Standard Model Effective Field Theory at Future Lepton Colliders

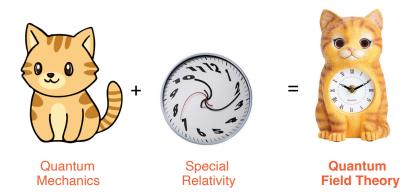
(with Machine Learning)

Jiayin Gu (顾嘉荫)

Fudan University

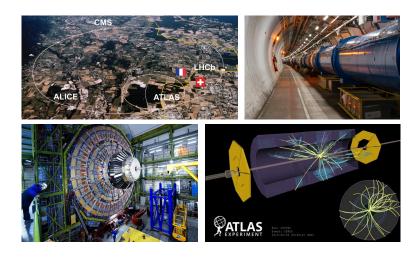
Interdisciplinary Center for Theoretical Study Peng Huanwu Center for Fundamental Theory USTC Jun 15, 2023

What is particle physics?



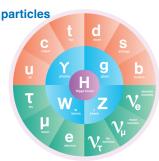
- Quantum Field Theory tells us:
 - Particles can be annihilated and created.
 - ► High energies ⇒ heavy (new) particles.

particle physics \approx collider physics



 \blacktriangleright Build large colliders \rightarrow go to high energy \rightarrow discover new particles!

The Standard Model



interactions

the Wheel

Only a few "elementary" particles.

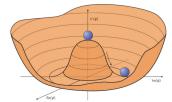
the Mug

The Standard Model Lagrangian is simple!

the "Mexican Hat"

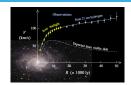
The Higgs Mechanism gives masses to the elementary particles.

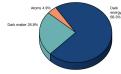
Higgs mechanism

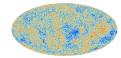


So many things we don't know...

- What is dark matter?
- What is dark energy?
- Why are there more matter than anti-matter?
- What is the origin of neutrino masses?
- What caused the inflation (if it happened)?
- Why is the electroweak scale so much smaller than the Planck scale?
- ▶ Why is the strong CP phase θ so small?
- Why is the CKM matrix somewhat close to 1?
- What is the theory of quantum gravity?
- **.....**







We need experiments to find the answers!

LHC will find Supersymmetry (or something else), which has a dark matter candidate and solves the Hierarchy problem!

Higgs and nothing else?

6

We need experiments to find the answers!

LHC will find Supersymmetry (or something else), which has a dark matter candidate and solves the Hierarchy problem!

Higgs and nothing else?

- What's next?
 - ▶ Build an even larger collider (~ 100 TeV)?
 - No guaranteed discovery!

We need experiments to find the answers!

LHC will find Supersymmetry (or something else), which has a dark matter candidate and solves the Hierarchy problem!

Higgs and nothing else?

- What's next?
 - ▶ Build an even larger collider (~ 100 TeV)?
 - No guaranteed discovery!

■ Build large colliders → go to high energy → discover new particles!

 $\label{eq:doprec} \textbf{do precision measurements} \rightarrow \textbf{discover new physics indirectly!}$

- Higgs factory! (HL-LHC, or a future lepton collider)
- Standard Model Effective Field Theory (model independent approach)

To summarize in one sentence...

"Our future discoveries must be looked for in the sixth place of decimals."

Albert A. Michelson

Why lepton (e^+e^-) colliders?

- It's a Higgs (and Z, W, top) factory!
 - Large statistics, clean environment
 - ⇒ precision measurements!
 - ▶ On the other hand, the LHC is designed to be a "discovery machine"...
- ► Circular vs. Linear
 - ► Circular: large luminosity, reuse the tunnel for a 100 TeV hadron collider.
 - Linear: high energy (up to a few TeVs), beam polarization.

Muon colliders?

Why lepton (e^+e^-) colliders?

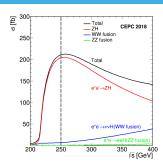
▶ Higgs

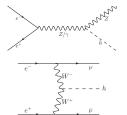
- e⁺e⁻ → hZ cross section maximized at around 250 GeV
- $e^+e^- o
 u \bar{\nu} h$ cross section increases with energy

$$\begin{array}{ll} \bullet & e^+e^- \rightarrow \bar{t}th\,,\\ & e^+e^- \rightarrow Zhh\,, e^+e^- \rightarrow \nu\bar{\nu}hh\,,\\ & \dots \end{array}$$

and more

- $e^+e^- \rightarrow Z \rightarrow \bar{f}f$ Z-pole
- $e^+e^- \rightarrow WW$ WW threshold and above
- $e^+e^- \rightarrow t\bar{t}$ $t\bar{t}$ threshold and above





Jiayin Gu (顾嘉荫) Fudan University

The Standard Model Effective Field Theory

- \triangleright $[\mathcal{L}_{sm}] \leq 4$. Why?
 - Bad things happen when we have non-renormalizable operators!
 - Everything is fine as long as we are happy with finite precision in perturbative calculation.
- ▶ **d=5:** $\frac{c}{\Lambda}$ *LLHH* $\sim \frac{cv^2}{\Lambda}\nu\nu$, Majorana neutrino mass.
- Assuming Baryon and Lepton numbers are conserved,

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{i} rac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} rac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots.$$

▶ If $\Lambda \gg v$, E, then SM + dimension-6 operators are sufficient to parameterize the physics around the electroweak scale.

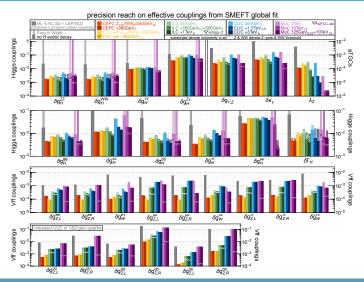
The Standard Model Effective Field Theory

		X^2		φ^4 and $\varphi^4 D^2$		ψ ² φ ³		(LL)(LL)		(RR)(RR)		(LL)(RR)
	Qc	$f^{ABC}G^{Ac}G^{Bc}G^{Cc}$	Q_{ν}	$(\varphi^{\dagger}\varphi)^3$	Que	$(\varphi^{\dagger}\varphi)(I_{\rho^{\mu}}\varphi)$	Qu	$(\bar{l}_i \gamma_i I_r)(\bar{l}_i \gamma^\mu l_i)$	Q_{ee}	$(\tilde{e}_{\mu}\gamma_{\mu}e_{\nu})(\tilde{e}_{\nu}\gamma^{\mu}e_{\nu})$	Q_{lc}	$(\tilde{l}_j\gamma_\mu l_\nu)(\tilde{e}_i\gamma^\mu e_i)$
	Q ₀	fasc Gar Gar Ger	Quo	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	Que	(u'u)(q,u,0)	$Q_{qq}^{(1)}$	$(q_{i}\gamma_{i}q_{i})(q_{i}\gamma^{\mu}q_{i})$	Que	$(\theta_g \gamma_\mu v_\nu)(\theta_e \gamma^\mu v_e)$	Q_{he}	$(\tilde{l}_{p}\gamma_{p}\tilde{l}_{r})(\hat{u}_{a}\gamma^{\mu}u_{t})$
	Qu	gDKWI-WJeWKe	Qua	$(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	Qu	$(\varphi^{\dagger}\varphi)(q_{\rho}d_{\nu}\varphi)$	$Q_{ii}^{(0)}$	$(q_\mu\gamma_\mu\tau^Iq_\nu)(q_\nu\gamma^\mu\tau^Iq_\nu)$	Q_M	$(\bar{d}_y \gamma_\mu d_r)(\bar{d}_z \gamma^\mu d_l)$	Q_{kl}	$(\tilde{l}_{\mu}\gamma_{\nu}l_{\nu})(\tilde{d}_{\nu}\gamma^{\mu}d_{\ell})$
	$Q_{\overline{W}}$	$e^{IJK}\widetilde{W}^{I_1}W^{J_2}W^{K_2}$					$Q_{i_0}^{(1)}$	$(l_p \gamma_p I_r)(\bar{a}_1 \gamma^\mu a_1)$	Q_{cs}	$(\tilde{\epsilon}_{\mu}\gamma_{\mu}\epsilon_{\nu})(\tilde{a}_{\mu}\gamma^{\mu}u_{\ell})$	$Q_{\rm pc}$	$(\bar{q}_j\gamma_{j\ell}q_r)(\bar{e}_j\gamma^\mu e_l)$
	X ² o ²		⊕2X <i>ϕ</i>		62G2D		$Q_{iq}^{(3)}$	$(\bar{l}_{p}\gamma_{p}\tau^{I}l_{r})(\bar{q}_{r}\gamma^{\mu}\tau^{I}q_{r})$	Q_{cd}	$(\bar{e}_y \gamma_y e_r)(\bar{d}_z \gamma^a d_t)$	$Q_{qu}^{(1)}$	$(q_i\gamma_iq_r)(s_i\gamma^\mu u_t)$
	9,0	Ø 0 € € € € € € € € € € € € € € € € € €	Qav	$(I_{\nu}\sigma^{\mu\nu}e_{\nu})\tau^{J}\psi W_{\nu\nu}^{I}$	$Q_{a}^{(0)}$	(011 D. 01 (L. +1)			$Q_{ud}^{(1)}$	$(\bar{u}_{\mu}\gamma_{\mu}u_{\nu})(\bar{d}_{z}\gamma^{\mu}d_{z})$	$Q_{\eta n}^{(k)}$	$(q_s\gamma_sT^Aq_r)(\pi_s\gamma^sT^A\pi_t)$
	Q,0	\$ \tilde \	Qua	$(l_0\sigma^{\mu\nu}c_r)\varphi B_{\mu\nu}$	Q(2)	$(\varphi^{I}i\vec{D}_{i}^{I}\varphi)(\vec{l}_{i}\tau^{I}\gamma^{\mu}l_{\nu})$			$Q_{ud}^{(0)}$	$(\bar{u}_s\gamma_sT^Au_r)(\bar{d}_s\gamma^\mu T^Ad_t)$	$Q_{q\ell}^{(1)}$	(40,00)(d,1*d)
	Q _{qW}	$\varphi^i \varphi^i W^i_{\mu} W^{i\mu\nu}$	Que	$(q_0 \cdots q_r) \varphi B_{pr}$ $(q_0 \cdots q_r) \varphi G_{rr}^A$	0	$(\phi^{ij} \overrightarrow{D}_{\mu} \phi)(q_{i} \gamma^{\mu} q_{i})$ $(\phi^{ij} \overrightarrow{D}_{\mu} \phi)(q_{i} \gamma^{\mu} q_{i})$					$Q_{s\ell}^{(n)}$	$(\bar{q}_i\gamma_iT^Aq_i)(\bar{d}_i\gamma^\mu T^Ad_i)$
+		SOW WIN	Que	(\$100 m) 1 3 W.	Q(1) Q(1)	$(\varphi^{\eta}D_{\mu}\varphi)(e_{\mu}\gamma^{\mu}e_{\nu})$ $(\varphi^{\eta}D_{\mu}\varphi)(\bar{q}_{\nu}\gamma^{\mu}q_{\nu})$		(RL) and $(LR)(LR)$		B-vio		
	$Q_{\sqrt{W}}$						Qiete	$(\tilde{t}_{i}^{j}c_{r})(\tilde{d}_{r}q_{i}^{j})$	Q_{dec}	$\varepsilon^{a_jb_j}\varepsilon_{jk}\left[(d_g^a)\right]$		
	$Q_{\rho S}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uS}	$(q_p \sigma^{\mu\nu} u_r) \overline{\varphi} B_{\mu\nu}$	$Q_{qq}^{(3)}$	$(\varphi^I i \overset{\circ}{D}_{\mu}^I \varphi)(q_{\nu} \tau^I \gamma^{\mu} q_{\nu})$	$Q_{\rm quot}^{(1)}$	$(\bar{q}_{\mu}^{i}u_{\nu})e_{jk}(\bar{q}_{\mu}^{k}d_{\ell})$	Q_{qq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_{p}^{\alpha j})\right]$		
	$Q_{\mu \bar{\nu}}$	$\varphi^{\dagger}\varphi\bar{B}_{\mu\nu}B^{\mu\nu}$	Qac	$(\tilde{q}_{\mu}\sigma^{\mu\nu}T^Ad_{\sigma})\varphiG^A_{\mu\nu}$	$Q_{\varphi a}$	$(\varphi^{\dagger}i \tilde{D}_{\mu} \varphi)(\bar{u}_{\rho} \gamma^{\mu} u_{\tau})$	$Q_{\rm popt}^{(t)}$	$(q_j^i T^{ij} u_r) v_{jk} (q_s^k T^{ij} d_t)$	$Q_{\rm ess}^{(1)}$	$x^{\alpha\beta\gamma}x_{jk}x_{nm}[(q_p^{\alpha}$		
	$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{\dagger}\varphiW_{\mu\nu}^{\dagger}B^{\mu\nu}$	Qav	$(q_p \sigma^{\mu\nu} d_r) \tau^I \varphi W_{\mu\nu}^I$	$Q_{\rm vd}$	$(\varphi^{\dagger}i\overrightarrow{D}_{\mu}\varphi)(\overrightarrow{d}_{p}\gamma^{\mu}d_{r})$	$Q_{\rm legs}^{(1)}$	$(l_j^i c_r) c_{jk} (\hat{q}_s^k u_t)$	$Q_{\rm est}^{\rm IS}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{\dagger}\varepsilon)_{jk}(\tau^{\dagger}\varepsilon)_{em}$		
	$Q_{\sqrt{K}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}_{\mu\nu}^{I}B^{\mu\nu}$	Q_{e0}	$(\bar{q}_j \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\mu\nu\ell}$	$i(\hat{\varphi}^{\dagger}D_{\mu}\varphi)(\hat{u}_{\mu}\gamma^{\mu}d_{\tau})$	$Q_{loqu}^{(2)}$	$(\bar{\ell}_{\mu}^{i}\sigma_{j\alpha}e_{\nu})e_{jk}(\bar{q}_{\alpha}^{k}\sigma^{\mu\nu}u_{k})$	$Q_{\ell m}$	$\varepsilon^{\alpha\beta\gamma} \left[(d^{\alpha}_{\mu})^{3} \right]$	Cu_s^s	$[(u_i^*)^T C c_i]$

- Write down all possible (non-redundant) dimension-6 operators ...
- 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott.
- ▶ A **full global fit** with all measurements to all operator coefficients?
 - ▶ We usually only need to deal with a subset of them, e.g. ~ 20-30 parameters for Higgs and electroweak measurements.
- Do a global fit and present the results with some fancy bar plots!

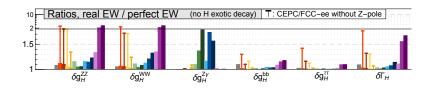
Higgs + EW, Results from the Snowmass 2021 (2022) study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonido



Jiayin Gu (顾嘉荫) Fudan University

Impacts of (lack of) the Z-pole run



- Without good Z-pole measurements, the <u>eeZh</u> contact interaction may have a significant impact on the Higgs coupling determination.
- Current (LEP) Z-pole measurements are not good enough for CEPC/FCC-ee Higgs measurements!
 - A future Z-pole run is important!

► Linear colliders suffer less from the lack of a Z-pole run. (Win Win!)

Jiayin Gu (顾嘉荫) Fudan University

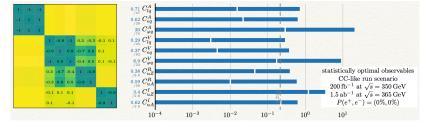
Probing Top operators with $e^-e^+ \rightarrow t\bar{t}$

[arXiv:1807.02121] Durieux, Perelló, Vos, Zhang

$$\begin{array}{lll} O_{\varphi q}^{1} \equiv \frac{y_{t}^{2}}{2} & \bar{q}\gamma^{\mu}q & \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi, & O_{uG} \equiv y_{t}g_{s} & \bar{q}T^{A}\sigma^{\mu\nu}u & \epsilon\varphi^{*}G_{\mu\nu}^{A}, \\ O_{\varphi q}^{3} \equiv \frac{y_{t}^{2}}{2} & \bar{q}\tau^{I}\gamma^{\mu}q & \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi, & O_{uW} \equiv y_{t}g_{W} & \bar{q}\tau^{I}\sigma^{\mu\nu}u & \epsilon\varphi^{*}W_{\mu\nu}^{I}, \\ O_{\varphi u} \equiv \frac{y_{t}^{2}}{2} & \bar{u}\gamma^{\mu}u & \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi, & O_{dW} \equiv y_{t}g_{W} & \bar{q}\tau^{I}\sigma^{\mu\nu}d & \epsilon\varphi^{*}W_{\mu\nu}^{I}, \\ O_{\varphi ud} \equiv \frac{y_{t}^{2}}{2} & \bar{u}\gamma^{\mu}d & \varphi^{T}\epsilon iD_{\mu}\varphi, & O_{uB} \equiv y_{t}g_{Y} & \bar{q}\sigma^{\mu\nu}u & \epsilon\varphi^{*}B_{\mu\nu}, \end{array}$$

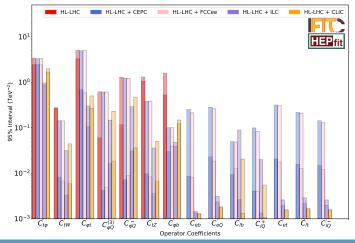
$$\begin{split} O_{lq}^1 &\equiv \frac{1}{2} \ \, \bar{q} \gamma_{\mu} q \quad \bar{l} \gamma^{\mu} l, \\ O_{lq}^3 &\equiv \frac{1}{2} \, \bar{q} \tau^I \gamma_{\mu} q \quad \bar{l} \tau^I \gamma^{\mu} l, \\ O_{lu} &\equiv \frac{1}{2} \ \, \bar{u} \gamma_{\mu} u \quad \bar{l} \gamma^{\mu} l, \\ O_{eq} &\equiv \frac{1}{2} \ \, \bar{q} \gamma_{\mu} q \quad \bar{e} \gamma^{\mu} e, \\ O_{eu} &\equiv \frac{1}{2} \ \, \bar{u} \gamma_{\mu} u \quad \bar{e} \gamma^{\mu} e, \end{split}$$

- Also need to include top dipole interactions and eett contact interactions!
- Hard to resolve the top couplings from 4f interactions with just the 365 GeV run.
 - Can't really separate $e^+e^- \rightarrow Z/\gamma \rightarrow t\bar{t}$ from $e^+e^- \rightarrow Z' \rightarrow t\bar{t}$.
 - Is that a big deal?

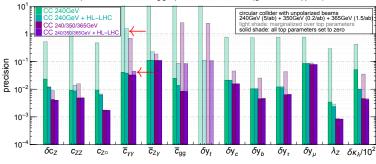


Results from the recent snowmass study

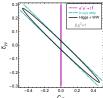
[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou



Jiayin Gu (顾嘉荫) Fudan University



- $O_{tB}=(\bar{Q}\sigma^{\mu\nu}t)\ \tilde{\varphi}B_{\mu\nu}+h.c.$ is not very well constrained at the LHC, and it generates dipole interactions that contributes to the $h\gamma\gamma$ vertex.
- ▶ Deviations in $h\gamma\gamma$ coupling ⇒ run at $\sim 365 \, \text{GeV}$ to confirm?



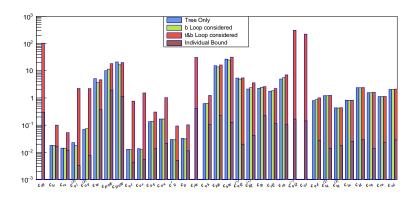
Top operators in loops (current EW processes)

[2205.05655] Y. Liu, Y. Wang, C. Zhang, L. Zhang, JG

	Experiment	Observables					
Low Energy	CHARM/CDHS/ CCFR/NuTeV/ APV/QWEAK/ PVDIS	Effective Couplings					
		Total decay width Γ_Z					
		Hadronic cross-section σ_{had} Ratio of decay width R_f Forward-Backward Asymmetry A_{FB}^f					
Z-pole	LEP/SLC						
		Polarized Asymmetry A_f					
	LHC/Tourstron/	Total decay width Γ_W					
W-pole	LHC/Tevatron/ LEP/SLC	W branching ratios $Br(W \rightarrow lv_l)$					
	LEI / SLC	Mass of W Boson M_W					
		Hadronic cross-section σ_{had}					
ee o qq	LEP/TRISTAN	Ratio of cross-section R_f					
		Forward-Backward Asymmetry for b/c A_{FB}^{f}					
	LEP	cross-section σ_f					
ee ightarrow ll		Forward-Backward Asymmetry A_{FB}^{f}					
		Differential cross-section $\frac{d\sigma_f}{d\cos\theta}$					
$ee \rightarrow WW$	LEP	cross-section σ_{WW}					
ee → w w	LEF	Differential cross-section $\frac{d\sigma_{WW}}{d\cos\theta}$					

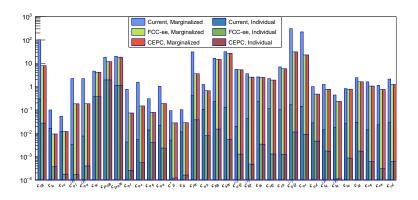
- Top operators (1-loop) + EW operators (tree, including bottom dipole operators)
- $e^+e^- \rightarrow f\bar{f}$ at different energies, $e^+e^- \rightarrow WW$.

Top operators in loops (current EW processes)



Good sensitivities, but too many parameters for a global fit...

Top operators in loops (future EW processes)



- Good sensitivities, but too many parameters for a global fit...
- ▶ It shows the importance of directly measuring $e^+e^- \rightarrow t\bar{t}$.

Machine learning in SMEFT analyses

Machine learning is not physics!

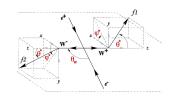
past

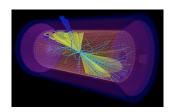
now

- ► Current work with Shengdu Chai (柴声都), Lingfeng Li (李凌风) on $e^+e^- \to WW$.
- ▶ Current work with Yifan Fei (费昳帆), Tong Shen (沈同) and Kerun Yu (余柯润) on $e^+e^- \to t\bar{t}$.

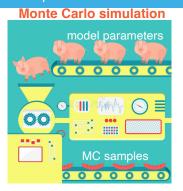
Why Machine learning?

- In many cases, the new physics contributions are sensitive to the differential distributions.
 - ▶ $e^+e^- \rightarrow WW \rightarrow 4f \Rightarrow 5$ angles
 - $e^+e^- \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^- \rightarrow 6f$ \$\Rightarrow\$ 9 angles
 - How to extract information from the differential distribution?
 - If we have the full knowledge of $\frac{d\sigma}{d\Omega}$ \Rightarrow matrix-element method, optimal observables...
- ► The ideal $\frac{d\sigma}{d\Omega}$ we can calculate is not the $\frac{d\sigma}{d\Omega}$ that we actually measure!
 - detector acceptance, measurement uncertainties, ISR/beamstrahlung ...
 - In practice we only have MC samples, not analytic expressions, for $\frac{d\sigma}{d\Omega}$.





The "inverse problem"



- Forward: From model parameters we can calculate the ideal dσ/dΩ, simulate complicated effects and produce MC samples.
- Inverse: From data / MC samples, how do we know the model parameters?
- ▶ With Neural Network we can (in principle) reconstruct $\frac{d\sigma}{d\Omega}$ (or likelihood ratios) from MC samples.

A rough sketch

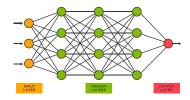
- ▶ We have a theory (SMEFT) that gives a differential cross section $\frac{d\sigma}{d\Omega}$ which is a function of the parameters of interest c (Wilson coefficients).
 - For simplicity, let's ignore the total rate and focus on $\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \equiv p(\mathbf{x}|\mathbf{c})$, *i.e.* it's a probability density function of the observables \mathbf{x} .
 - ▶ Define the likelihood function $\mathcal{L}(\mathbf{c}|\mathbf{x}) \equiv p(\mathbf{x}|\mathbf{c})$. For a sample of N events, maximizing the joint likelihood $\prod_{i=1}^{N} \mathcal{L}(\mathbf{c}|\mathbf{x}_i)$ (or the log likelihood) gives the best estimator for \mathbf{c} . (matrix-element method)
- Suppose we have two equal-size samples $\{\mathbf{x}_{i,\mathbf{c}_0}\} \sim p(\mathbf{x}|\mathbf{c}_0)$ and $\{\mathbf{x}_{i,\mathbf{c}_1}\} \sim p(\mathbf{x}|\mathbf{c}_1)$, one could define the cross-entropy loss function(al)

$$L(\hat{s}) = -\sum_{i=1}^{N} \log \hat{s}(\mathbf{x}_{i,e_1}) - \sum_{i=1}^{N} \log (1 - \hat{s}(\mathbf{x}_{i,e_0})),$$

which is minimized by the optimal decision function

$$s(\mathbf{x}|\mathbf{c}_0,\mathbf{c}_1) = \frac{p(\mathbf{x}|\mathbf{c}_1)}{p(\mathbf{x}|\mathbf{c}_0) + p(\mathbf{x}|\mathbf{c}_1)}$$
.

A rough sketch



From neural network we can construct a function $\hat{s}(\mathbf{x})$. By minimizing $L(\hat{s})$ with respect to $\hat{s}(\mathbf{x})$ we can obtain an estimator for the likelihood ratio

$$\hat{\mathbf{r}}(\mathbf{x}|\mathbf{c}_0,\mathbf{c}_1) = \frac{1 - \hat{\mathbf{s}}(\mathbf{x}|\mathbf{c}_0,\mathbf{c}_1)}{\hat{\mathbf{s}}(\mathbf{x}|\mathbf{c}_0,\mathbf{c}_1)} = \frac{\hat{\boldsymbol{p}}(\mathbf{x}|\mathbf{c}_0)}{\hat{\boldsymbol{p}}(\mathbf{x}|\mathbf{c}_1)},$$

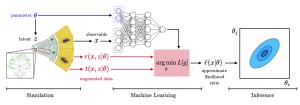
which is the same as the true likelihood ratio in the ideal limit (large sample, perfect training).

- ► There are many other ways to construct a loss function(al)....
- ▶ With additional assumptions on how $\frac{d\sigma}{d\Omega}$ depends on \mathbf{c} (*i.e.*, a quadratic relation), we only need to train a finite number of times to know how the likelihood ratio depend on \mathbf{c} .

Particle physics structure

▶ One could make use of latent variable "z" (the parton level analytic result for $\frac{d\sigma}{d\Omega}$) to increase the performance of ML.

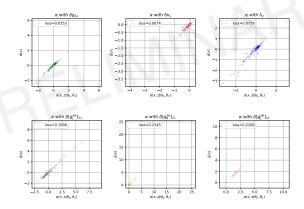
[1805.00013, 1805.00020] Brehmer, Cranmer, Louppe, Pavez



- Assuming linear dependences $\frac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} c_i$, there is a method called SALLY (Score approximates likelihood locally).
 - In this case, for each parameter we only need to train once to obtain $\alpha_i \equiv \frac{S_{1,i}}{S_0}$. (It is basically the ML version of Optimal Observables.)
 - We can calculate the "ideal" $\alpha(z)$ which will help us train the actual $\alpha(x)$.

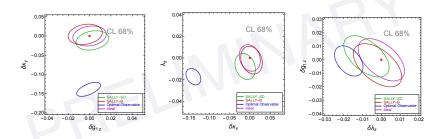
$$L[\hat{\alpha}(\mathbf{x})] = \sum_{\mathbf{x}_i, \mathbf{z}_i \sim \mathrm{SM}} |\alpha(\mathbf{z}_i) - \hat{\alpha}(\mathbf{x}_i)|^2.$$

Machine Learning in $e^+e^- o WW$ (preliminary results, Shengdu Chai, JG, Lingfeng Li)



 Semileptonic channel, MadGraph/Pythia/Delphes (CEPC detector card), with ZZ backgrounds.

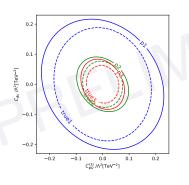
Machine Learning in $e^+e^- o WW$ (preliminary results, Shengdu Chai, JG, Lingfeng Li)

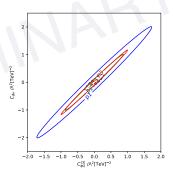


- ▶ 3-aTGC fit, scaled to 10⁴ events.
 - OO+classifier: hybrid method that uses a classifier to discriminate background.
- Naively applying truth-level optimal observables could lead to a large bias!
- It's easier for machine learning to take care of systematics!

Jiayin Gu (顾嘉荫) Fudan University

Machine Learning in $e^+e^- o t ar t$ (very preliminary results, Yifan Fei, JG, Tong Shen, Kerun Yu)





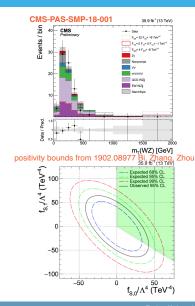
- $ightharpoonup e^+e^ightarrow tar{t}$, 3 different channels (no background yet)
- ▶ **Left:** $\sqrt{s} = 1$ TeV, **Right:** $\sqrt{s} = 360$ GeV

Machine learning

- When will Machine take over?
 - ▶ Before or after a future lepton collider is built?

Probing dimension-8 operators?

- ► The dimension-8 contribution has a large energy enhancement $(\sim E^4/\Lambda^4)!$
- It is difficult for LHC to probe these bounds.
 - Low statistics in the high energy bins.
 - Example: Vector boson scattering.
 - $\Lambda \lesssim \sqrt{s}$, the EFT expansion breaks down!
- Can we separate the dim-8 and dim-6 effects?
 - ▶ Precision measurements at several different √s?
 - (A very high energy lepton collider?)
 - Or find some special process where dim-8 gives the leading new physics contribution?

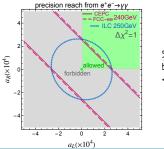


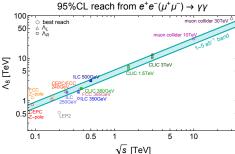
The diphoton channel [arXiv:2011.03055] Phys.Rev.Lett. 129, 011805, JG, Lian-Tao Wang, Cen Zhang

- $e^+e^- \rightarrow \gamma\gamma$ (or $\mu^+\mu^- \rightarrow \gamma\gamma$), SM, non-resonant.
- ▶ Leading order contribution: dimension-8 contact interaction. $(f^+f^- \rightarrow \bar{e}_L e_L \text{ or } e_R \bar{e}_R)$

$$\mathcal{A}(\mathbf{f}^{+}\mathbf{f}^{-}\gamma^{+}\gamma^{-})_{\mathrm{SM+d8}} = 2\mathbf{e}^{2} \frac{\langle 24 \rangle^{2}}{\langle 13 \rangle \langle 23 \rangle} + \frac{\mathbf{a}}{\mathbf{v}^{4}} [13][23] \langle 24 \rangle^{2}.$$

▶ Can probe dim-8 operators (and their positivity bounds) at a Higgs factory ($\sim 240\,\mathrm{GeV}$)!





Jiayin Gu (顾嘉荫) Fudan University

Conclusion

- We have no idea what is the new physics beyond the Standard Model.
- One important direction to move forward is to do precision measurements of the Standard Model processes.
 - A future lepton collider is an ideal machine for that.
 - SMEFT is a good theory framework (but is not everything).
 - Expanding the theory framework?
 - ► Loop contributions, dimension-8 operators, HEFT ...
- Machine learning is (likely to be) the future!

A lesson from Christopher Columbus (哥伦布发现美洲大陆)

- You need to have a theory.
 - ► The earth is round, India is in the east...
- Your theory can be wrong!
 - Columbus did not find India, but found America instead...
- You need to ask money from the government!
 - Columbus convinced the monarchs of Spain to sponsor him.
- Will we discover the new world?

backup slides

$e^+e^- o WW$ with Optimal Observables

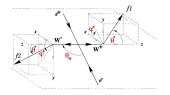
- TGCs (and additional EFT parameters) are sensitive to the differential distributions!
 - One could do a fit to the binned distributions of all angles.
 - Not the most efficient way of extracting information.
 - Correlations among angles are sometimes ignored.
 - What are optimal observables?

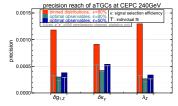
(See e.g. Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)

In the limit of large statistics (everything is Gaussian) and small parameters (linear contribution dominates), the best possible reaches can be derived analytically!

$$\frac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} g_i, \qquad c_{ij}^{-1} = \int d\Omega \frac{S_{1,i} S_{1,j}}{S_0} \cdot \mathcal{L},$$

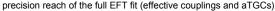
The optimal observables are given by $\mathcal{O}_i = \frac{S_{1,i}}{S_0}$, and are functions of the 5 angles.

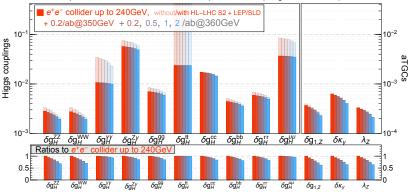




[arXiv:1907.04311] de Blas, Durieux, Grojean, JG, Paul

Impact of a 350/360 GeV run

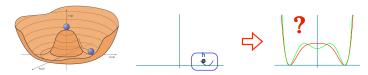




- ► 5.6 ab⁻¹ at 240 GeV assumed.
- Measurements at 350/360 GeV provides additional handles on the anomalous couplings (e.g. $hZ^{\mu}Z_{\mu}$ vs. $hZ^{\mu\nu}Z_{\mu\nu}$).
- Also improves the measurements of e⁺e[−] → WW (aTGCs).

Higgs self-coupling

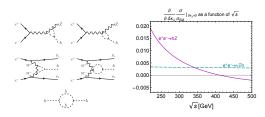
We know very little about the Higgs potential!

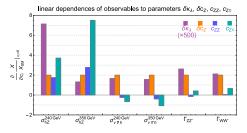


- To know more about the Higgs potential, we need to measure the Higgs self-couplings (hhh and hhhh couplings).
- ▶ The $(H^{\dagger}H)^3$ operator can modify the Higgs self-couplings.
- Probing the <u>hhh</u> coupling at Hadron colliders.
 - ightharpoonup gg o hh
 - $ightharpoonup \lesssim 50\%$ at HL-LHC.
 - ► ≤ 5% at a 100 TeV collider.

Triple Higgs coupling at one-loop order

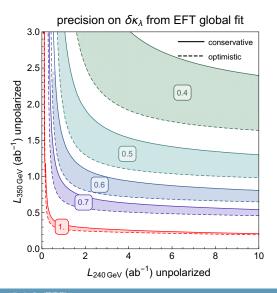
[arXiv:1711.03978] Di Vita, Durieux, Grojean, JG, Liu, Panico, Riembau, Vantalon





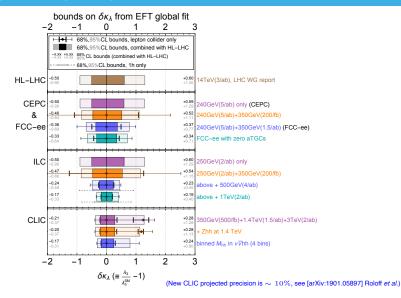
- $\begin{array}{l} \blacktriangleright \ \, \kappa_{\lambda} \equiv \frac{\lambda_{hhh}}{\lambda_{hhh}^{\rm SM}}, \\ \delta \kappa_{\lambda} \equiv \kappa_{\lambda} 1 = \textbf{\textit{C}}_{6} \frac{3}{2}\textbf{\textit{C}}_{\text{H}}, \\ \text{with } \mathcal{L} \supset -\frac{c_{6}\lambda}{2}(\textbf{\textit{H}}^{\dagger}\textbf{\textit{H}})^{3}. \end{array}$
- One loop corrections to all Higgs couplings (production and decay).
- 240 GeV: hZ near threshold (more sensitive to δκλ)
- at 350-365 GeV:
 - WW fusion
 - hZ at a different energy
- h → WW*/ZZ* also have some discriminating power (but turned out to be not enough).

Triple Higgs coupling from EFT global fits

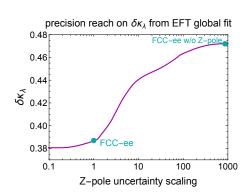


► Runs at two different energies (240 GeV and 350/365 GeV) are needed to obtain good constraints on the triple Higgs coupling in a global fit!

Triple Higgs coupling from global fits [arXiv:1711.03978]



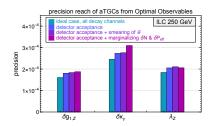
Updates on the triple Higgs coupling determination from EFT global fits

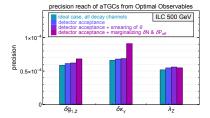


- ▶ 240, 365 GeV are better than 250, 350 GeV.
- Impacts of Z-pole measurements are not negligible. (eeZ(h) contact interaction enters e⁺ e⁻ → hZ.)

Updates on the WW analysis with Optimal Observables

- How well can we do it in practice?
 - detector acceptance, measurement uncertainties, ...
- What we have done (current work for the snowmass study)
 - detector acceptance $(|\cos \theta| < 0.9 \text{ for jets}, < 0.95 \text{ for leptons})$
 - some smearing (production polar angle only, $\Delta=0.1$)
 - ▶ ILC: marginalizing over total rate (δN) and effective beam polarization (δP_{eff})
- Constructing full EFT likelihood and feed it to the global fit. (For illustration, only showing the 3-aTGC fit results here.)
- Further verifications (by experimentalists) are needed.





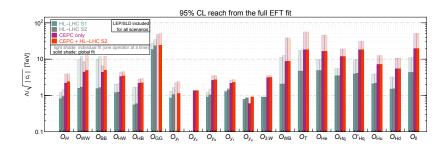
Jiayin Gu (顾嘉荫) Fudan University

D6 operators

$\mathcal{O}_{H} = \frac{1}{2}(\partial_{\mu} \mathcal{H}^{2})^{2}$	${\cal O}_{\sf GG}=g_{\sf s}^2 {\sf H} ^2G_{\mu u}^{\!A}G^{\!A,\mu u}$
$\mathcal{O}_{WW} = g^2 H ^2 W_{\mu\nu}^a W^{a,\mu\nu}$	$\mathcal{O}_{y_u} = y_u H ^2 \bar{q}_L \tilde{H} u_R + \text{h.c.} (u \to t, c)$
$\mathcal{O}_{BB} = g'^2 H ^2 B_{\mu u}^{} B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{q}_L H d_R + \text{h.c.} (d \to b)$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \overline{I}_L He_R + \text{h.c.} (e \to \tau, \mu)$
$\mathcal{O}_{HB}=\mathit{ig'}(\mathit{D}^{\mu}\mathit{H})^{\dagger}(\mathit{D}^{\nu}\mathit{H})\mathit{B}_{\mu u}$	$\mathcal{O}_{3W}=rac{1}{3!}g\epsilon_{abc}W_{\mu}^{a u}W_{ u ho}^{b}W^{c ho\mu}$
$\mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overrightarrow{D_{\mu}} H) D^{\nu} W_{\mu\nu}^{a}$	$\mathcal{O}_{B} = \frac{i g'}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H) \partial^{\nu} B_{\mu \nu}$
$\mathcal{O}_{WB} = gg'H^{\dagger}\sigma^{a}HW^{a}_{\mu u}B^{\mu u}$	$\mathcal{O}_{H\ell} = i H^\dagger \overrightarrow{D_\mu} H \overline{\ell}_L \gamma^\mu \ell_L$
$\mathcal{O}_{\mathcal{T}} = rac{1}{2} (\mathcal{H}^\dagger \overleftrightarrow{\mathcal{D}_\mu} \mathcal{H})^2$	$\mathcal{O}_{H\ell}' = i H^\dagger \sigma^a \overrightarrow{D_\mu} H ar{\ell}_L \sigma^a \gamma^\mu \ell_L$
$\mathcal{O}_{\ell\ell} = (\bar{\ell}_L \gamma^\mu_\mu \ell_L)(\bar{\ell}_L \gamma_\mu \ell_L)$	$\mathcal{O}_{He} = iH^\dagger \overrightarrow{D_\mu} H \overline{e}_R \gamma^\mu e_R$
$\mathcal{O}_{Hq} = i H^{\dagger} \overrightarrow{D_{\mu}} H \overrightarrow{q}_{L} \gamma^{\mu} q_{L}$	$\mathcal{O}_{Hu} = iH^\dagger \overleftrightarrow{D}_{\mu} H \bar{u}_{R} \gamma^\mu u_{R}$
$\mathcal{O}_{Hq}^{\prime} = iH^{\dagger} \sigma^{a} \overrightarrow{D_{\mu}} H \overline{q}_{L} \sigma^{a} \gamma^{\mu} q_{L}$	$\mathcal{O}_{Hd} = iH^\dagger \overrightarrow{D_\mu} H \overrightarrow{d}_R \gamma^\mu d_R$

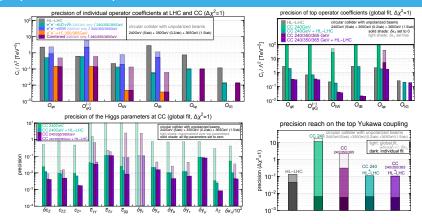
- ▶ SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- ▶ Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- ▶ Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB})

Reach on the scale of new physics



- Reach on the scale of new physics Λ.
- Note: reach depends on the couplings c_i!

Top operators in loops [arXiv:1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhai



- Higgs precision measurements have sensitivity to the top operators in the loops.
 - But it is challenging to discriminate many parameters in a global fit!
- HL-LHC helps, but a 360 or 365 GeV run is better.
- ▶ Indirect bounds on the top Yukawa coupling.

You can't really separate Higgs from the EW gauge bosons!

$$\begin{array}{l} \blacktriangleright \ \, \mathcal{O}_{H\ell} = i H^\dagger \overleftarrow{D_\mu} H \bar{\ell}_L \gamma^\mu \ell_L, \\ \mathcal{O}_{H\ell}' = i H^\dagger \sigma^a \overleftarrow{D_\mu} H \bar{\ell}_L \sigma^a \gamma^\mu \ell_L, \\ \mathcal{O}_{He} = i H^\dagger \overleftarrow{D_\mu} H \bar{e}_R \gamma^\mu e_R \end{array}$$

(or the ones with quarks)

- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

$$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W_{\mu\nu}^{a},$$

$$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$$

- generate aTGCs $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$,
- ▶ also generates HVV anomalous couplings such as $hZ_{\mu}\partial_{\nu}Z^{\mu\nu}$.

You also have to measure the Higgs!

- Some operators can only be probed with the Higgs particle.
- ► $|H|^2 W_{\mu\nu} W^{\mu\nu}$ and $|H|^2 B_{\mu\nu} B^{\mu\nu}$
 - ► $H \rightarrow v/\sqrt{2}$, corrections to gauge couplings?
 - Can be absorbed by field redefinition! This applies to any operators in the form |H|²O_{SM}.

$$egin{aligned} c_{\mathrm{SM}}\mathcal{O}_{\mathrm{SM}} & ext{ vs. } & c_{\mathrm{SM}}\mathcal{O}_{\mathrm{SM}} + rac{c}{\Lambda^2}|\mathcal{H}|^2\mathcal{O}_{\mathrm{SM}} \ & = (c_{\mathrm{SM}} + rac{c\,v^2}{2\,\Lambda^2})\mathcal{O}_{\mathrm{SM}} + ext{terms with } h \ & = c_{\mathrm{SM}}'\mathcal{O}_{\mathrm{SM}} + ext{terms with } h \end{aligned}$$

- probed by measurements of the hγγ and hZγ couplings, or the hWW and hZZ anomalous couplings.
- or Higgs in the loop (different story...)
- ► Yukawa couplings, Higgs self couplings, ...

Why lepton colliders?

- EFT is good for lepton colliders.
 - A systematic parameterization of Higgs (and other) couplings.
- Lepton colliders are also good for EFT!
 - ► High precision $\Rightarrow E \ll \Lambda$ Ideal for EFT studies!
 - LHC is built for discovery, but

Why lepton colliders?

- EFT is good for lepton colliders.
 - A systematic parameterization of Higgs (and other) couplings.
- ► Lepton colliders are also good for EFT!
 - ► High precision $\Rightarrow E \ll \Lambda$ Ideal for EFT studies!
 - LHC is built for discovery, but

Standard Model Effective Field Theory at Future Lepton Colliders (with Machine Learning)

- Energy vs. Precision
 - Poor measurements at the high energy tails lead to problems in the interpretation of EFT...

Jiayin Gu (顾嘉荫) Fudan University

A lesson from history

- In 1875, a young Max Planck was told by his advisor Philipp von Jolly not to study physics, since there was nothing left to be discovered.
 - Planck did not listen.

- In 1887, Michelson and Morley tried to find ether, the postulated medium for the propagation of light that was widely believed to exist.
 - They didn't find it.

Max Planck:

Before quantum physics:

 "Our future discoveries must be looked for in the sixth place of decimals." — Albert A. Michelson

Conclusion

Waiting for a future lepton collider to be built...