

Huan-Xiong Yang

Contents

Introductior

Calabi-Yau Moduli Space

Type IIB Calabi-Yaı Orientifolo Compactif cation

KKLT Procedure

Beyond KKLT Procedure

My work

Moduli Stabilization in Type IIB Flux Compactifications

Huan-Xiong Yang

April 24, 2006

Contents

Moduli Stabilization

Huan-Xiong Yang

1 Introduction

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

2 Calabi-Yau Moduli Space

3 Type IIB Calabi-Yau Orientifold Compactification

4 KKLT Procedure

5 Beyond KKLT Procedure

6 My work

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

• The process of **Moduli Stabilization** represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

- The process of **Moduli Stabilization** represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.
- In Calabi-Yau compactifications, the moduli fields generically include the dilaton, the Kähler moduli and the complex structure moduli.

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

- The process of **Moduli Stabilization** represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.
- In Calabi-Yau compactifications, the moduli fields generically include the dilaton, the Kähler moduli and the complex structure moduli.
- The main progress in this aspect was made by DRS-GKP and CK-KKLT:

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

- The process of **Moduli Stabilization** represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.
- In Calabi-Yau compactifications, the moduli fields generically include the dilaton, the Kähler moduli and the complex structure moduli.
- The main progress in this aspect was made by DRS-GKP and CK-KKLT:

Flux Stabilization Mechanism + Non-Perturbative Corrections.

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

- The process of **Moduli Stabilization** represents the zeroth step towards string phenomenology, as the moduli vevs determine the string scale and the gauge coupling constants.
- In Calabi-Yau compactifications, the moduli fields generically include the dilaton, the Kähler moduli and the complex structure moduli.
- The main progress in this aspect was made by DRS-GKP and CK-KKLT:

Flux Stabilization Mechanism + Non-Perturbative Corrections.

The main references are: K.Dasgupta, G.Rajesh and S.Sethi, JHEP08, 023(1999); S.Giddings, S.Kachru and J.Polchinski, Phys.Rev.D66, 106006(2002); G.Curio and A.Krause, Nucl.Phys.B643, 131(2002); S.Kachru, R.Kallosh, A.Linde and S.Trivedi, Phys.Rev.D68, 046005(2003).

String Compactification

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

The idea of compactification arises naturally to resolve the discrepancy between the critical dimensions D=10 and the observed dimensions d=4:

$$\mathcal{M}_{10} = \mathcal{M}_4 imes \mathcal{K}_6$$

To have a minimal number of supersymmetries survived in \mathcal{M}_4 , the manifold \mathcal{K}_6 is required to be a Calabi-Yau threefold \mathcal{CY}_3 with the properties:

- Compact
- Ricci-flat
- Complex
- Kähler with SU(3) holonomy¹

¹Holonomy group \mathcal{H} : Upon parallel transport along a closed curve on \mathcal{CY}_3 , a vector v is rotated into Uv. The set of matrices U forms \mathcal{H} of \mathcal{CY}_3 .

Moduli Space

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

Consider the zero modes of the metric decomposition,

 $g_{MN}=g_{\mu
u}\oplus g_{\mu n}\oplus g_{mn}$

The massless scalars g_{mn} determines the size and shape of $C\mathcal{Y}_3$, of which the fluctuations are called Moduli.

The moduli of \mathcal{CY}_3 are usually divided into two classes:

- Kähler moduli
- 2 Complex structure moduli

To make the ideas transparent, we now describe the \mathcal{CY}_3 as a special kind of complex Kähler manifold.

• Complex Manifold:

A complex manifold is an even-dimensional real manifold, d=2n, such that we can form n complex coordinates z^i $(i = 1, 2, \dots, n)$ and the transition functions

$$z'^i = z'^i(z^j), \quad (i, \ j=1, \ 2, \ \cdots \ n)$$

are holomorphic between all pairs of patches.

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactific cation

KKLT Procedure

Beyond KKLT Procedure

My work

On a complex manifold we can define the Hermitian metric,

$$ds^2 = g_{iar{j}}(dz^i\otimes dar{z}^{ar{j}} + dar{z}^{ar{j}}\otimes dz^i)$$

i.e., $g_{ij} = g_{\bar{i}\bar{j}} = 0$.

Complex Manifold

Moreover, we can define the so-called fundamental form on a complex manifold with a Hermitian metric,

$$-i{\cal J}=2g_{iar j}dz^i\wedge dar z^{ar j}$$

It is a (1, 1)-form on the complex manifold.

• Kähler Manifold:

A Kähler manifold is a special complex manifold on which the fundamental form is closed (Kähler form),

$$d\mathcal{J}=0$$

Kähler Manifold

Properties:

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

• The metric on a Kähler manifold is locally of the form

$$g_{iar{j}}=\partial_i\partial_{ar{j}}K(z,ar{z})$$

where $K(z, \bar{z})$ is called Kähler potential.

- The only non-vanishing connection coefficients are Γⁱ_{jk} and Γⁱ_{jk}, i.e., under parallel transport the holomorphic and anti-holomorphic indices do not mix.
- Parallel transport takes holomorphic indices only into holomorphic indices. The holonomy group of a Kähler manifold is

$$\mathcal{H} \subset U(n) \subset SO(2n)$$

• The only non-vanishing components of the Riemann curvature tensor are $R_{i\bar{j}k\bar{l}}$ and those related by symmetries. The Ricci tensor reads,

$$R_{iar{j}}=g^{kar{l}}R_{iar{j}kar{l}}=\partial_i\partial_{ar{j}}(\ln\det g)$$

Calabi-Yau Manifold

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

• Calabi-Yau manifold:

A n -dimensional Ricci-flat Kähler manifold is known as Calabi-Yau manifold $\mathcal{CY}_n.$

- **1** The Holonomy group of $C\mathcal{Y}_n$ is SU(n).
- On a general CY₃ the non-vanishing harmonic forms are: one (3,0)-form Ω and its (0,3)-form conjugate Ω; h^{1,1} (1,1)-form b^α_{ij}; h^{2,1} primitive (2,1)-form χ_α and their (1,2)-form conjugate x̄_α. They satisfy the constraints:

$$_{*6}\Omega=-i\Omega, \quad _{*6}\chi_{lpha}=i\chi_{lpha}$$

③ The Euler number of $C\mathcal{Y}_3$ is,

$$\chi = 2(h^{1,1}-h^{2,1})$$

Calabi-Yau Manifold

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

• Calabi-Yau manifold:

A n -dimensional Ricci-flat Kähler manifold is known as Calabi-Yau manifold $\mathcal{CY}_n.$

- The Holonomy group of $C\mathcal{Y}_n$ is SU(n).
- On a general CY₃ the non-vanishing harmonic forms are: one (3,0)-form Ω and its (0,3)-form conjugate Ω; h^{1,1} (1,1)-form b^α_{ij}; h^{2,1} primitive (2,1)-form χ_α and their (1,2)-form conjugate x̄_α. They satisfy the constraints:

$$_{*6}\Omega=-i\Omega, \quad _{*6}\chi_{lpha}=i\chi_{lpha}$$

3 The Euler number of $C\mathcal{Y}_3$ is,

$$\chi = 2(h^{1,1}-h^{2,1})$$

Having the above preliminary knowledge, we now study the moduli space of $\mathcal{CY}_3.$

Moduli Space

The question is:

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

• Given a Ricci-flat Riemann metric g_{mn} on a $C\mathcal{Y}_3$, what are the allowed infinitesimal variations δg_{mn} such that

 $R_{mn}(g)=0 \; \Rightarrow \; R_{mn}(g+\delta g)=0$?

There are two types of metric fluctuations:

 $\left\{ egin{array}{l} \delta g_{iar{j}} \ \delta g_{ij} \ (\delta g_{ar{i}ar{j}}) \end{array}
ight.$

These fluctuations are independent of one another because they satisfy the decoupled equations,

$$\left\{ egin{array}{ll}
abla^a
abla_a \delta g_{iar j} - 2R_{iar kar j} \delta g^{kar l} = 0 \
abla^a
abla_a \delta g_{ij} + 2R_{iar kjar l} \delta g^{ar kar l} = 0 \end{array}
ight\} ext{ decoupled } ext{ decoupled } ext{ decoupled } ext{ } ex ext{ } ext{ }$$

Moduli Space

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

 Kähler Muduli of CY₃: The harmonic (1, 1)-forms δg_{ij} describe the fluctuations of the Kähler form

$$-i{\cal J}=g_{iar j}dz^i\wedge dar z^{ar j}$$

In general, we expand $\delta g_{i\bar{j}}$ in a basis of real (1, 1)-forms,

$$\delta g_{iar{j}} = \sum_{lpha=1}^{h^{1,1}} t^{lpha} b^{lpha}_{iar{j}}, \quad t^{lpha} \in \mathbf{R}$$

 t^{lpha} are called the Kähler moduli of \mathcal{CY}_3 , whose number is the Hodge number $h^{1,1}$.

Moduli Space

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactif cation

KKLT Procedure

Beyond KKLT Procedure

My work

• Complexified Kähler Moduli of \mathcal{CY}_3 :

In string theories compactified on \mathcal{CY}_3 , we have the 0-th modes of the anti-symmetric tensor fields either in NS-NS sector or in RR sector,

Since $h^{2,0} = h^{0,2} = 0$, the (complex) index structure of these antisymmetric tensors on \mathcal{CY}_3 should be $B_{i\bar{j}}$ and $C_{i\bar{j}k\bar{l}}$. Equivalently,

$$egin{aligned} B_2 &= B_{iar{j}}dz^i\wedge dar{z}^{ar{j}}\ C_4 &= C_{iar{j}kar{l}}dz^i\wedge dar{z}^{ar{j}}\wedge dz^k\wedge dar{z}^{ar{l}} \end{aligned}$$

and

$${}_{*6}C_4=\epsilon^{iar{j}kar{l}mar{n}}g_{mar{q}}g_{par{n}}C_{iar{j}kar{l}}dz^p\wedge dar{z}^{ar{q}}$$

Moduli Space

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

We can combine these massless form fields with the Kähler deformations of the metric to form the so-called "Complexified Kähler Moduli". In heterotic string theories,

$$\mathcal{T}_{iar{j}}=\delta g_{iar{j}}+iB_{iar{j}}$$

In Type IIB string theory,

$$\mathcal{T}_{par{q}}=\delta g_{par{q}}+i\epsilon^{iar{j}kar{l}mar{n}}g_{mar{q}}g_{par{n}}C_{iar{j}kar{l}}$$

• Complex Structure Moduli of $C\mathcal{Y}_3$: With the help of the unique holomorphic (3, 0)-form Ω on $C\mathcal{Y}_3$, we can define the following complex (2, 1)-forms

$$\Omega_{ijk}g^{kar{m}}\delta g_{ar{m}ar{l}}dz^i\wedge dz^j\wedge dar{z}^{ar{l}}$$

and their complex conjugates. Hence, the total number of the moduli fields δg_{ij} (δg_{ij}) is $2h^{2,1}$.

Moduli Space

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

Question: What is the meaning of δg_{ij} (δg_{ij})?

• For the new metric $g_{mn} + \delta g_{mn}$ to be again Kähler, there must be a coordinate system in which

$$\delta g_{ij} = \delta g_{ar i ar j} = 0.$$

Since holomorphic coordinate transformations do not change the structure of the complex indices, δg_{ij} can only be removed by a non-holomorphic coordinate transformation: Compared with the original one, the new metric is Kähler with respect to a different complex structure.

Hence, δg_{ij} (δg_{ij}) describe the complex structure deformations of $C\mathcal{Y}_3$, which are known as "Complex structure moduli".

11B Supergravity

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

The massless bosonic spectrum of IIB string theory in D=10 consists of

- NSNS sector: dilaton $\hat{\phi}$, metric \hat{g}_{MN} , 2-form \hat{B}_2
- **RR sector**: axion \hat{l} , 2-form \hat{C}_2 , 4-form \hat{C}_4

The IIB low-energy effective action in D=10 Einstein frame is given by,

$$S_{IIB}^{10} = -\int (rac{1}{2}\hat{R}*1 + rac{1}{4}d\hat{\phi}\wedge *d\hat{\phi} + rac{1}{4}e^{-\hat{\phi}}\hat{H}_3\wedge *\hat{H}_3) \ -rac{1}{4}\int (e^{2\hat{\phi}}d\hat{l}\wedge *d\hat{l} + e^{\hat{\phi}}\hat{F}_3\wedge *\hat{F}_3 + rac{1}{2}\hat{F}_5\wedge *\hat{F}_5) \ -rac{1}{4}\int \hat{C}_4\wedge \hat{H}_3\wedge \hat{F}_3$$

The field strengths² are:

$$egin{aligned} \hat{H}_3 &= d\hat{B}_2 \ \hat{F}_3 &= d\hat{C}_2 - \hat{l}d\hat{B}_2 \ \hat{F}_5 &= d\hat{C}_4 - rac{1}{2}d\hat{B}_2 \wedge \hat{C}_2 + rac{1}{2}\hat{B}_2 \wedge d\hat{C}_2 \end{aligned}$$

 $^2 {\rm The}$ self-duality condition $\hat{F}_5 = \ast \hat{F}_5$ has to be imposed by hand at the level of equations of motion.

198 Orientifold Compactification

Compactification Scheme:

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

The standard Calabi-Yau compactification of IIB string on $C\mathcal{Y}_3$ results in $\mathcal{N} = 2$, D = 4 effective supergravity.

2 To reduce supersymmetries from $\mathcal{N} = 2$ to $\mathcal{N} = 1$, we further carry out an orientifold projection,

$$\mathcal{O} = (-1)^{F_L} \Omega_p \sigma^*$$

where F_L is the "space-time fermion number" in the left moving sector, Ω_p is the worldsheet parity operator, σ that acts solely on \mathcal{CY}_3 is an isometric and holomorphic involution of \mathcal{CY}_3 : $\sigma^2=1$, which leaves both the metric and the complex structure invariant³. However, on the holomorphic 3-form $\Omega\sim dy^1\wedge dy^2\wedge dy^3$,

$$\sigma^*\Omega = -\Omega$$

The orientifold action O introduces some spacetime filling O3- and/or O7-planes into the theory. The cancellation of induced tadpole divergences requires to further introduce some D3- and/or D7-branes (open string sectors).

³The pull-back of σ on forms is denoted by σ^* .

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

Orientifold Action

Note that $\mathcal{O} = (-1)^{F_L} \Omega_p \sigma^*$:

- $(-1)^{F_L}$ leaves the NSNS fields $\hat{\phi}$, \hat{g}_{MN} , \hat{B}_2 invariant but changes the sign of RR fields \hat{l} , \hat{C}_2 and \hat{C}_4 ;
- Under Ω_p the fields $\hat{\phi}$, \hat{g}_{MN} and \hat{C}_2 are even while \hat{B}_2 , \hat{l} and \hat{C}_4 are odd;

The fields survived under the orientifold projection have to obey the constraints:

$$egin{array}{lll} \sigma^{*}\hat{\phi} &= \hat{\phi} & \sigma^{*}\hat{l} &= \hat{l} \ \sigma^{*}\hat{g}_{MN} &= \hat{g}_{MN} & \sigma^{*}\hat{C}_{2} &= -\hat{C}_{2} \ \sigma^{*}\hat{B}_{2} &= -\hat{B}_{2} & \sigma^{*}\hat{C}_{4} &= \hat{C}_{4} \end{array}$$

In addition⁴,

$$\sigma^*\Omega=-\Omega^{-5}$$

⁴Under σ^* , the cohomology groups $H^{p,q}$ on \mathcal{CY}_3 split into two eigenspaces: $H^{p,q} = H^{p,q}_{+} \oplus H^{p,q}_{-}$.

⁵The internal part of an orientifold plane is either a point (O3-plane) or a surface of complex dimension two (O7-plane).

Spectrum

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedur

Beyond KKLT Procedure

My work

By compactification, the 10-dimensional metric takes the form,

$$ds^2={m g}_{\mu
u}({m x})dx^\mu dx^
u+g_{iar j}(x,y)dy^idar y^{ar j}$$

where $g_{\mu\nu}$ ($\mu, \nu = 0, \dots, 3$) is a Minkowski metric and $g_{i\bar{j}}$ ($i, \bar{j} = 1, 2, 3$) is the Kähler metric on $C\mathcal{Y}_3$.

Spectrum:

• Deformations of this metric which respect to Calabi-Yau conditions form the scalar fields in D = 4. Relying on the invariance of metric under σ and $\sigma^*\Omega = -\Omega$, the deformations of the Kähler form $\mathcal{J} = ig_{i\bar{j}}dy^i \wedge d\bar{y}^{\bar{j}}$ give rise to $h^{1,1}_{+}$ real scalar fields $v^{\alpha}(x)$:

$$\delta \mathcal{J} = oldsymbol{v}^{lpha}(oldsymbol{x}) \omega_{lpha}, \quad \ (lpha = 1, \cdots, h^{1,1}_+)$$

Besides, the following deformations of complex structure are kept in the spectrum:

$$\delta g_{ij} = rac{\imath}{||\Omega||^2} ar{m{z}}^{m{k}}(m{x})(ar{m{\chi}}_k)_{iar{p}ar{q}} \Omega_j^{ar{p}ar{q}}, \quad (k=1,\cdots,h_-^{1,2})$$

Spectrum

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedui

Beyond KKLT Procedure

My work

The survived form fields are:

$$egin{aligned} \hat{B}_2 &= egin{aligned} b^a(m{x})\omega_a, & \hat{C}_2 &= egin{aligned} c^a(m{x})\omega_a, & (a=1,\cdots,h_+^{1,1})\ \hat{C}_4 &= m{V}^\kappa(m{x})\wedgelpha_\kappa+
ho_lpha(m{x})\widetilde{\omega}^lpha, & (\kappa=1,\cdots,h_+^{1,2};\ lpha=1,\cdots,h_+^{1,1}) \end{aligned}$$

where the self-duality of \hat{F}_5 has been taken into account. Remarkably, there are no D = 4 form fields $B_2(x)$ and $C_2(x)$ survived under σ^* . The non-vanishing of c^a, b^a and V^{κ} is related to the appearance of O7-planes.

• Both 10-dimensional scalars survive under σ^* :

$$\hat{\phi}=\phi(x), \quad \hat{l}=l(x)$$

The resulting D = 4, $\mathcal{N} = 1$ spectrum (bosonic part) reads:

gravity multiplet	1	$g_{\mu u}$
vector multiplet	$h^{2,1}_+$	V^{κ}
chiral multiplet	1	(ϕ, l)
	$h^{2,1}_{-}$	z^k
	$h_{-}^{1,1}$	(b^a, c^a)
	$h_{+}^{1,1}$	(v^{lpha}, ho_{lpha})

Background Flux

Background Fluxes:

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedur

Beyond KKLT Procedure

My work

In IIB string theory it is possible to allow background 3-form fluxes H_3 and F_3 on the $C\mathcal{Y}_3$;

2 Both H_3 and F_3 have to be harmonic 3-forms;

3 Both H_3 and F_3 have to be odd under σ^*

For the presence of background fluxes, the strengths of the 10-dimensional form fields are found to be:

$$egin{array}{lll} \dot{H}_3 &= H_3 + db^a \wedge \omega_a \ \hat{F}_3 &= F_3 - lH_3 + (dc^a - ldb_a) \wedge \omega_a \ \hat{F}_5 &= dV^\kappa \wedge lpha_\kappa + d
ho_lpha \wedge \widetilde{\omega}^lpha - rac{1}{2}(c^a db^b - b^a dc^b) \wedge \omega_a \wedge \omega_b \end{array}$$

Besides, a nontrivial warp factor $e^{2A(y)}$ would have to be included into the metric decomposition:

$$ds^2 = e^{2A(y)}g_{\mu
u}(x)dx^\mu dx^
u + e^{-2A(y)}g_{iar{j}}(x,y)dy^i dar{y}^{ar{j}}$$

However, in the (interested) large volume limit, the warp factor approaches *one* so that it can be ignored.

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedur

Beyond KKLT Procedure

My work

By substituting the above expansions into S_{IIB}^{10} and performing a Weyl rescaling of the 4-dimensional metric $g_{\mu\nu} \rightarrow \text{Vol}(\mathcal{CY}_3)g_{\mu\nu}$, we get the effective supergravity action in 4 dimensions. It can be cast as the standard $\mathcal{N} = 1$ supergravity form:

$$\begin{split} S^4_{O3/O7} = & -\int \frac{1}{2}R*1 + K_{I\bar{J}}DM^I \wedge *D\bar{M}^{\bar{J}} + \frac{1}{2}(\Re f_{\kappa\lambda})F^{\kappa} \wedge *F^{\lambda} \\ & + \frac{1}{2}(\Im f_{\kappa\lambda})F^{\kappa} \wedge F^{\lambda} + V*1 \end{split}$$

with

$$V = e^{K} (K^{I\bar{J}} D_{I} W D_{\bar{J}} \bar{W} - 3|W|^{2}) + \frac{1}{2} [(\Re f)^{-1}]^{\kappa \lambda} D_{\kappa} D_{\lambda}$$

in terms of a Kähler potential

4-d Supergravity Action

$$K = -\ln\left[-i\int_{\mathcal{CY}_3}\Omega(z)\wedge\bar{\Omega}(\bar{z})\right] - \ln[-i(\tau-\bar{\tau})] - 2\ln\left[\mathsf{Vol}(\mathcal{CY}_3)\right]$$

a holomorphic (background flux dependent) superpotential

$$W(au, z^k) = \int_{\mathcal{CY}_3} \Omega(z) \wedge G_3$$

and a holomorphic gauge-kinetic coupling $f_{\kappa\lambda}$.

Huan-Xiong Yang

6

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

where $F^{\kappa} = dV^{\kappa}$, $\tau = l + ie^{-\phi}$ and M^{I} collectively denote all complex scalars. $K_{I\bar{J}} = \partial_{I}\partial_{\bar{J}}K(M,\bar{M})$ is the Kähler metric on moduli space⁶, $D_{I}W = \partial_{I}W + (\partial_{I}K)W$ is the Kähler derivative.

4-d Supergravity Action

 The complex structure deformations z^k are good Kähler coordinates. Hence,

$$K_{k\bar{l}}=\frac{\partial}{\partial z^k}\frac{\partial}{\partial \bar{z}^{\bar{l}}}K$$

- 2 $\tau = l + ie^{-\phi}$ and $G^a = c^a \tau b^a$ are also Kähler coordinates on moduli space.
- 3 v^{α} are not Kähler coordinates. Instead, they are the implicit functions of the Kähler coordinates $(\tau, T^{\alpha}, G^{a})$, where,

$$T_lpha=rac{3i}{2}
ho_lpha+rac{3}{4}\mathcal{K}_lpha(v)-rac{3}{2}\zeta_lpha(au,ar{ au},G,ar{G})$$

with $\mathcal{K}_{\alpha}(v) = \mathcal{K}_{\alpha\beta\gamma}v^{\beta}v^{\gamma}, \ \zeta_{\alpha} = -\frac{i}{2(\tau-\bar{\tau})}\mathcal{K}_{\alpha bc}G^{b}(G-\bar{G})^{c}$ and $\mathcal{K}_{ABC} = \int_{\mathcal{CY}_{3}}\omega_{A}\wedge\omega_{B}\wedge\omega_{C}$ are the intersection number of \mathcal{CY}_{3} . Particularly, $\operatorname{Vol}(\mathcal{CY}_{3}) = \frac{1}{6}\mathcal{K} = \frac{1}{6}\mathcal{K}_{\alpha\beta\gamma}v^{\alpha}v^{\beta}v^{\gamma}$.

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

In the following, we only consider the simple orientifolds without O7-planes. For such cases, $b^a = c^a = G^a = 0$.

Properties:

• The Kähler moduli are decoupled of the complex dilaton au,

$$T_lpha=rac{3i}{2}
ho_lpha+rac{3}{4}\mathcal{K}_lpha(v)$$

However, the superpotential W remains T_{α} -independent.

• The Kähler potential satisfies a no-scale type condition:

$$K^{T_{\alpha}\bar{T}_{\beta}}\frac{\partial K}{\partial T_{\alpha}}\frac{\partial K}{\partial \bar{T}_{\beta}}=3$$

The F-term potential becomes semi-definite positive,

$$V_F = e^K K^{i\bar{j}} D_i W D_{\bar{j}} \bar{W} \ge 0$$

where M^i stand for all scalar fields except the Kähler moduli T_{α} .

• The minimal of V_F is $V_F^{\min} = 0$, at which $D_{z^k}W = D_{\tau}W = 0$ but

$$D_{T_{\alpha}}W = (\partial_{T_{\alpha}}K)W = -2rac{v^{lpha}}{\mathcal{K}}W
eq 0$$

This minimal is a supersymmetric broken state.

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT

Beyond KKLT Procedure

My work

• Not an arbitrary 3-form background fluxes G_3 can yield the optimization conditions. From the identity $D_{z^k}\Omega(z) = i\chi_k$, we get

$$D_{\tau}W = \frac{i}{2}e^{\phi}\int_{\mathcal{CY}_{3}}\Omega \wedge \bar{G}_{3}$$
$$D_{z^{k}}W = i\int_{\mathcal{CY}_{3}}\chi_{k} \wedge G_{3}$$

Recall that
$$_{*6}\Omega = -i\Omega$$
, $_{*6}\chi_k = i\chi_k$ and

4-d Supergravity Action

$$\int_{\mathcal{CY}_3} A \wedge B = \int_{\mathcal{CY}_3} *_6 A \wedge *_6 B$$

the above Kähler derivatives can be alternatively written as:

$$D_{\tau}W = \frac{1}{2}e^{\phi}\int_{\mathcal{CY}_{3}}\Omega \wedge_{*6}\bar{G}_{3}$$
$$D_{z^{k}}W = -\int_{\mathcal{CY}_{3}}\chi_{k} \wedge_{*6}G_{3}$$

Hence, the conditions $D_{z^k}W = D_{\tau}W = 0$ require the imaginary selfdual background fluxes: $*_6G_3 = iG_3$.

• Because $D_{T_{\alpha}}W \neq 0$, at the F-term vacuum the Kähler moduli are undetermined. So there is a degenerate family of vacua with arbitrary supersymmetry-breaking scale $\Re T_{\alpha}$.

KKL7 Mechanism

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

The remedy for fixing all scalar fields including the Kähler moduli T_{α} is to spoil the no-scale structure of the 4-dimensional effective supergravity.

The known KKLT mechanism is:

- adding the effect of a Euclidean D3-brane wrapping a 4-cycle in \mathcal{CY}_3 . [Witten, hep-th/9604030]
- adding the gaugino condensation effects coming from stacks of D7branes with fluxes wrapping a 4-cycle in CY₃.
 [Nilles et al, Phys. Lett. B155(1985)65]

Including either effect yields a nonperturbative (Kähler moduli dependent) correction to superpotential,

$$W_{np} \varpropto e^{-a^lpha T_lpha}$$

The revised superpotential becomes:

$$W = \int_{\mathcal{CY}_3} \Omega(z) \wedge G_3 + A e^{-a^lpha T_lpha}$$

KKL7 procedure

KKLT procedure:

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

- The complex structure moduli and dilaton are assumed to be much heavier than T_{α} so that they can be fixed by sole flux superpotential $W_f = \int_{\mathcal{CV}_3} \Omega(z) \wedge G_3$ through supersymmetric optimization conditions $D_T W_f = D_{z^k} W_f = 0.$
- After the complex structure moduli and dilaton are stabilized, the superpotential does only depend upon the Kähler moduli,

$$W = W_0 + Ae^{-a^{\alpha}T_{\alpha}} \qquad (W_0 \neq 0)$$

Then, the Kähler moduli are fixed by the supersymmetric optimization condition $D_{T_{\alpha}}W = 0$.

The resulting supersymmetric vacuum (at F-term potential level) is an anti-de Sitter space,

$$V_F^{\min} = -3e^K |W|^2 \ll 0$$

which can be lifted to a deSitter vacuum by some supersymmetric effects such as D3-anti-D3 interaction.

Doubts

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

Though KKLT mechanism is commonly accepted, KKLT procedure for implementing such a mechanism has received some criticisms.

Doubts:

- D3-anti-D3 interaction is an effect of explicit supersymmetry breaking. Is it possible to replace it by a spontaneous SUSY breaking effect such as D-term potential ?
- Is the KKLT two step decoupled procedure for stabilizing moduli a true approximation of the exact one step procedure based on the full superpotential ?

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

Difficulty for D-term Potential:

Uplifting Mechanisms

- In KKLT procedure, the resulting minimal of F-term potential is supersymmetric with vanishing F-terms.
- In supergravity, a model with vanishing F-terms must have also vanishing D-terms.

D-terms in N=1 Supergravity:

The gauge invariant action for D = 1, $\mathcal{N} = 1$ supergravity with chiral multiplets $\phi^i \sim (z^i, \psi^i)$ and vector multiplets $V^a \sim (\lambda^a, A^a_\mu)$ is completely fixed by 3 ingerdients:

- real gauge invariant Kähler function $G = K + \ln |W|^2$;
- 2 holomorphic gauge kinetic function f_{ab} ;
- 3 holomorphic Killing vectors $X_a = X_a^i(z) \frac{\partial}{\partial z^i}$.

The scalar potential is:

$$V = V_F + V_D = e^G (G^{i \bar{j}} G_i G_{\bar{j}} - 3) + rac{1}{2} [(\Re f)^{-1}]^{ab} D_a D_b$$

where $G_i = \partial G / \partial z^i$ are called F-terms,

 $G_i = K_i + W_i/W = D_i W/W$

where the holomorphicity of the superpotential has been used.

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

Uplifting Mechanism

 D_a are known as the D-terms:

$$D_a=iG_iX^i_a=irac{D_iW}{W}X^i_a$$

Question:

• Can we have a supersymmetry broken vacuum at the level of F-term potential (during the moduli stabilization) ?

Attempts:

(] Ignore the nonperturbative corrections of the superpotential (so that $D_{T_{\alpha}}W \neq 0$). The no-scale property of V_F is spoiled by α'-correction and string loop corrections to Kähler potential. [Parameswaran et al, hep-th/0602253]

② Interpret the shift symmetry of Kähler potential as an anomalous U(1) symmetry and construct gauge invariant nonperturbative superpotential. In this way some open string moduli M^a (massless squark condensation) are introduced which satisfy $D_{M^a}W \neq 0$. [Achúcarro et al, hep-th/0601190]

O Directly search for the supersymmetry broken vacua (dS and/or AdS) of F-term potential. Yang, Phys. Rev. D73, 066006(2006)

my work

Goal:

Moduli Stabilization

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

- to examine the moduli stabilization of IIB orientifolds with one complex structure modulus in one-step procedure.
- to find conditions for having a supersymmetry broken deSitter vacuum at the level of F-term potential.

Models:

The models under consideration are IIB orientifolds at orbifold limits with orbifold groups $\Gamma = \mathbf{Z}_{6-II}, \mathbf{Z}_2 \times \mathbf{Z}_3$ or $\mathbf{Z}_2 \times \mathbf{Z}_6$, for which $h^{1,1} = 3, h^{2,1} = 1$ in untwisted sectors. We consider isotropic case where $T_1 = T_2 = T_3 = T$. The models are defined by

• Kähler potential:

$$K = -3 \ln(T + \overline{T}) - \ln(S + \overline{S}) - \ln(U + \overline{U})$$

where $S = e^{-\phi} + il$ is the complex dilaton-axion field $(i\bar{\tau})$.

• Superpotential whose flux part is defined as $\frac{1}{(2\pi)^2 \alpha'} \int_{CY_3} \Omega \wedge G_3$ is explicitly expressed as:

$$W = \alpha_0 + \alpha_1 U + \alpha_2 S + \alpha_3 SU + 3ge^{-hT}$$

my work

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

The potential energy of the models is due to the presence of background 3-form flux G_3 , which can be organized into the standard F-term potential of $\mathcal{N} = 1$ supergravity,

$$V_F = e^K (K^{i\overline{j}} D_i W \overline{D_j W} - 3|W|^2)$$

Let $T = t + i\tau$, $S = s + i\sigma$ and $U = u + i\nu$. The points $\tau = \sigma = \nu = 0$ define some flat directions in moduli space on which $\partial_{\tau}V_F = \partial_{\sigma}V_F = \partial_{\nu}V_F = 0$, at which the potential takes a simple expression:

$$V_F = rac{1}{16t^3 su} iggl[6ghte^{-ht}(lpha_0 + ulpha_1 + slpha_2 + uslpha_3 + 3ge^{-ht}) + 6(ght)^2 e^{-2ht} + (lpha_0 - uslpha_3 + 3ge^{-ht})^2 + (ulpha_1 - slpha_2)^2 iggr]$$

The remaining optimization conditions $\partial_t V_F = \partial_s V_F = \partial_u V_F = 0$ can be written as either:

$$\begin{aligned} \alpha_2 s &= \alpha_1 u, \qquad u = -\frac{1}{\alpha_1} [\alpha_0 + (3+ht)ge^{-ht}], \\ \alpha_3 &= \frac{\alpha_1 \alpha_2 (\alpha_0 + 3ge^{-ht})}{\left[\alpha_0 + (3+ht)ge^{-ht}\right]^2}. \end{aligned}$$

my work

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

or (for simplicity here we only give the conditions in $\alpha_0 = 0$):

$$\begin{aligned} \alpha_2 s &= \alpha_1 u, \qquad u = -\frac{g(72+177ht+109h^2t^2+16h^3t^3-2h^4t^4)e^{-ht}}{ht(7+2ht)^2\alpha_1}, \\ \alpha_3 &= -\frac{3\alpha_1\alpha_2(ht)^2(7+2ht)^3(1+4ht+2h^2t^2)e^{ht}}{g(72+177ht+109h^2t^2+16h^3t^3-2h^4t^4)^2}. \end{aligned}$$

The former corresponds to a supersymmetry-restored extremum ($D_T W = D_S W = D_U W = 0$),

$$V_{F,c}^{\mathrm{susy}} = -rac{3lpha_1lpha_2 g^2 h^2 e^{-2ht}}{8t \Big[lpha_0 + (3+ht)g e^{-ht}\Big]^2} \leqslant 0$$

but the latter corresponds to a supersymmetry-breaking extremum $(D_U W \neq 0, D_S W \neq 0)^7$:

$$V_{F,c}^{\text{nonsusy}} = \frac{3\alpha_1\alpha_2h^2(7+2ht)^2(-48-84ht-73h^2t^2-22h^3t^3+2h^4t^4)}{8t(-72-177ht-109h^2t^2-16h^3t^3+2h^4t^4)^2}$$

⁷Provided $\alpha_0 \geq 0$, the supersymmetric extremum is only accessible for models with $\alpha_1 < 0$, $\alpha_2 < 0$ and $\alpha_3 > 0$, the supersymmetry-broken extremum is only accessible for models with $\alpha_3 < 0$.

my work

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactification

KKLT Procedure

Beyond KKLT Procedure

My work

Hessian determinants indicate that $V_{F,c}^{\text{nonsusy}}$ is a positive minimum if the Kähler modulus is fixed at $\frac{13.86}{b} < t < \frac{14.70}{b}$. an illustrative model with,

 $W = 1.25 \times 10^{-7} U + 2.5 \times 10^{-7} S - 5 \times 10^{-6} SU + 3e^{-T}$

is in order. Its potential $V_F pprox rac{A}{t^3 u^2}$ with

$$\begin{array}{rl} A = & 0.125 \times [6e^{-2t}t^2 + 6e^{-t}t(3e^{-t} + 2.5 \times 10^{-7}u - 2.5 \times 10^{-6}u^2) \\ & & + (3e^{-t} + 2.5 \times 10^{-6}u^2)^2] \end{array}$$

has a local deSitter minimum $V_{F,\min}^{\text{nonsusy}} \approx 1.62 \times 10^{-17}$ at $t \approx 14.08$, $u \approx 3.45$ and $s \approx 1.72$.

The potential curve near the founded deSitter vacuum is,

Huan-Xiong Yang

Contents

Introduction

Calabi-Yau Moduli Space

Type IIB Calabi-Yau Orientifold Compactifi cation

KKLT Procedure

Beyond KKLT Procedure

My work

Thank you!

Lecturer: Huan-Xiong Yang

Address: Zhejiang Institute of Modern Physics Zhejiang University Hangzhou, 310027, China Email: hxyang@zimp.zju.edu.cn