Eigenvalue relation of the Heisenberg chain for the ground state

Wen-Li Yang

Northwest University

Joint Works with J. Cao, K. Shi and Y. Wang

Phys. Rev. B 103 (2021), L220401. JHEP 11 (2021), 044. J. Phys. A57(2024), 305202 JHEP 02 (2025), 086; 087.

ICTS, USTC, February 20, 2025

Image: A match the second s

Introduction

- Heisenberg spin chain with the periodic boundary
 - Eigenvalues relation and their roots.
 - Thermodynamic limit.
- Heisenberg spin chain with general boundary terms
 - T-W relation and root pattern for the ground state.
 - Thermodynamic limit.
- Conclusion and Comments

Quantum integrable systems have many applications in

- String/ Gauge theories: AdS/CFT, Super-symmetric Yang-Mills theories...
- Statistical mechanics: The Ising model, the six-vertex models...
- Condensed Matter Physics: The super-symmetric t J Model, the Hubbard model...
- $\bullet\,$ Mathematics: Quantum group, Representation theory, Algebraic Topology, $\ldots\,$

・ロン ・回 と ・ ヨン・

There are many methods to solve quantum integrable systems (The case of T = 0):

- The Coordinate Bethe Ansatz method (H. Bethe 1931)
- The Baxter's T-Q relation method (R. Baxter 1970s)
- The Quantum Inverse Scattering (or Algebraic Bethe Ansatz) method (L. Faddeev's school 1979s) and its generalizations
- The off-diagonal Bethe Ansaz method (Y. Wang's school 2013s)

The Hamiltonian of the closed Heisenberg chain is

$$H = \sum_{k=1}^{N} \left(\sigma_k^x \, \sigma_{k+1}^x + \sigma_k^y \, \sigma_{k+1}^y + \sigma_k^z \, \sigma_{k+1}^z \right),$$

where

 $\sigma_{N+1}^{\alpha} = \sigma_1^{\alpha}, \quad \alpha = x, \, y, \, z.$

The system is integrable, i.e., there exist enough conserved charges

$$i\hbar \frac{\partial}{\partial t}h_i = [H, h_i] = 0, \qquad i = 1, \ldots.$$

and

 $[h_i,h_j]=0.$

・ロト ・回ト ・ヨト ・

It is convenient to introduce a generation function of these charges, the so-called transfer matrix

$$t(u) = \sum_{i=0}^{\infty} h_i u^i = trT(u) = A(u) + D(u).$$

Then

$$[t(u), t(v)] = 0, \quad H \propto \frac{\partial}{\partial u} \ln t(u)|_{u=0} + const,$$

or

$$H \propto h_0^{-1} h_1 + const,$$

$$h_0 \sigma_i^{\alpha} h_0^{-1} = \sigma_{i+1}^{\alpha}.$$

・ロト ・回ト ・ヨト ・ヨ

The eigenstates and the corresponding eigenvalues can be obtained by Quantum Inverse Scattering Method (QISM). In the framework of QISM, the monodromy matrix T(u)

$$T(u) = \begin{pmatrix} A(u) & B(u) \\ C(u) & D(u) \end{pmatrix},$$

has played a central role. It is built from the six-vertex R-matrix of

$$T_0(u) = R_{0N}(u - \theta_N) \dots R_{01}(u - \theta_1),$$

where the well-known six-vertex R-matrix is given by

$$R(u) = \begin{pmatrix} u + \eta & & \\ & u & \eta & \\ & \eta & u & \\ & & & u + \eta \end{pmatrix}.$$

The transfer matrix is t(u) = trT(u) = A(u) + D(u), where $\eta = \sqrt{-1}$.

イロト イヨト イヨト イヨト

The R-matrix satisfies the Yang-Baxter equation (YBE)

$$R_{12}(u-v) R_{13}(u) R_{23}(v) = R_{23}(v) R_{13}(u) R_{12}(u-v).$$
⁽¹⁾

The above fundamental relation leads to the following so-called RLL relation between the monodromy matrix

$$R_{0\,0'}(u-v) T_0(u) T_{0'}(v) = T_{0'}(v) T_0(u) R_{0\,0'}(u-v).$$

This leads to

$$[t(u), t(v)] = 0, (2)$$

イロト イヨト イヨト イヨ

which ensures the integrability of the Heisenberg chain with periodic boundary condition.

II. Heisenberg chain with the periodic boundary condition Eigenvalues relation and their roots

Besides the YBE, the R-matrix has the following properties

Initial condition : $R_{0,j}(0) = \eta P_{0,j}$, Unitary relation : $R_{0,j}(u)R_{j,0}(-u) = \phi(u) \times id \otimes id$, Crossing relation : $R_{0,j}(u) = -\sigma_0^{\gamma} R_{0,j}^{t_0}(-u-\eta)\sigma_0^{\gamma}$, PT-symmetry : $R_{0,j}(u) = R_{j,0}(u) = R_{0,j}^{t_0,t_j}(u)$, Z_2 -symmetry : $\sigma_0^{\alpha} \sigma_j^{\alpha} R_{0,j}(u) = R_{0,j}(u)\sigma_0^{\alpha} \sigma_j^{\alpha}$, for $\alpha = x, y, z$, Fusion condition : $R_{0,j}(\pm \eta) = \eta(\pm 1 + P_{0,j}) = \pm 2\eta P_{0,j}^{(\pm)}$,

where $\phi(u) = \eta^2 - u^2$. By using the fusion technique (Kulish et al 1981, Kirillov et al, 1986), one can derive the relation

$$t(u) t(u-\eta) = a(u) d(u-\eta) \times \mathrm{id} + d(u) \mathbb{W}(u), \quad d(u) = \prod_{j=1}^{N} (u-\theta_j) = a(u-\eta), \tag{3}$$

where $\mathbb{W}(u)$ is a descendent operator can be given in terms of the fused R-matrix

$$\mathbb{W}(u) = tr_0\left(R_{0N}^{(1,\frac{1}{2})}(u-\theta_N)\cdots R_{01}^{(1,\frac{1}{2})}(u-\theta_1)\right).$$

・ロト ・回ト ・ヨト ・ヨト

II. Heisenberg chain with the periodic boundary condition

Eigenvalues relation and their roots

Here the fused R-matrix $R^{(1,\frac{1}{2})}(u)$ is given by

$$R^{(1,\frac{1}{2})}(u) = \begin{pmatrix} u+\eta & & & & \\ & u-\eta & \sqrt{2}\eta & & \\ & & \sqrt{2}\eta & u & \\ & & & u & \sqrt{2}\eta \\ & & & & \sqrt{2}\eta & u-\eta \\ & & & & & u+\eta \end{pmatrix}$$

The transfer matrices t(u) and $\mathbb{W}(u)$ commutate with each other,

$$[t(u), t(v)] = [\mathbb{W}(u), \mathbb{W}(v)] = [t(u), \mathbb{W}(v)] = 0.$$
(4)

Moreover, from the definitions we know that they are the operator-valued polynomial of u with degree N. Acting the operators on a common eigenstate $|\Psi\rangle$

 $t(u) |\Psi\rangle = \Lambda(u) |\Psi\rangle, \quad \mathbb{W}(u) |\Psi\rangle = W(u) |\Psi\rangle,$

we have the very relation between $\Lambda(u)$ and W(u), called it as the t - W relation,

<ロ> (日) (日) (日) (日) (日)

$$\Lambda(u)\,\Lambda(u-\eta) = a(u)\,d(u-\eta) + d(u)W(u),\tag{5}$$

where the polynomials $\Lambda(u)$ and W(u) with the degree N have decompositions

$$\Lambda(u) = 2 \prod_{j=1}^{N} (u - z_j + \frac{\eta}{2}), \quad W(u) = 3 \prod_{j=1}^{N} (u - w_j).$$

The eigenvalues of the Hamiltonian can be expressed in terms of the zero roots $\{z_i\}$ as

$$E=-2\eta imes\sum_{j=1}^{N}rac{1}{z_j-rac{\eta}{2}}-N_j$$

メロト メタト メヨト メヨ

II. Heisenberg chain with the periodic boundary condition

Eigenvalues relation and their roots: T - Q relation

Taking $u = \theta_i$ for the t - W relation (5), we have

$$\Lambda(\theta_j)\Lambda(\theta_j - \eta) = \mathsf{a}(\theta_j) \, \mathsf{d}(\theta_j - \eta), \quad j = 1, \cdots, \mathsf{N}.$$
(6)

The relations allow us that the eigenvalue $\Lambda(u)$ of the transfer matrix t(u) can be parameterized by some parameters $\{\lambda_1, \dots, \lambda_M | M = 0, \dots, N\}$ as follows (see also the conventional Bethe ansatz methods):

$$\Lambda(u) = a(u)\frac{Q(u-\eta)}{Q(u)} + d(u)\frac{Q(u+\eta)}{Q(u)}, \quad Q(u) = \prod_{j=1}^{M} (u-\lambda_j),$$

the parameters $\{\lambda_i\}$ should satisfy Bethe ansatz equations,

$$\prod_{k\neq j}^{M} \frac{\lambda_j - \lambda_k + \eta}{\lambda_j - \lambda_k - \eta} = \prod_{l=1}^{N} \frac{\lambda_j - \theta_l + \eta}{\lambda_j - \theta_l}, \qquad j = 1, \dots, M.$$

$$\mathsf{BAEs} \Rightarrow \Lambda(u) \Rightarrow W(u)$$

<ロト < 回 > < 回 > < 回 > < 回 >

Eigenvalues relation and their roots

Taking $\{u = z_j - \frac{\eta}{2}\}$, $\{u = w_j\}$ and $\{\theta_j = 0\}$, we have

$$(z_j + \frac{\eta}{2})^N (z_j - \frac{3}{2}\eta)^N = -(z_j - \frac{\eta}{2})^N W(z_j - \frac{\eta}{2}), \quad j = 1, \cdots, N,$$
(7)

$$\Lambda(w_j) \Lambda(w_j - \eta) = (w_j + \eta)^N (w_j - \eta)^N, \quad j = 1, \cdots, N.$$
(8)

The above equations allow one to determine the polynomials $\Lambda(u)$ and W(u). Moreover, one can show that

 $\{z_j^*\} = \{z_j\}, \quad \{w_j^*\} = \{w_j\}.$

・ロト ・回ト ・ヨト ・ヨト

Thermodynamic limit: Universality of the homogeneous T - Q relation

The eigenvalue can be given in terms of a homogeneous T-Q relation

$$\Lambda(u) = a(u)\frac{Q(u-\eta)}{Q(u)} + d(u)\frac{Q(u+\eta)}{Q(u)}, \qquad (9)$$

$$W(u) = a(u)\frac{Q(u-2\eta)}{Q(u)} + d(u)\frac{Q(u+\eta)Q(u-2\eta)}{Q(u)Q(u-\eta)} + d(u-\eta)\frac{Q(u+\eta)}{Q(u-\eta)},$$

where the roots of Q(u) satisfy the Bethe ansatz equations (BAEs)

$$\frac{a(\lambda_j)}{d(\lambda_j)} = -\frac{Q(\lambda_j + \eta)}{Q(\lambda_j - \eta)}, \quad j = 1, \cdots, M.$$
(10)

 $BAEs \Rightarrow TBA$

・ロト ・回ト ・ヨト ・ヨ

II. Heisenberg chain with the periodic boundary condition $_{\mbox{ Thermodynamic limit}}$

Alternatively, we may consider the root patterns of $\{z_j\}$ and $\{w_j\}$ for some particular states such as the ground state.

Fig. 1. Patterns of zero roots at the ground state with N = 6, 8, 10, 12. The data are obtained by using the exact numerical diagonalization with $\{\theta_i = 0\}$.

Image: A match the second s

II. Heisenberg chain with the periodic boundary condition $\ensuremath{\mathsf{Thermodynamic}}\xspace$ limit

For the ground state, we have

- All the z-roots form conjugate pairs as $\{u_i^{(2)} \pm \eta | j = 1, \cdots, N/2\}$ with real $u_i^{(2)}$.
- All the w-roots form conjugate pairs as $\{\overline{u}_i^{(2)} \pm \frac{3\eta}{2} | j = 1, \cdots, N/2\}$ with real $\overline{u}_i^{(2)}$.

the corresponding eigenvalues $\Lambda_g(u)$ and $W_g(u)$ can be given as

$$\Lambda_{g}(u) = 2 \prod_{j=1}^{N/2} (u - u_{j}^{(2)} - \frac{\eta}{2})(u - u_{j}^{(2)} + \frac{3\eta}{2}),$$

$$W_g(u) = 3 \prod_{j=1}^{N/2} (u - \bar{u}_j^{(2)} - \frac{3}{2}\eta)(u - \bar{u}_j^{(2)} + \frac{3}{2}\eta).$$

In the thermodynamic limit $N o \infty$, $u_j^{(2)}$ and $ar{u}_j^{(2)}$ become dense on the real line

$$\Lambda_g(u) = e^{N[\lambda_g^{(0)}(u) + \frac{1}{N}\lambda_g^{(1)}(u) + O(\frac{1}{N^2})]},$$
$$W_g(u) = e^{N[w_g^{(0)}(u) + \frac{1}{N}w_g^{(1)}(u) + O(\frac{1}{N^2})]},$$

and form the densities of $u_j^{(2)}$ and $\bar{u}_j^{(2)}$:

イロト イヨト イヨト イヨト

II. Heisenberg chain with the periodic boundary condition $\ensuremath{\mathsf{Thermodynamic}}\xspace$ limit

$$\begin{split} \frac{\partial}{\partial u}\lambda_{g}^{(\beta)}(u) &= \int_{-\infty}^{\infty}(\frac{1}{u-\lambda-\frac{\eta}{2}}+\frac{1}{u-\lambda+\frac{3\eta}{2}})\rho_{\Lambda}^{(\beta)}(\lambda)\mathrm{d}\lambda, \quad \lambda_{g}^{(\beta)}(0), \quad \beta=0,1, \\ \frac{\partial}{\partial u}w_{g}^{(\beta)}(u) &= \int_{-\infty}^{\infty}(\frac{1}{u-\lambda-\frac{3\eta}{2}}+\frac{1}{u-\lambda+\frac{3\eta}{2}})\rho_{w}^{(\beta)}(\lambda)\mathrm{d}\lambda, \quad \lambda_{g}^{(\beta)}(0), \quad \beta=0,1. \end{split}$$

The relation (6) implies that

$$\frac{\partial}{\partial u} \left[\lambda_g^{(0)}(u) + \lambda_g^{(0)}(u-\eta) \right] = \frac{1}{u+\eta} + \frac{1}{u-\eta}, \qquad \lambda_g^{(0)}(0) = 0, \\ \frac{\partial}{\partial u} \left[\lambda_g^{(1)}(u) + \lambda_g^{(1)}(u-\eta) \right] = 0, \qquad \lambda_g^{(1)}(0) = 0.$$

Finally, we obtain

$$ho^{(0)}_{\Lambda}(\lambda) = rac{1}{2\cosh(\pi\lambda)}, \qquad
ho^{(1)}_{\Lambda}(\lambda) = 0.$$

・ロト ・回ト ・ヨト ・ヨ

The density of the z-roots allow us rederive

• The ground energy E_g

$$E_g = -2Ni \int_{-\infty}^{\infty} \left(\frac{1}{\lambda + \frac{i}{2}} + \frac{1}{\lambda - \frac{3i}{2}} \right) \left(\rho_w^{(0)}(\lambda) + \rho_w^{(1)}(\lambda) \right) \mathrm{d}\lambda - N = (1 - 4\ln 2)N.$$

• The eigenvalues of the transfer matrix for the ground state

$$\Lambda_g(u) = \left(\frac{2\Gamma(1+\frac{iu}{2})\Gamma(\frac{3}{2}-\frac{iu}{2})}{\Gamma(\frac{1}{2}+\frac{iu}{2})\Gamma(1-\frac{iu}{2})}\right)^N e^{O(\frac{1}{N})}.$$

.

メロト メタト メヨト メヨ

II. Heisenberg chain with the periodic boundary condition $_{\mbox{ Thermodynamic limit}}$

Substituting
$$z_j = u_j^{(2)} + \frac{\eta}{2}$$
 and $z_j = u_j^{(2)} + \frac{\eta}{2}$ into (7) resectively, we obtain
 $(u_j^{(2)} + \frac{3\eta}{2})^N (u_j^{(2)} - \frac{\eta}{2})^N = -(u_j^{(2)} + \frac{\eta}{2})^N W_g(u_j^{(2)} + \frac{\eta}{2}), \quad j = 1, \cdots, \frac{N}{2},$
 $(u_j^{(2)} + \frac{\eta}{2})^N (u_j^{(2)} - \frac{3\eta}{2})^N = -(u_j^{(2)} - \frac{\eta}{2})^N W_g(u_j^{(2)} - \frac{\eta}{2}), \quad j = 1, \cdots, \frac{N}{2},$

which implies

$$(u_j^{(2)} + \frac{3\eta}{2})^N (u_j^{(2)} - \frac{3\eta}{2})^N = W_g(u_j^{(2)} + \frac{\eta}{2}) W_g(u_j^{(2)} - \frac{\eta}{2}), \quad j = 1, \cdots, \frac{N}{2}.$$

Namely,

$$\frac{1}{N}\frac{\partial}{\partial u}\ln[W_{g}(u+\frac{\eta}{2})W_{g}(u-\frac{\eta}{2})] = \frac{1}{u+\frac{3\eta}{2}} + \frac{1}{u-\frac{3\eta}{2}} + O(\frac{1}{N^{2}}),$$
$$\frac{1}{N}\ln W_{g}(0) = \frac{1}{N}\ln 3 + O(\frac{1}{N^{2}}).$$

・ロト ・回ト ・ヨト ・ヨト

II. Heisenberg chain with the periodic boundary condition Thermodynamic limit

As a consequence, we have

$$\rho_w^{(0)}(\lambda) = \frac{1}{2\cosh(\pi\lambda)} = \rho_{\Lambda}^{(0)}(\lambda), \qquad \rho_w^{(1)}(\lambda) = 0 = \rho_{\Lambda}^{(1)}(\lambda).$$

which leads to

$$W_g(u) = 3\left(\frac{(u+\eta)(u-\eta)}{u}\right)^N \left(\tanh\frac{\pi u}{2}\right)^N e^{O(\frac{1}{N})}.$$
(11)

The t - W relation (6) becomes

$$\Lambda_{g}(u)\Lambda_{g}(u-\eta) = (u+\eta)^{N}(u-\eta)^{N} \left[1 + 3\left(\tanh\frac{\pi u}{2}\right)^{N} e^{O(\frac{1}{N})}\right].$$
 (12)

This gives rise to the inverse relation

$$\Lambda_g(u)\Lambda_g(u-\eta) = (u+\eta)^N(u-\eta)^N\Big[1+e^{-\delta N}\Big], \quad ext{for a postive } \delta.$$

・ロト ・回ト ・ヨト ・

T-W relation and root pattern for the ground state

The Hamiltonian of the Heisenberg chain with unparallel boundary fields is

$$H = \sum_{k=1}^{N-1} \left(\sigma_k^x \, \sigma_{k+1}^x + \sigma_k^y \, \sigma_{k+1}^y + \sigma_k^z \, \sigma_{k+1}^z \right) + \frac{\eta}{\rho} \sigma_1^z + \frac{\eta}{q} (\sigma_N^z + \xi \sigma_N^x). \tag{13}$$

The system is **integrable**, i.e., the corresponding transfer matrix t(u) can be constructed by the R-matrix and the associated K-matrices

 $t(u) = tr(K^+(u) \mathcal{T}(u)) = tr\left(K^+(u) \mathcal{T}(u) K^-(u) \mathcal{T}^{-1}(-u)\right),$

where the K-matrices $K^{\pm}(u)$ are the diagonal K-matrices

$$\mathcal{K}^{-}(u) = \left(egin{array}{cc} p+u & \ & p-u \end{array}
ight), \quad \mathcal{K}^{+}(u) = \left(egin{array}{cc} q+u+\eta & \xi(u+\eta) \ \xi(u+\eta) & q-u-\eta \end{array}
ight),$$

with the boundary parameters

$$p^* = -p, \quad q^* = -q, \quad \xi^* = \xi.$$

The Hamiltonian can be given in terms of the transfer matrix

$$H = \eta \frac{\partial}{\partial u} \ln t(u)|_{u=0, \{\theta_j\}=0} - N.$$

イロト イヨト イヨト イヨト

T-W relation and root pattern for the ground state

Following the similar fusion technique, we can derive the relation of the transfer matrices

$$t(u) t(u-\eta) = \frac{\Delta(u) \times \mathrm{id}}{(u+\frac{\eta}{2})(u-\frac{\eta}{2})} + \frac{u^2 \bar{d}(u)}{(u+\frac{\eta}{2})(u-\frac{\eta}{2})} \mathcal{W}(u), \quad \Delta(u) = a(u)d(u-\eta).$$

where

$$a(u) = (u+\eta)(u+p)(\sqrt{1+\xi^2} u+q) \prod_{j=1}^{N} (u-\theta_j+\eta)(u+\theta_j+\eta),$$

$$d(u) = u(u-p+\eta)(\sqrt{1+\xi^2}(u+\eta)-q)\prod_{j=1}^{N}(u-\theta_j)(u+\theta_j),$$

$$ar{d}(u) = \prod_{j=1}^N (u- heta_j)(u+ heta_j).$$

The associated transfer matrices t(u) and $\mathcal{W}(u)$ commutate with each other,

$$[t(u), t(v)] = [\mathcal{W}(u), \mathcal{W}(v))] = [t(u), \mathcal{W}(v)] = 0.$$

メロト メタト メヨト メヨ

T-W relation and root pattern for the ground state

Denote the corresponding eigenvalues of the transfer matrices by $\overline{\Lambda}(u)$ and $\overline{W}(u)$, we have

$$\Delta(u) - \left(u + \frac{\eta}{2}\right)\left(u - \frac{\eta}{2}\right)\bar{\Lambda}(u)\bar{\Lambda}(u - \eta) = u^2 \prod_{j=1}^{N} (u - \theta_j)(u + \theta_j)\,\bar{W}(u),\tag{14}$$

where $\overline{\Lambda}(u)$ (or $\overline{W}(u)$) is a polynomial of u with degree 2N + 2 (or 2N + 4):

$$\bar{\Lambda}(u) = 2 \prod_{j=1}^{N+1} (u - z_j + \frac{\eta}{2})(u + z_j + \frac{\eta}{2}), \quad \bar{\Lambda}(-u - \eta) = \bar{\Lambda}(u),$$

$$\bar{W}(u) = (\xi^2 - 3) \prod_{k=1}^{N+2} (u - w_k)(u + w_k), \quad \bar{W}(-u) = \bar{W}(u).$$

The roots satisfy the equations:

$$\Delta(z_j - \frac{\eta}{2}) = (z_j - \frac{\eta}{2})^{2N+2} \,\bar{W}(z_j - \frac{\eta}{2}), \quad j = 1, \cdots, N+1,$$
(15)

$$\Delta(w_k) = (w_k + \frac{\eta}{2})(w_k - \frac{\eta}{2})\bar{\Lambda}(w_k)\bar{\Lambda}(w_k - \eta), \quad k = 1, \cdots, N+2.$$
 (16)

・ロト ・回ト ・ヨト ・ヨ

T-W relation and root pattern for the ground state

Let us consider the root patterns of $\{z_i\}$ and $\{w_i\}$ for the ground state.

Fig. 2. The patterns of z-roots and w-roots in complex plane at the ground state with N = 6, $\eta = i$, p = -1.2i, $\bar{q} = 0.8i$, $\xi = 1$. The data are obtained by the exact numerical diagonalization. The blue asterisks indicate z-roots $\{z_j + \frac{\eta}{2}\}$ and red circles represent the w-roots $\{w_j\}$ with the inhomogeneous parameters $\{\theta_j = 0\}$.

<ロト </p>

- The z-roots form conjugate pairs as $\{\pm z_1\eta, u_j^{(2)} \pm \eta | j = 1, \cdots, N\}$.
- The w-roots form conjugate pairs as $\{\pm \chi_1 \eta, \pm \chi_2 \eta, w_j^{(2)} \pm \frac{3\eta}{2} | j = 1, \cdots, N\}$.

the corresponding eigenvalues $\bar{\Lambda}_g(u)$ and $\bar{W}_g(u)$ can be given as

$$\begin{split} \bar{\Lambda}_{g}(u) &= 2\left(u - (z_{1} - \frac{1}{2})\eta\right)\left(u + (z_{1} + \frac{1}{2})\eta\right)\prod_{j=1}^{N/2} (u - u_{j}^{(2)} - \frac{\eta}{2})(u + u_{j}^{(2)} - \frac{\eta}{2}) \\ &\times (u - u_{j}^{(2)} + \frac{3\eta}{2})(u + u_{j}^{(2)} + \frac{3\eta}{2}) \\ &\approx 2\left(u - (z_{1} - \frac{1}{2})\eta\right)\left(u + (z_{1} + \frac{1}{2})\eta\right)e^{2N(\bar{\lambda}_{g}^{(0)}(u) + \frac{1}{2N}\bar{\lambda}_{g}^{(1)}(u) + O(\frac{1}{N^{2}}))}, \\ \bar{\mathcal{W}}_{g}(u) &= (\xi^{2} - 3)(u - \chi_{1}\eta)(u + \chi_{1}\eta)(u - \chi_{2}\eta)(u + \chi_{2}\eta)\prod_{j=1}^{N/2} (u - w_{j}^{(2)} - \frac{3}{2}\eta)(u + w_{j}^{(2)} - \frac{3}{2}\eta) \\ &\times (u - w_{j}^{(2)} + \frac{3}{2}\eta)(u + w_{j}^{(2)} + \frac{3}{2}\eta) \\ &\approx (\xi^{2} - 3)(u - \chi_{1}\eta)(u + \chi_{1}\eta)(u - \chi_{2}\eta)(u + \chi_{2}\eta)e^{2N(\bar{\omega}_{g}^{(0)}(u) + \frac{1}{2N}\bar{\omega}_{g}^{(1)}(u) + O(\frac{1}{N^{2}}))}, \\ \bar{\lambda}_{g}(0) &\approx 2(z_{1} - \frac{1}{2})(z_{1} + \frac{1}{2})e^{2N(\bar{\lambda}_{g}^{(0)}(u) + \frac{1}{2N}\bar{\lambda}_{g}^{(1)}(u) + O(\frac{1}{N^{2}}))} = 2pq \equiv 2p\bar{q}\sqrt{1 + \xi^{2}}, \end{split}$$

・ロト ・回ト ・ ヨト

$\ensuremath{\mathsf{III}}$. Heisenberg spin chain with general boundary terms

Thermodynamic limit

$$\bar{\Lambda}_{g}(u) = \frac{8\sqrt{1+\xi^{2}}}{u+\frac{\eta}{2}} \frac{\cosh(\frac{\pi u}{2}-\frac{i\pi}{4})}{\sinh(\frac{\pi u}{2}-\frac{i\pi}{4})} \frac{\Gamma(1+\frac{iu}{2})\Gamma(\frac{3}{2}-\frac{iu}{2})}{\Gamma(\frac{1}{2}+\frac{iu}{2})\Gamma(\frac{p+1}{2}+\frac{iu}{2})\Gamma(\frac{p+2}{2}-\frac{iu}{2})}{\Gamma(\frac{p}{2}+\frac{iu}{2})\Gamma(\frac{q+2}{2}-\frac{iu}{2})} \\ \times \frac{\Gamma(\frac{\bar{q}+1}{2}+\frac{iu}{2})\Gamma(\frac{\bar{q}+2}{2}-\frac{iu}{2})}{\Gamma(\frac{1}{2}+\frac{iu}{2})\Gamma(\frac{q+2}{2}-\frac{iu}{2})} \left(\frac{2\Gamma(1+\frac{iu}{2})\Gamma(\frac{3}{2}-\frac{iu}{2})}{\Gamma(\frac{1}{2}+\frac{iu}{2})\Gamma(1-\frac{iu}{2})}\right)^{2N} e^{O(\frac{1}{N})},$$
(17)
$$\bar{W}_{g}(u) = (\xi^{2}-3)(u-p\eta)(u+p\eta)(u-\bar{q}\eta)(u+\bar{q}\eta)\tanh^{2}\frac{\pi u}{2} \\ \times \frac{(u+\eta)^{2N+1}(u-\eta)^{2N+1}}{u^{2N+2}} \left(\tanh\frac{\pi u}{2}\right)^{2N} e^{O(\frac{1}{N})},$$

which leads to the relation

$$(u+\frac{\eta}{2})(u-\frac{\eta}{2})\bar{\Lambda}_g(u)\bar{\Lambda}_g(u-\eta)=(1+\xi^2)(u-p\eta)(u+p\eta)(u-\bar{q}\eta)(u+\bar{q}\eta)$$

$$\times (u-\eta)^{2N+1} (u+\eta)^{2N+1} \left\{ 1 - \frac{(\xi^2 - 3)}{1+\xi^2} \left(\tanh \frac{\pi u}{2} \right)^{2N+2} e^{O(\frac{1}{N})} \right\}.$$
 (18)

・ロト ・回ト ・ヨト ・ヨ

So far, we have used an unified method to solve the eigenvalue of the ground state for quantum integrable spin chain with/without U(1)-symmetry:

- The spin- $\frac{1}{2}$ Heisenberg chain with the periodic boundary condition.
- The spin- $\frac{1}{2}$ Heisenberg chain with arbitrary boundary fields.
- The anisotropic Heisenberg chains with the periodic boundary condition or with arbitrary boundary fields.
- The open spin chains with general boundary condition associated with the other algebras.
- The super-symmetric t-J model with unparallel boundary fields.
- The Hubbard model with unparallel boundary fields.

<ロト </p>

Thanks for your attentions

・ロト ・日子・ ・ ヨト