
Calabi-Yau Manifolds and Modularity

Minxin Huang

University of Science and Technology of China

Huzhou workshop, November 2018

This is a review talk based on my discussions with collaborators A. Klemm,

S Katz, and some preliminary ideas.



Calabi-Yau manifolds

• Calabi-Yau manifolds appear as phenomenologically interesting com-
pactification of superstring theories.

• Mirror Symmetry: a pair of Calabi-Yau manifolds, with exchanged
Hodge numbers. This provides a fertile ground at the interface of
mathematics and physics.



Modularity

• This is a different kind of modularity from what I studied before. More

about arithmetic, related to number theory.

• The simplest Calabi-Yau manifolds are elliptic curves. A famous result:

elliptic curves over Q are modular (Conjectured by Taniyama, Shimura,

Weil, proven by Wiles, Taylor et al). We will explain more details in a

moment.

• This implies Fermats last theorem: the following equation has no pos-

itive integer solutions for n > 3,

an + bn = cn

• It is very interesting to generalize to higher dimensional Calabi-Yau

manifolds, find connections with mirror symmetry.



Local Zeta Function

• Let X be a smooth projective variety. Consider counting points over
finite fields. For a prime number p, we have Fp = Z/pZ, and more

generally Fpn = {
∑n−1
k=0 cke

2πik
n |ck ∈ Fp}.

• Define the local Zeta function

Z(Xp, T ) = exp[
∞∑
n=1

#Xp(Fpn)
Tn

n
] (1)

Some simple examples:

1. X is a point. We have #Xp(Fpn) = 1, Z(Xp, T ) = 1
1−T .

2. X is a projective line (z1, z2) ∼ λ(z1, z2). Counting points (1,0), (z,1)
with z ∈ Fpn. We have #Xp(Fpn) = pn + 1, Z(Xp, T ) = 1

(1−T )(1−pT ).

3. X is an elliptic curve. Counting points on y2 = x3+Ax+B, A,B ∈ Z.

We have Z(Xp, T ) =
1−apT+pT2

(1−T )(1−pT ), with ap = p+ 1−#X(Fp).



Weil Conjecture

• The Weil Conjectures (1949): The local Zeta function for a (complex)

d-dimensional projective variety X is a rational function

Z(Xp, T ) =
2d∏
i=0

Pi(Xp, T )(−1)i−1
, (2)

where Pi(Xp, T ) is a polynomial of degree bi(X) (Betti numbers) with

integral coefficients, and all roots of absolute value p−
i
2. Certain func-

tional equations analogous to the Riemann Zeta function.

• We can check the simple examples in the previous slide.

• The conjectures, relating topology and number theory, are highly influ-

ential and motivated mathematical developments for several decades.

It is still called “conjecture” though it is now proven.



Global Zeta Function

• X is now a projective variety over Q. One defines the Hasse-Weil zeta

function, which is the product of the global L-functions

Li(X, s) =
∏
p
Pi(Xp, p

−s)−1, <(s)� 0,

ζ(X, s) =
2d∏
i=0

Li(X, s)
1−i =

∏
p
Z(Xp, p

−s), (3)

where the product factors over some exceptional “bad prime” number

are defined differently from previous slides.

• A simple example: X is a point. This is just the Riemann Zeta function

ζ(X, s) = L0(X, s) =
∏
p

1

1− p−s
=
∞∑
n=1

1

ns
(4)



• A general Riemann conjecture: The global L-function Li(X, s) can be

analytically continued to a meromorphic function of the complex plane,

satisfies a functional equation s→ i+ 1− s, and all non-trivial zeros on

the critical line <(s) = i+1
2 .

• For d = 1 dimension, L0(X, s), L2(X, s) are simply related to Riemann

zeta function, and the remaining one is L1(X, s). For elliptic curve

L(X, s) ≡ L1(X, s) =
∏
p

1

1− app−s + p1−2s
(5)

• The rational points on an elliptic curve E form a finitely generated

Abelian group, known as Mordell-Weil group. A finitely generated

Abelian group is isomorphic to Zr ⊕ Zk1
⊕ · · · ⊕ Zkn.

• Birch-Swinnerton-Dyer conjecture (a Millennium Prize Problem): For

an elliptic curve E over Q, the L-function L(E, s) = 0 if and only if E

has infinitely many rational points. Furthermore, the order of zero at

s = 1 is the rank fo the Mordell-Weil group.



Modular Forms

• Modular forms are holomorphic functions over upper half plane, trans-
form according to

f(
az + b

cz + d
) = (cz + d)kf(z), (6)

where

(
a b
c d

)
is a SL(2,Z) matrix, and k is called the modular weight.

Sometimes we also consider congruence subgroups of SL(2,Z), e.g.

Γ0(N) = {
(
a b
c d

)
∈ SL(2,Z)|c ≡ 0 mod N}.

• Modular forms of weight k forms a finite dimensional space. An example

Gk(z) =
(k − 1)!

2(2πi)k
∑

m,n∈Z
(m,n)6=(0,0)

1

(mz + n)k
= −

Bk
2k

+
∞∑
n=1

σk−1(n)qn,

where q = eeπiz, k > 2 an even integer, Bk is the Bernoulli number, and
σk(n) denotes the sum of k’s powers of positive divisors of n.



Hecke Theory

• Hecke operators Tm: a linear operator on modular forms of weight k

Tmf(z) = mk−1 ∑
ad=m
a,d>0

1

dk

d−1∑
b=0

f(
az + b

d
). (7)

All Tm(m ∈ N) commute with each others.

• Hecke eigenforms: simultaneous eigenstates of all Hecke operators Tm.

Suppose f(q) =
∑∞
n=0 anq

n is a Hecke eigenform, usually normalized

a1 = 1. Then we have

Tmf = amf, aman =
∑

r|(m,n)

rk−1amn/r2, (m,n > 0). (8)

• An example of Hecke eigenform, TmGk(z) = σk−1(m)Gk(z).



• In particular, for a Hecke eigenform f(q) =
∑∞
n=0 anq

n, we have

amn = aman (m,n) = 1

apn+1 = apapn − pk−1apn−1, p prime, n ≥ 1. (9)

• Define a Hecke L-series

L(f, s) =
∞∑
n=1

an

ns
(10)

• Due to equation (9), we have the product form

L(f, s) =
∏
p

(1 +
∞∑
n=1

apnp
−ns) =

∏
p

1

1− app−s + pk−1−2s
(11)

For weight k = 2, this is very similar to the L-function of an elliptic

curve!

• For eigenforms on Γ0(N), the product factors for p|N need suitable

modifications.



• Modularity conjecture/theorem: The L-function of an elliptic curve is
the L-function of a weight two modular form of Γ0(N) for some N .
(Taniyama, Shimura, Weil, Wiles, Taylor, et al)

• An example: consider elliptic curve E : Y 2 − Y = X3 − X2. The L-
function is L(E, s) =

∏
p

1
1−app−s+p1−2s. Taking into account the “point

at infinity”, we have

ap = p− |{(x, y) ∈ (Zp)2|y2 − y = x3 − x2}| (12)

For example a2 = −2, a3 = −1, a5 = 1, · · · . So the L-function is

L(E, s) = (1 +
2

2s
+

2

22s
)−1(1 +

1

3s
+

3

32s
)−1(1−

1

5s
+

5

52s
)−1 · · ·

= 1−
2

2s
−

1

3s
+

2

4s
+

1

5s
+ · · · (13)

• This is the L-function of the following modular form in Γ0(11)

f(z) = η(z)2η(11z)2 = q
∞∏
n=1

(1− qn)2(1− q11n)2

= q − 2q2 − q3 + 2q4 + q5 + · · · (14)



Higher dimensions

• Suppose X is a Calabi-Yau d-fold. We are interested in the L-function
of the middle cohomology, namely L(X, s) ≡ Ld(X, s).

• Dimension 2: K3 surfaces. The non-vanishing Betti numbers are b0 =
b4 = 1, b2 = 22. The middle cohomology is again the only non-trivial
one. For the special case of singular K3, there is now a theorem relating
the L-function to that of a weight 3 modular form of a congruence
subgroup.

• Dimension 3. The simplest case is the rigid Calabi-Yau threefolds, i.e.
h1,2 = 0. It is conjectured that the L-function is that of a weight 4 mod-
ular form of a congruence subgroup. Review by N. Yui, arXiv:1212.4308

• The general case h1,2 > 0 is difficult. However, there are some expec-
tations that somethings nice happen at the attractor points. Moore,
Candelas et al



Rigid Calabi-Yau threefolds

• For a Kahler manifold we have h1,1 ≥ 1. Naively a rigid Calabi-Yau

threefold (h1,2 = 0) can not have a mirror. This is remedied by a

generalized notion of mirror symmetry in terms of non-linear sigma

model with non-geometric target space.

• Rigid Calabi-Yau threefolds are very rare, so far about 50 examples are

known. (Meyer, 2005)

• Let (x0, x1, x2, x3, x4) be homogeneous coordinates of P4. Consider the

quintic equation

P (x0, x1, x2, x3, x4) = x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψx0x1x2x3x4 = 0(15)

For generic ψ (ψ5 6= 1,0,∞), the hypersurface is a smooth Calabi-Yau

manifold with h1,1 = 1, h1,2 = 101.



• The equation is invariant under a group (Z5)3 action

(x0, x1, x2, x3, x4)→ (x0, x1ξ
λ1, x2ξ

λ2, x3ξ
λ3, x4ξ

λ4), (16)

where λi ∈ Z5,
∑4
i=1 λi = 0 mod 5, and ξ is a fixed primitive 5th root

of unity. We can consider the orbifold under the group action and

resolve the singularity. For generic ψ, this gives the mirror of quintic

with h1,1 = 101, h1,2 = 1.

• An example: Schoen’s quintic. Consider ψ a 5th root of unity, for

example ψ = 1. Then there are 125 singularities, namely (1,1,1,1,1)

and its image under the (Z5)3 action. (The singularities are the points

with P (x0, x1, x2, x3, x4) = 0 and ∂xiP = 0, i = 0,1, · · ·4. ) Resolving

these singularity gives a rigid Calabi-Yau with h1,1 = 25, h1,2 = 0.

• One way to see is Euler number = −200 + 2 · 125 = 50. The hodge

numbers can be inferred by counting points on Fp for a large p, e.g.

(p = 31).



Application in the Swampland

• Swampland (Ooguri, Vafa et al): Quantum field theories that become
inconsistent when quantum gravity effects are considered. Some ex-
amples

1. Distance conjecture. If we go over a distance in the scalar field
space ∆φ� 1 in Planck unit, then there are towers of light particles
with masses m ∼ e−a∆φ descend from UV, so that the effective field
theory is no longer valid.

2. De Sitter conjecture. Effective potential satisfies a universal bound
|∇V | ≥ c

Mp
V . This conjecture exclude de Sitter local minimum or

maximum in string theory.
This is later refined/weakened to alternatively min(∇i∇jV ) ≤ − c′

M2
p
V ,

which excludes only de Sitter local minimum, but not maximum.

• This is very controversial due to conflict with KKLT construction of
de Sitter vacuum in string theory.



Theta-problem and rigid Calabi-Yaus

• Another swampland conjecture: No free continuous parameter in string

theory.

Cecotti, Vafa, arXiv: 1808.03482: Consider the θ-angle in QED

L =
√
−g(

1

2
R−

1

4e2
F2 +

θ

32π2
FF̃ ) (17)

The θ angle is only observable in gravitational physics. But it seems to

be a free continuous parameter.

• Consider type IIB on a rigid Calabi-Yau threefold. The N = 2 su-

pergravity theory has a gravity multiplet with the graviphoton, no

vector multiplet, and many hypermultiplets. The coupling constant

τ ≡ θ
2π + 4πi

e2 for the graviphoton is computed by

τ = −(
∫
γ2

Ω)/(
∫
γ1

Ω), (18)

where Ω is the holomorphic three-form, and γ1,2 are the two indepen-

dent integral 3-cycle.



• We can compute the coupling constant for various rigid Calabi-Yau

models. It turns out for all models

j(τ) ∈ R ⇒ θ = 0 or π (19)

• Future works: More calculations can determine the imaginary part, or

the fine structure constant e2

4π. Some examples in Cynk, Van Straten,

arXiv: 1709.09751 [math.AG].



Relations to Mirror Symmetry

• Consider again the quintic P (x, ψ) =
∑4
i=0 x

5
i −5ψx0x1x2x3x4 = 0. It is

well known the periods
∫

Ω of mirror quintic is described by a 4th order

Picard-Fuchs linear differential equation, and the solutions are

ω0(λ) = f0(λ) =
∞∑

m=0

(5m)!

(m!)5
λm,

ω1(λ) = f0(λ) log(λ) + f1(λ),

ω2(λ) = f0(λ) log2(λ) + 2f1(λ) log(λ) + f2(λ),

ω3(λ) = f0(λ) log3(λ) + 3f1(λ) log2(λ) + 3f2(λ) log(λ) + f3(λ),

where λ = (5ψ)−5.

• These periods determine the mirror map and count holomorphic spheres

in the quintic. However, it turns out that they can be used to count

points (of finite fields) on quintic. Candelas, de la Ossa, Villegas,

hep-th/0012233, hep-th/0402133.



• Denote nfj as the truncation of the series fj to n+1 terms, e.g.
nf0(λ) =

∑n
m=0

(5m)!
(m!)5λ

m. Further define a semiperiod f4(λ) from the

extension of differential operator to 5th order.

• It is found that the number of counting points has a congruence relation

|{x ∈ F5
p | P (x, ψ) = 0}|

= (p−1)f0(λp
4
) + (

p

1− p
)(p−1)f ′1(λp

4
) +

1

2!
(

p

1− p
)2 (p−1)f ′′2(λp

4
)

+
1

3!
(

p

1− p
)3 (p−1)f ′′′3 (λp

4
) +

1

4!
(

p

1− p
)4 (p−1)f ′′′′4 (λp

4
) mod p5,

• Some explanations: we expand fractional numbers in terms p-adic ex-

pansion
∑∞
i=k aip

i. The p-adic expansion is inverse of usual decimal

expansion, quite counter-intuitive. For example, to compute the 5-adic

expansion of 1
3 up to 4th order, we check 2·54+1

3 = 417 is integer, so
1
3 = 417 = 2 + 3 · 5 + 1 · 52 + 3 · 53 ( mod 54).



Congruence to Modular Forms

• The hypergeometric series in the mirror period has a congruence re-

lation to modular form. (Conjectured by Villegas, complete proof by

Long, Tu, Yui, Zudilin, arXiv: 1705.01663.)

• Consider the hypergeometric series

4F3

[
α1,α2,α3,α4

1,1,1 ;λ
]

=
∞∑
k=0

(α1)k(α2)k(α3)k(α4)k
k!4

λk, (20)

where (α)k = Γ(α + k)/Γ(α). This appears in a class of 14 one-

parameter Calabi-Yau models, e.g. (α1, α2, α3, α4) = (1
5,

2
5,

3
5,

4
5) for the

quintic.



• There is a weight 4 modular form f(α1, α2, α3, α4) =
∑∞
n=1 anq

n, with

a1 = 1, such that

4F3

[
α1,α2,α3,α4

1,1,1 ;λ
]
p−1

= ap mod p3, (21)

where subscript p−1 means truncation of the series to pth term. This

congruence relation can be used to determine the modular form. For

example, for the quintic we have f = η(5z)10

η(z)η(25z) + 5η(z)2η(5z)4η(25z)2,

a modular form of Γ0(25).

• What about the L-function? This is related to the analytic continu-

ation of period matrix from large volume point to conifold point . It

was known that after taking into account the usual vanishing condi-

tions, the transition matrix depends on 6 real numbers that are only

computed numerically before. It is conjectured and checked that 2

of these numbers are related to the L-function values of the modular

form. (Klemm, Scheidegger, Zagier, to appear )

• Relations to higher genus topological strings?



Summary

• Some interesting connections



Thank You


