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Prelude

• Classical string solutions play an important role in understanding various
aspects of the AdS/CFT.

• One can use integrability methods to check and maybe even prove the
correspondence.

• One particular class of classical string solutions are the solitonic ones (at
the classical level we can map those solutions to solitons in sin(h)-Gordon)

• Some examples of solitonic solutions

-GKP string
-Kruczenski (application to scattering amplitudes at strong coupling)
-Berkovits-Maldacena
-Giant magnons in various spaces

We will focus on the last example
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Outline

In this talk I will briefly describe the objects we are interested in (Giant
Magnons) and then I will present a powerful method (Dressing method)
that gives recursion relations that relate N magnons to N − 1. Using
determinant manipulations it is possible to find a compact and simple
formula for the scattering of N magnons. We briefly comment on the
classical time delay due to the scattering of those magnons. Our method
can be applied to a great class of various spaces of interest as well as to
Wilson loops.

I Describe the objects we are interested in (Giant Magnons)
I Describe a method to find them

(Dressing method (1978))
I Find the N-magnon solution
I Talk about some of the properties of the N-soliton solution
I Apply the dressing method to Wilson loops and BTZ
I Conclude
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Introduction to AdS/CFT

• Solving QCD is an interesting problem (LHC phenomenology, gluon
scattering amplitudes, ...), but also very hard.

• In order to simplify the problem we look at a different (simpler) theory
with more structure and symmetry, the N = 4 sypersymmetric Yang-Mills
with SU(N) gauge group.

• Then the problem of solving N = 4 consists of finding all correlation
functions of local gauge invariant operators.

• The problem can be further simplified by considering the large N -limit
[’t Hooft].

• The large N -limit indicates that gauge theories can be related to string
theories.

• The first non-trivial example was given more than 10 years ago [Maldacena;

Gubser, Klebanov, Polyakov; Witten] and relates N = 4 to strings in
AdS5 × S5.
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AdS/CFT dictionary

N = 4 SYM stings on AdS5 × S5

’t Hooft coupling λ = g2
YMN string tension T =

√
λ

2π

number of colors N string coupling gs = λ
4πN

large N limit free strings
strong coupling classical strings
local operators string states

scaling dimension ∆ Energy E
amplitudes certain Wilson loops

〈OA(x)OB(y)〉 =
M δA,B

(x−y)2 ∆A(λ, 1
N

)
Hstring |OA〉 = EA(R

2

α′ , gs) |OA〉

strong-weak correspondence
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Integrability in AdS/CFT

• String theory in AdS5 × S5 is classically integrable [Mandal,

Suryanarayana, Wadia; Bena, Polchinski, Roiban].

• We can use integrability methods to study the spectrum of string theory. We
expect agreement with gauge theory results.

• In the gauge theory we can view the problem of determining the anomalous
dimensions of single trace operators as the problem of determining the spectrum
of certain spin-chains [Minahan, Zarembo]. A well-known method is the Bethe
ansatz.

• A feature of integrable theories (like N = 4) is that can be solved if we know
the 2-particle scattering. Exact S-matrix has been proposed for the planar theory
[Beisert, Eden, Staudacher].

• Following Witten’s discovery of twistor string theory we have seen a lot of
progress in SYM calculations even relevant for collider physics.
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Giant magnon limit [Hofman, Maldacena (2006)]

According to the AdS/CFT dictionary states with E − J = 0 correspond
to a long chain of Z fields

E − J = 0 ⇔ tr(ZJ).

One can also consider states with finite E − J
E − J = finite ⇔ Op =

∑
l

eipl(. . . ZZZW
↑
l

ZZZ . . .),

Using supersymmetry, Beisert has shown that

E − J =

√
1 +

λ

π2
sin2 p

2

in the large coupling limit

E − J =

√
λ

π

∣∣∣sin p
2

∣∣∣ .
The giant magnon limit is defined

E, J →∞, λ = g2
YMN = fixed, p = fixed, E − J = finite.
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Review of giant magnon solution

Nambu-Goto in spherical coordinates

S =

√
λ

2π

∫
dtdφ

√
cos2 θθ′2 + sin2 θ

solution sin θ = sin θ0
cosφ , where θ0 is the integration constant

energy is the same as in gauge theory (E − J =
√
λ
π sin ∆φ

2 ) with ∆φ ≡ p

Figure: Plot of the HM elementary giant magnon for p = 1 (p is the angle
between the endpoints, not a Noether charge).
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Pohlmeyer reduction (1976)

We would like to solve eom+Virasoro for the string sigma model. Many
different techniques have been developed (depending on the problem we
want to solve) including

I ansatz

I dressing method (for example in the case of giant magnons)

I Pohlmeyer reduction

I ...

We use the Pohlmeyer reduction method. One can view the Pohlmeyer
reduction as a sophisticated gauge choice where we are left with a model
that only involves physical degrees of freedom. The reduced model inherits
integrable structures of the original sigma model.
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Let us review the Polhmeyer reduction for S2.

eom : ∂∂̄X = (∂X · ∂̄X)X

Vir : (∂X)2 = (∂̄X)2 = 1

length : X2 = 1

S2 example

�
∂∂̄α = sinα

sin-Gordon

I Choose a Basis = (X, ∂X, ∂̄X).
I Set ∂X · ∂̄X = cosα (for more complicated cases we need more

fields)
I Calculate ∂Basis and ∂̄Basis
I Demand that ∂(∂̄Basis) = ∂̄(∂Basis) (compatibility condition)

sin(h)-Gordon should contain all information we need in boundary
behavior and location of the poles.
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Some more examples

S2 strings←→ sin Gordon

S3 strings←→ complex sin Gordon

AdS5 strings←→ generalized sinh Gordon

CP 3 strings←→ known

AdS5 × S5 strings←→ system of generalized sin(h) Gordon

ansatz

dressing method

Bäcklund transformation

. . .

strings in AdS5 × S5

�

Hitchin equations

ansatz

Bäcklund transformation

. . .

generalized sin(h)-Gordon
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Pohlmeyer map of giant magnons [1976]

At the classical level there is a correspondence between

sine-Gordon solitons↔ giant magnons

cosα = ∂X · ∂̄X

We can compare energy, time delay, and phase shift for the two theories

sine-Gordon giant magnon

EsG = γ Emagnon =
√
λ
π

1
γ

∆TCM = 2
γv log v ∆T12 = 2

γ1v1
log vcm

v = cos
p

2
, γ−2 = 1− v2, phase shift =

∫
dE1∆T12
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Dyonic giant magnons [Chen, Dorey, Okamura (2006)]

Magnons with polarizations in an SU(2) subsector carry a second
conserved U(1) R-charge, J2, and they can form boundstates with exact
dispersion relation

E − J =

√
J2

1 +
λ

π2
sin2 p

2

that correspond to operators of the form

Op =
∑
l

eipl(. . . ZZZW
↑
l

J1ZZZ . . .)
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The dressing method [Zakharov, Mikhailov, Shabat (1978)]

• In 1967 the inverse scattering method (ISM) was discovered by
Gardner, Green, Kruskal, Miura. The task of enumerating nonlinear
differential equations integrable by this method became fundamental.

• In 1978 an algorithm for constructing exact solutions of new classes of
equations integrable by ISM was given. This is the so called dressing
method.

• We would like to study scattering and bound states of giant magnons. A
candidate method to study these states is the dressing method. In one line
we can say that the dressing method generates new soliton solutions
from old ones.

• The last years the dressing method has been successfully used in the
context of giant magnons by many authors [David, Hollowood, Jevicki,

C.K., Miramontes, Papathanasiou, Sahoo, Spradlin, Suzuki,

Volovich, ...].
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We now proceed to explain how the dressing method works.
• We start with the lagrangian of the principal chiral model

L = Tr[(∂µgg
−1)2]

where g is an element of a Lie group. For example for strings in S3 we
can take

g =

(
X1 + iX2 X3 + iX4

X3 − iX4 X1 − iX2

)
∈ SU(2),

where Xi are embedding coordinates of S3.
• More generally, we can impose constraints on g, such that g becomes an
element of a coset (for example for CP 3 = SU(4)/U(3) we have that
gg† = gθgθ = 1, where θ = diag(−1, 1, 1, 1)).
• The eom of the principal chiral model for the matrix field g(z, z̄) are

∂̄(∂gg−1) + ∂(∂̄gg−1) = 0.

Then we are looking for a new solution of the form

g′(z, z̄)︸ ︷︷ ︸
new solution

= χ(z, z̄)︸ ︷︷ ︸
dressing factor

× g(z, z̄)︸ ︷︷ ︸
known solution
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Finding the dressing factor χ

The eom for g
∂̄(∂gg−1) + ∂(∂̄gg−1) = 0

is the compatibility condition (∂(∂̄Ψ) = ∂̄(∂Ψ)) of the first order linear
system

∂Ψ(λ) =
∂gg−1Ψ(λ)

1− λ
, ∂̄Ψ(λ) =

∂̄gg−1Ψ(λ)

1 + λ

for λ = 0. The complex parameter λ is called the spectral parameter.
Suppose we know a solution to the above system, Ψ(0) = g. We will now
find a new one. We make the ansatz

Ψ′(λ) = χ(λ)Ψ(λ), χ(λ) = 1 +
λ1 − λ̄1

λ− λ1
P ,

where λ1 is an arbitrary complex constant. It turns out that P is a
projector onto the subspace spanned by Ψ(λ̄1)e1 for arbitrary constant
vector e1. Then the new solution that is labeled by (λ1, e1) is

g′ = Ψ′(0).
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Comments on the dressing method

I transforms second order differential equation to a system of first order
equations

I we can start with any known solution (a choice that usually simplifies
the problem is the vacuum of the theory)

I construct one solution and all other can be obtained with algebraic
methods

I has the flexibility to approach the same problems with several
different ways (for example we can see the 5-sphere either as the
coset SO(6)/SO(5) or as SU(4)/Sp(2))

I can be applied to a great variety of different spaces (including all
symmetric spaces)
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The N -magnon solution in R× S3

vacuum 1-magnon 2-magnons

. . .

Figure: In order to find the N -magnon solution we start by applying the dressing
method to the the vacuum, a point particle that moves with the speed of light
around an equator of the S3. The endpoints of the dressed solutions also move
around the equator with the speed of light. Applying the dressing methods
N -times we can get the N -magnon solution that corresponds to an N -magnon
excitation in the gauge theory side. The angle seperation of the endpoints
corresponds to the momentum of the magnon in the gauge theory side. The
solution is dual to the N -soliton solution in the complex sine-Gordon model.
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N -magnon solution

• The dressing method gives us (complicated) recursion relations that
relate N magnons to N − 1 magnons that we write explicitly as

ΨN (λ) =

(
1 +

λN − λ̄N
λ− λN

P

)
ΨN−1(λ), P =

ΨN−1(λ̄N )ee†Ψ−1
N−1(λN )

e†Ψ−1
N−1(λN )ΨN−1(λ̄N )e

• The proof is based on properties of determinants (they take care of
redundancy and how to go from N to N − 1 magnons)∣∣∣∣∣∣∣∣∣

a1 + λb1 b1 · · · c1

a2 + λb2 b2 · · · c2
...

...
. . .

...
an + λbn bn · · · cn

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
a1 b1 · · · c1

a2 b2 · · · c2
...

...
. . .

...
an bn · · · cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x1 · · · xn
0 a1 · · · c2
...

...
. . .

...
0 an · · · cn

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
a1 · · · c1
...

. . .
...

an · · · cn

∣∣∣∣∣∣∣ .
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The N magnon solution for CPn

After choosing the appropriate variables (generally a difficult step) and
after using elementary determinant manipulations the N -magnon solution
can be written in a compact form as

ZN =
(

det(αij) +
∑N

i,j=1(−1)i+jMijhjh
†
i

)
Z0,

where

• Zi the embedding coordinates for the i’th magnon,
• Mij is the minor formed by removing the i’th row and j’th column of
the matrix with elements αij , i, j = 1, . . . , N ,
• hi = θΨ0(λ̄i)ei, θ = diag(−1, 1, . . . , 1)

• αij = − λiβij
λi−λ̄j

− γij
λiλ̄j−1

, βij = h†ihj , γij = h†iθΨ(0)hj

where λj is the spectral parameter and ei the polarization vector.
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General comments on our N -magnon solution

ZN =
(

det(αij) +
∑N

i,j=1(−1)i+jMijhjh
†
i

)
Z0,

I We have not specified what Z0 is. In fact it can be any solution of
the string model. It can be taken for example to be the 1- or
2-magnon solution or even a non-solitonic one.

I It is a general observation that N -soliton solutions of various
integrable systems can be written as N ×N determinants. Therefore
our formula is not of a surprise. The difficult part is to find the
appropriate variables in which we can express the solution in a nice
form.

I We have not found all possible solutions of the system. It may also
possess not solitonic ones.
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Asymptotic behavior

infinite past infinite future

Figure: In the x→ ±∞ the magnon touches the equator with p =
∑
pi. In the

t→ ±∞ limit we can prove that asymptotically the N -magnons split into
N -single magnons, with the effect of the interaction being encoded only in a
relative time delay (the shape of the magnons remain the same after scattering).
The N -magnons exhibit the property of factorized scattering as expected by the
integrability of the σ-model. The time delay agrees with the sin-Gordon time
delay. The phase shift agrees with the large λ limit of the phase in gauge theory
[Arutyunov, Frolov, Staudacher].
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Wilson Loops on S2

The dressing method can be used to find new Wilson loops. The Wilson
loops we are interested in are 1/8-BPS and couple to three of the six real
scalar fields ~Φ of N = 4 SYM

W =
1

N
TrP

∮
dt
(
iẋµAµ + (~x× ~̇x) · ~Φ

)
, (1)

where xµ = (~x, 0), ~x2 = 1.
The string duals of these Wilson loops are contained in an AdS4 × S2

subspace of AdS5 × S5. We write the metric of the subspace as

ds2 =
1

z2
dxidxi + z2dyidyi, z2 =

1

yiyi
. (2)

The supersymmetric constraints are

~x2 + z2 = 1, ~x · ~y = C = const, z2∂α(~x× ~y) = εαβ∂β~x. (3)

If we set ξA = (~ξ, ξ4), ~ξ = z~y × ~x, ξ4 =
√

1 + C2z , we get

∂2ξA + ξA∂Aξ
B∂Aξ

B = 0. (4)
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Figure: By dressing the known longitude solution once we get a new solution that
we call the petal solution.
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Generating String Solutions in BTZ

One can find applications of the dressing method to the problem of string
solutions in BTZ. The problem can be regarding as finding new string
solutions that move in SU(1, 1). Then the dressing factor takes the form

Ψ1(λ) =

(
1 +

λ1 − λ̄1

λ− λ1
P

)
Ψ0(λ), P =

Ψ0(λ̄1)ee†Ψ−1
0 (λ1)M

e†Ψ−1
0 (λ1)MΨ0(λ̄1)e

,

where
M = diag(−1, 1).

The N -solition solution similarly follows.
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Concluding words

I We have applied the dressing method to the spaces
SU(n), SO(n)/SO(n− 1), CPn, SU(1, 1). The N -soliton
solutions were found.

I Other spaces where the method can be applied are
Sp(n)/U(n), SO(n), SO(2n)/U(n) and many more.

I The dressing method can be applied to a variety of problems like for
example 1/8-BPS Wilson loops and string solutions in BTZ.

I It would be interested to use the dressing method to AdS space as
well as to construct even more Wilson loops by dressing more than
once or by dressing other known solutions.

I It would be interested to find giant-magnon type solutions in other
spaces of interest like S3 × S3.
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