calabi-Yau [Moduli Space](#page-7-0)

[Compactifi-](#page-18-0)

We can combine these massless form fields with the Kähler deformations of the metric to form the so-called "Complexified Kähler Moduli". In heterotic string theories,

$$
\mathcal{T}_{i\bar{j}} = \delta g_{i\bar{j}} + i B_{i\bar{j}}
$$

In Type IIB string theory,

$$
\mathcal{T}_{p\bar{q}}=\delta g_{p\bar{q}}+i\epsilon^{i\bar{j}k\bar{l}m\bar{n}}g_{m\bar{q}}g_{p\bar{n}}C_{i\bar{j}k\bar{l}}
$$

• Complex Structure Moduli of CY_3 : With the help of the unique holomorphic $(3,0)$ -form Ω on \mathcal{CV}_3 , we can define the following complex (2, 1)-forms

$$
\Omega_{ijk}g^{k\bar{m}}\delta g_{\bar{m}\bar{l}}dz^i\wedge dz^j\wedge d\bar{z}^{\bar{l}}
$$

and their complex conjugates. Hence, the total number of the moduli fields δg_{ij} $(\delta g_{\bar{i}\bar{j}})$ is $2h^{2,1}.$

Moduli Space

Huan-Xiong Yang

Calabi-Yau [Moduli Space](#page-7-0)

Question: What is the meaning of δg_{ij} ($\delta g_{\bar{i}\bar{j}}$) ?

• For the new metric $g_{mn} + \delta g_{mn}$ to be again Kähler, there must be a coordinate system in which

$$
\delta g_{ij}=\delta g_{\overline{i}\overline{j}}=0.
$$

² Since holomorphic coordinate transformations do not change the structure of the complex indices, δq_{ij} can only be removed by a non-holomorphic coordinate transformation: Compared with the original one, the new metric is Kähler with respect to a different complex structure.

Hence, δg_{ij} $(\delta g_{\bar{i}\bar{j}})$ describe the complex structure deformations of CY_3 , which are known as "Complex structure moduli".

Huan-Xiong Yang

[Contents](#page-1-0)

Type IIB Calabi-Yau Orientifold [Compactifi](#page-18-0)cation

The massless bosonic spectrum of IIB string theory in $D = 10$ consists of

- **NSNS sector**: dilaton $\hat{\phi}$, metric \hat{q}_{MN} , 2-form \hat{B}_2
- **RR sector:** axion \hat{l} , 2-form \hat{C}_2 , 4-form \hat{C}_4

The IIB low-energy effective action in $D = 10$ Einstein frame is given by,

$$
\begin{array}{ll}S_{IIB}^{10}=&-\int(\frac{1}{2}\hat{R}*1+\frac{1}{4}d\hat{\phi}\wedge*d\hat{\phi}+\frac{1}{4}e^{-\hat{\phi}}\hat{H}_3\wedge *\hat{H}_3)\\&-\frac{1}{4}\int(e^{2\hat{\phi}}d\hat{l}\wedge*d\hat{l}+e^{\hat{\phi}}\hat{F}_3\wedge *\hat{F}_3+\frac{1}{2}\hat{F}_5\wedge *\hat{F}_5)\\&-\frac{1}{4}\int\hat{C}_4\wedge \hat{H}_3\wedge \hat{F}_3\end{array}
$$

The field strengths 2 are:

IIB Supergravity

$$
\begin{array}{l} \hat{H}_3=d\hat{B}_2\\ \hat{F}_3=d\hat{C}_2-\hat{l}d\hat{B}_2\\ \hat{F}_5=d\hat{C}_4-\frac{1}{2}d\hat{B}_2\wedge \hat{C}_2+\frac{1}{2}\hat{B}_2\wedge d\hat{C}_2\end{array}
$$

²The self-duality condition $\hat{F}_5 = * \hat{F}_5$ has to be imposed by hand at the level of equations of motion.

Huan-Xiong Yang

Type IIB Calabi-Yau **Orientifold** [Compactifi](#page-18-0)cation

IIB Orientifold Compactification

Compactification Scheme:

- **1** The standard Calabi-Yau compactification of IIB string on CY_3 results in $\mathcal{N}=2$, $\mathcal{D}=4$ effective supergravity.
- 2 To reduce supersymmetries from $\mathcal{N}=2$ to $\mathcal{N}=1$, we further carry out an orientifold projection,

$$
\mathcal{O} = \left(-1\right)^{F_L} \Omega_p \sigma^*
$$

where F_L is the "space-time fermion number" in the left moving sector, Ω_p is the worldsheet parity operator, σ that acts solely on \mathcal{CY}_3 is an isometric and holomorphic involution of \mathcal{CY}_3 : $\sigma^2\,=\,1$, which leaves both the metric and the complex structure invariant³. However, on the holomorphic 3-form $\Omega \sim dy^1 \wedge dy^2 \wedge dy^3$,

$$
\sigma^*\Omega=-\Omega
$$

 \bullet The orientifold action \circ introduces some spacetime filling O3- and/or O7-planes into the theory. The cancellation of induced tadpole divergences requires to further introduce some D3- and/or D7-branes (open string sectors).

³The pull-back of σ on forms is denoted by σ^* .

Huan-Xiong Yang

[Contents](#page-1-0)

Type IIB Calabi-Yau **Orientifold** [Compactifi](#page-18-0)cation

Orientifold Action

Note that $\mathcal{O}=(-1)^{F_L} \Omega_p \sigma^*$:

- $(1)^{F_L}$ leaves the NSNS fields $\hat{\phi}$, \hat{g}_{MN} , \hat{B}_2 invariant but changes the sign of RR fields \hat{l} , \hat{C}_2 and \hat{C}_4 ;
- Under Ω_p the fields $\hat{\phi}$, \hat{g}_{MN} and \hat{C}_2 are even while \hat{B}_2 , \hat{l} and \hat{C}_4 are odd;

The fields survived under the orientifold projection have to obey the constraints:

In addition⁴,

$$
\sigma^*\Omega=-\Omega~^5
$$

⁴Under σ^* , the cohomology groups $H^{p,q}$ on \mathcal{CY}_3 split into two eigenspaces: $H^{p,q} = H^{p,q}_+ \oplus H^{p,q}_-$.

⁵The internal part of an orientifold plane is either a point $(O3$ -plane) or a surface of complex dimension two (O7-plane).

Spectrum

Huan-Xiong Yang

Type IIB Calabi-Yau **Orientifold** [Compactifi](#page-18-0)cation

By compactification, the 10-dimensional metric takes the form,

$$
ds^{\,2} = g_{\mu\nu}\,(x) dx^\mu\,dx^\nu + g_{i\bar{j}}(x,y) dy^i\,d\bar{y}^{\bar{j}}
$$

where $g_{\mu\nu}$ $(\mu,\nu=0,\cdots,3)$ is a Minkowski metric and $g_{i\bar{j}}$ $(i,\bar{j}=1,2,3)$ is the Kähler metric on CY_3 .

Spectrum:

Deformations of this metric which respect to Calabi-Yau conditions form the scalar fields in $D = 4$. Relying on the invariance of metric under σ and $\sigma^* \Omega = -\Omega$, the deformations of the Kähler form $\mathcal{J} =$ $i g_{i \bar j} dy^i \wedge d \bar y^{\bar j}$ give rise to $h^{1,1}_+$ real scalar fields $v^\alpha(x)$:

$$
\delta \mathcal{J} = v^\alpha(x) \omega_\alpha, \quad (\alpha = 1, \cdots, h^{1,1}_+)
$$

Besides, the following deformations of complex structure are kept in the spectrum:

$$
\delta g_{ij} = \frac{i}{||\Omega||^2} \bar{z}^k(x) (\bar{\chi}_k)_{i\bar{p}\bar{q}} \Omega_j^{\bar{p}\bar{q}}, \quad (k=1,\cdots,h^{1,2}_-)
$$

Spectrum

Huan-Xiong Yang

Type IIB Calabi-Yau **Orientifold** [Compactifi](#page-18-0)cation

O The survived form fields are:

$$
\hat{B}_2 = b^a(x)\omega_a, \quad \hat{C}_2 = c^a(x)\omega_a, \quad (a = 1, \cdots, h^{1,1}_{-1})
$$
\n
$$
\hat{C}_4 = V^{\kappa}(x) \wedge \alpha_{\kappa} + \rho_{\alpha}(x)\tilde{\omega}^{\alpha}, \qquad (\kappa = 1, \cdots, h^{1,2}_{+};
$$
\n
$$
\alpha = 1, \cdots, h^{1,1}_{+})
$$

where the self-duality of \hat{F}_5 has been taken into account. Remarkably, there are no $D\,=\,4$ form fields $B_2(x)$ and $C_2(x)$ survived under $\sigma^*.$ The non-vanishing of c^a , b^a and V^{κ} is related to the appearance of O7-planes.

Both 10-dimensional scalars survive under σ^* :

$$
\hat{\phi}=\phi(x),\quad \hat{l}=l(x)
$$

The resulting $D = 4$, $\mathcal{N} = 1$ spectrum (bosonic part) reads:

Background Flux

Background Fluxes:

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

Type IIB Calabi-Yau Orientifold [Compactifi](#page-18-0)cation

 \bullet In IIB string theory it is possible to allow background 3-form fluxes H_3 and F_3 on the \mathcal{CY}_3 ;

2 Both H_3 and F_3 have to be harmonic 3-forms;

3 Both H_3 and F_3 have to be odd under σ^*

For the presence of background fluxes, the strengths of the 10-dimensional form fields are found to be:

$$
\begin{array}{l} \hat{H}_3=H_3+db^a\wedge\omega_a\\ \hat{F}_3=F_3-lH_3+(dc^a-ldb_a)\wedge\omega_a\\ \hat{F}_5=dV^\kappa\wedge\alpha_\kappa+d\rho_\alpha\wedge\tilde{\omega}^\alpha-\frac{1}{2}(c^adb^b-b^adc^b)\wedge\omega_a\wedge\omega_b \end{array}
$$

Besides, a nontrivial warp factor $e^{2A(y)}$ would have to be included into the metric decomposition:

$$
ds^2 = e^{2A(y)} g_{\mu\nu}(x) dx^\mu dx^\nu + e^{-2A(y)} g_{i\bar{j}}(x,y) dy^i d\bar{y}^{\bar{j}}
$$

However, in the (interested) large volume limit, the warp factor approaches one so that it can be ignored.

Huan-Xiong Yang

Type IIB Calabi-Yau Orientifold [Compactifi](#page-18-0)cation

By substituting the above expansions into S_{IIB}^{10} and performing a Weyl rescaling of the 4-dimensional metric $g_{\mu\nu} \to \text{Vol}(\mathcal{CV}_3)g_{\mu\nu}$, we get the effective supergravity action in 4 dimensions. It can be cast as the standard $\mathcal{N} = 1$ supergravity form:

$$
S_{\mathcal{O}3/\mathcal{O}7}^4 = -\int \frac{1}{2} R * 1 + K_{I\bar{J}} D M^I \wedge * D \bar{M}^{\bar{J}} + \frac{1}{2} (\Re f_{\kappa \lambda}) F^{\kappa} \wedge * F^{\lambda} + \frac{1}{2} (\Im f_{\kappa \lambda}) F^{\kappa} \wedge F^{\lambda} + V * 1
$$

with

$$
V = e^{K} (K^{I\bar{J}} D_{I} W D_{\bar{J}} \bar{W} - 3|W|^{2}) + \frac{1}{2} [(\Re f)^{-1}]^{\kappa \lambda} D_{\kappa} D_{\lambda}
$$

in terms of a Kähler potential

4-d Supergravity Action

$$
K = -\ln\big[-i\int_{\mathcal{CY}_3} \Omega(z) \wedge \overline{\Omega}(\overline{z})\big] - \ln[-i(\tau - \overline{\tau})] - 2\ln\big[\text{Vol}(\mathcal{CY}_3)\big]
$$

a holomorphic (background flux dependent) superpotential

$$
W(\tau,z^k)=\int_{\mathcal{CY}_3}\Omega(z)\wedge G_3
$$

and a holomorphic gauge-kinetic coupling $f_{\kappa\lambda}$.

Huan-Xiong Yang

6

Type IIB Calabi-Yau **Orientifold** [Compactifi](#page-18-0)cation

where $F^\kappa\,=\,dV^\kappa$, $\tau\,=\,l+\,i e^{-\phi}$ and M^I collectively denote all complex scalars. $K_{I \bar J} \ = \ \partial_I \partial_{\bar J} K(M, \bar M)$ is the Kähler metric on moduli space⁶, $D_I W = \partial_I W + (\partial_I K) W$ is the Kähler derivative.

4-d Supergravity Action

 $\textbf D$ The complex structure deformations z^k are good Kähler coordinates. Hence,

$$
K_{k\bar{l}}=\frac{\partial}{\partial z^k}\frac{\partial}{\partial \bar{z}^{\bar{l}}}K
$$

- 2 $\tau = l + i e^{-\phi}$ and $G^a = c^a \tau b^a$ are also Kähler coordinates on moduli space.
- $\mathbf{3}$ \mathbf{v}^{α} are not Kähler coordinates. Instead, they are the implicit functions of the Kähler coordinates $(\tau, T^{\alpha}, G^{a})$, where,

$$
T_{\alpha} = \frac{3i}{2}\rho_{\alpha} + \frac{3}{4}\mathcal{K}_{\alpha}(v) - \frac{3}{2}\zeta_{\alpha}(\tau, \bar{\tau}, G, \bar{G})
$$

with ${\mathcal K}_\alpha(v) \;=\; {\mathcal K}_{\alpha\beta\gamma}v^\beta v^\gamma,\;\; \zeta_\alpha \;=\; -\frac{i}{2(\tau-\bar\tau)}{\mathcal K}_{\alpha b c}G^b(G\,-\,\bar G)^c$ and $\mathcal{K}_{ABC}\,=\,\int_{\mathcal{CY}_3}\omega_A\wedge\omega_B\wedge\omega_C$ are the intersection number of $\mathcal{CY}_3.$ Particularly, $\text{Vol}(\mathcal{CV}_3) = \frac{1}{6}\mathcal{K} = \frac{1}{6}\mathcal{K}_{\alpha\beta\gamma}v^{\alpha}v^{\beta}v^{\gamma}$.

Huan-Xiong Yang

Type IIB Calabi-Yau **Orientifold** [Compactifi](#page-18-0)cation

4-d Supergravity Action

In the following, we only consider the simple orientifolds without O7-planes. For such cases, $b^a = c^a = G^a = 0$.

Properties:

• The Kähler moduli are decoupled of the complex dilaton τ ,

$$
T_{\alpha}=\frac{3i}{2}\rho_{\alpha}+\frac{3}{4}\mathcal{K}_{\alpha}(v)
$$

However, the superpotential W remains T_{α} -independent.

The Kähler potential satisfies a no-scale type condition:

$$
K^{T_{\alpha}\bar{T}_{\beta}}\frac{\partial K}{\partial T_{\alpha}}\frac{\partial K}{\partial \bar{T}_{\beta}}=3
$$

The F-term potential becomes semi-definite positive,

$$
V_F=e^{K}K^{i\bar{j}}D_iWD_{\bar{j}}\bar{W}\geqslant 0
$$

where M^i stand for all scalar fields except the Kähler moduli $T_\alpha.$

The minimal of V_F is $V_F^{\text{min}}=0$, at which $D_{z^k}W=D_{\tau}W=0$ but

$$
D_{T_\alpha}W=(\partial_{T_\alpha}K)W=-2\frac{v^\alpha}{\mathcal{K}}W\neq 0
$$

This minimal is a supersymmetric broken state.

Huan-Xiong Yang

Type IIB Calabi-Yau **Orientifold** [Compactifi](#page-18-0)cation

 \bullet Not an arbitrary 3-form background fluxes G_3 can yield the optimization conditions. From the identity $D_{z^k}\Omega(z)=i\chi_k$, we get

$$
D_{\tau}W = \frac{i}{2}e^{\phi} \int_{C\mathcal{Y}_3} \Omega \wedge \bar{G}_3
$$

$$
D_{z^k}W = i \int_{C\mathcal{Y}_3} \chi_k \wedge G_3
$$

Recall that $_{*6}\Omega = -i\Omega$, $_{*6}\chi_k = i\chi_k$ and

4-d Supergravity Action

Z cy_3 $A \wedge B =$ cy_3 $_{*6}A \wedge_{*6} B$

the above Kähler derivatives can be alternatively written as:

$$
\begin{array}{l} D_{\tau}W=\frac{1}{2}e^{\phi}\int_{\mathcal{C}\mathcal{Y}_{3}}\Omega\wedge_{\ast6}\bar{G}_{3} \\ D_{z^k}W=-\int_{\mathcal{C}\mathcal{Y}_{3}}\chi_k\wedge_{\ast6}G_{3} \end{array}
$$

Hence, the conditions $D_{z_k}W = D_{\tau}W = 0$ require the imaginary selfdual background fluxes: $*_{6}G_{3} = iG_{3}$.

• Because $D_{T_{\alpha}}W \neq 0$, at the F-term vacuum the Kähler moduli are undetermined. So there is a degenerate family of vacua with arbitrary supersymmetry-breaking scale $\Re T_{\alpha}$.

Huan-Xiong Yang

KKLT [Procedure](#page-28-0)

The remedy for fixing all scalar fields including the Kähler moduli T_{α} is to spoil the no-scale structure of the 4-dimensional effective supergravity.

The known KKLT mechanism is:

KKLT Mechanism

- adding the effect of a Euclidean D3-brane wrapping a 4-cycle in CY_3 . [Witten, hep-th/9604030]
- adding the gaugino condensation effects coming from stacks of D7branes with fluxes wrapping a 4-cycle in $C\mathcal{Y}_3$. [Nilles et al, Phys. Lett. B155(1985)65]

Including either effect yields a nonperturbative (Kähler moduli dependent) correction to superpotential,

$$
W_{np} \varpropto e^{-a^{\alpha}T_{\alpha}}
$$

The revised superpotential becomes:

$$
W=\int_{\mathcal{CY}_3}\Omega(z)\wedge G_3+Ae^{-a^{\alpha}T_{\alpha}}
$$

KKLT procedure

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

[Compactifi-](#page-18-0)

KKLT [Procedure](#page-28-0)

KKLT procedure:

- **1** The complex structure moduli and dilaton are assumed to be much heavier than T_{α} so that they can be fixed by sole flux superpotential $W_f = \int_{\mathcal{CY}_3} \Omega(z) \wedge G_3$ through supersymmetric optimization conditions $D_{\tau}W_f = D_{\tau k}W_f = 0.$
- 2 After the complex structure moduli and dilaton are stabilized, the superpotential does only depend upon the Kähler moduli,

$$
W=W_0+A e^{-a^{\alpha}T_{\alpha}} \qquad (W_0\neq 0)
$$

Then, the Kähler moduli are fixed by the supersymmetric optimization condition $D_{T_{\infty}}W = 0$.

3 The resulting supersymmetric vacuum (at F-term potential level) is an anti-de Sitter space,

$$
V_F^{\text{min}}=-3e^{K}|W|^2\leqslant 0
$$

which can be lifted to a deSitter vacuum by some supersymmetric effects such as D3-anti-D3 interaction.

Doubts

Huan-Xiong Yang

KKLT [Procedure](#page-28-0)

Though KKLT mechanism is commonly accepted, KKLT procedure for implementing such a mechanism has received some criticisms.

Doubts:

- D3-anti-D3 interaction is an effect of explicit supersymmetry breaking. Is it possible to replace it by a spontaneous SUSY breaking effect such as D-term potential ?
- **2** Is the KKLT two step decoupled procedure for stabilizing moduli a true approximation of the exact one step procedure based on the full superpotential ?

Huan-Xiong Yang

[Compactifi-](#page-18-0)

Beyond **KKLT** [Procedure](#page-31-0)

Difficulty for D-term Potential:

Uplifting Mechanisms

- **In KKLT** procedure, the resulting minimal of F-term potential is supersymmetric with vanishing F-terms.
- In supergravity, a model with vanishing F-terms must have also vanishing D-terms.

D-terms in $N=1$ Supergravity:

The gauge invariant action for $D = 1, N = 1$ supergravity with chiral multiplets $\phi^i \sim (z^i, \psi^i)$ and vector multiplets $V^a \sim (\lambda^a, A^a_\mu)$ is completely fixed by 3 ingerdients:

- \textbf{D} real gauge invariant Kähler function $G=K+\ln |W|^2;$
- **2** holomorphic gauge kinetic function f_{ab} ;
- **3** holomorphic Killing vectors $X_a = X_a^i(z) \frac{\partial}{\partial z^i}$.

The scalar potential is:

$$
V = V_F + V_D = e^G (G^{i\bar{j}} G_i G_{\bar{j}} - 3) + \frac{1}{2} [(\Re f)^{-1}]^{ab} D_a D_b
$$

where $G_i = \partial G / \partial z^i$ are called F-terms,

 $G_i = K_i + W_i/W = D_iW/W$

where the holomorphicity of the superpotential has been used.

Huan-Xiong Yang

[Compactifi-](#page-18-0)

Beyond **KKLT** [Procedure](#page-31-0)

Uplifting Mechanism

 D_a are known as the D-terms:

$$
{D}_a=iG_iX_a^i=i\frac{D_iW}{W}X_a^i
$$

Question:

Can we have a supersymmetry broken vacuum at the level of F-term potential (during the moduli stabilization) ?

Attempts:

1 Ignore the nonperturbative corrections of the superpotential (so that $D_{T_\alpha} W \neq 0$). The no-scale property of V_F is spoiled by α' -correction and string loop corrections to Kähler potential.

[Parameswaran et al, hep-th/0602253]

- 2 Interpret the shift symmetry of Kähler potential as an anomalous $U(1)$ symmetry and construct gauge invariant nonperturbative superpotential. In this way some open string moduli M^a (massless squark condensation) are introduced which satisfy $D_{M^a}W \neq 0$. [Achúcarro et al, hep-th/0601190]
- ³ Directly search for the supersymmetry broken vacua (dS and/or AdS) of F-term potential. Yang, Phys. Rev. D73, 066006(2006)

my work

Goal:

Moduli [Stabilization](#page-0-0)

Huan-Xiong Yang

[My work](#page-33-0)

- to examine the moduli stabilization of IIB orientifolds with one complex structure modulus in one-step procedure.
- to find conditions for having a supersymmetry broken deSitter vacuum at the level of F-term potential.

Models:

The models under consideration are IIB orientifolds at orbifold limits with orbifold groups $\Gamma = {\bf Z}_{6-II} , {\bf Z}_2 \times {\bf Z}_3$ or ${\bf Z}_2 \times {\bf Z}_6$, for which $h^{1,1} = 3, h^{2,1} = 1$ in untwisted sectors. We consider isotropic case where $T_1 = T_2 = T_3 = T$. The models are defined by

Kähler potential:

$$
K = -3\ln(T + \bar{T}) - \ln(S + \bar{S}) - \ln(U + \bar{U})
$$

where $S = e^{-\phi} + i l$ is the complex dilaton-axion field $(i\bar{\tau}).$

Superpotential whose flux part is defined as $\frac{1}{(2\pi)^2\alpha'}\int_{CY_3}\Omega\wedge G_3$ is explicitly expressed as:

$$
W=\alpha_0+\alpha_1 U+\alpha_2 S+\alpha_3 SU+3g e^{-h\,T}
$$

my work

Huan-Xiong Yang

[My work](#page-33-0)

The potential energy of the models is due to the presence of background 3-form flux G_3 , which can be organized into the standard F-term potential of $\mathcal{N}=1$ supergravity,

$$
V_F=e^{K}(K^{i\bar{j}}D_iW\overline{D_jW}-3|W|^2)
$$

Let $T = t + i\tau$, $S = s + i\sigma$ and $U = u + i\nu$. The points $\tau = \sigma = \nu = 0$ define some flat directions in moduli space on which $\partial_{\tau}V_F = \partial_{\sigma}V_F = \partial_{\nu}V_F = 0$, at which the potential takes a simple expression:

$$
V_F=\frac{1}{16t^3su}\bigg[6ghte^{-ht}(\alpha_0+u\alpha_1+s\alpha_2+us\alpha_3+3ge^{-ht})\\+\t6(ght)^2e^{-2ht}+(\alpha_0-us\alpha_3+3ge^{-ht})^2\\+(u\alpha_1-s\alpha_2)^2\bigg]
$$

The remaining optimization conditions $\partial_t V_F = \partial_s V_F = \partial_u V_F = 0$ can be written as either:

$$
\alpha_2 s = \alpha_1 u, \qquad u = -\frac{1}{\alpha_1} [\alpha_0 + (3 + ht)ge^{-ht}],
$$

$$
\alpha_3 = \frac{\alpha_1 \alpha_2 (\alpha_0 + 3ge^{-ht})}{[\alpha_0 + (3 + ht)ge^{-ht}]^2}.
$$

my work

Huan-Xiong Yang

[My work](#page-33-0)

or (for simplicity here we only give the conditions in $\alpha_0 = 0$):

simplify here we only give the conditions in
$$
\alpha_0 = 0
$$
):
\n
$$
\alpha_2 s = \alpha_1 u, \qquad u = -\frac{g(72 + 177h + 109h^2 t^2 + 16h^3 t^3 - 2h^4 t^4) e^{-ht}}{h t (7 + 2ht)^2 \alpha_1},
$$
\n
$$
\alpha_3 = -\frac{3\alpha_1 \alpha_2 (h t)^2 (7 + 2ht)^3 (1 + 4ht + 2h^2 t^2) e^{ht}}{g(72 + 177h t + 109h^2 t^2 + 16h^3 t^3 - 2h^4 t^4)^2}.
$$

The former corresponds to a supersymmetry-restored extremum ($D_T W =$ $D_SW = D_UW = 0,$

$$
V_{F,\text{c}}^{\text{susy}} = -\frac{3\alpha_1\alpha_2 g^2 h^2 e^{-2ht}}{8t\Big[\alpha_0+(3+ht)g e^{-ht}\Big]^2} \leqslant 0
$$

but the latter corresponds to a supersymmetry-breaking extremum ($D_UW \neq$ $0, D_S W \neq 0)^7$:

$$
V_{F,c}^{\text{nonsusy}} = \frac{3\alpha_1\alpha_2h^2(7+2ht)^2(-48-84ht-73h^2t^2-22h^3t^3+2h^4t^4)}{8t(-72-177ht-109h^2t^2-16h^3t^3+2h^4t^4)^2}
$$

⁷Provided $\alpha_0 > 0$, the supersymmetric extremum is only accessible for models with $\alpha_1 < 0$, $\alpha_2 < 0$ and $\alpha_3 > 0$, the supersymmetry-broken extremum is only accessible for models with $\alpha_3 < 0$.

my work

Huan-Xiong Yang

[Compactifi-](#page-18-0)

[My work](#page-33-0)

Hessian determinants indicate that $V_{F,\text{c}}^\text{nonsusy}$ is a positive minimum if the Kähler modulus is fixed at $\frac{13.86}{h} < t < \frac{14.70}{h}$. an illustrative model with,

 $W = 1.25 \times 10^{-7} U + 2.5 \times 10^{-7} S - 5 \times 10^{-6} SU + 3e^{-T}$

is in order. Its potential $V_F \approx \frac{A}{t^3 u^2}$ with

$$
A = 0.125 \times [6e^{-2t}t^2 + 6e^{-t}t(3e^{-t} + 2.5 \times 10^{-7}u - 2.5 \times 10^{-6}u^2) + (3e^{-t} + 2.5 \times 10^{-6}u^2)^2]
$$

has a local deSitter minimum $V_{F,\text{min}}^{\text{nonsusy}} \approx 1.62 \times 10^{-17}$ at $t \approx 14.08, \ u \approx$ 3.45 and $s \approx 1.72$.

The potential curve near the founded deSitter vacuum is,

Huan-Xiong Yang

[My work](#page-33-0)

Thank you!

Lecturer: Huan-Xiong Yang

Address: Zhejiang Institute of Modern Physics Zhejiang University Hangzhou, 310027, China Email: hxyang@zimp.zju.edu.cn