Global polarization in heavy ion collisions

Qun Wang

Department of Modern Physics Univ of Science & Technology of China (USTC)

ICTS annual meeting, HuZhou, ZheJiang, November 23-25, 2018

Outline

- **Introduction**
- **Microscopic picture for quark polarization: spinorbit coupling**
- **Statistic-hydro model for hadron polarization**
- **Wigner function approach to spin polarization**
- **Vorticity and Λ polarization in transport model**
- **Correlation in Λ polarization as probe to the most vortical fluid**
- **Summary**

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Two Casimir invariants of Poincare group

• **Mass of a particle from four-momentum**

 $\left\vert \begin{array}{lcl} \hat{P}^{\mu} & = & \hat{T}^{0\mu} \ \hat{P}^{\mu} \hat{P}_{\mu} & = & m^2 \end{array} \right\vert$

Angular Momentum is related to momentum: $J^{\mu\rho} = x^{\mu}P^{\rho} - x^{\rho}P^{\mu} + S^{\mu\rho}$

• **Spin of a particle from Pauli-Lubanski pseudovector**

$$
\label{eq:11} \begin{array}{rcl} \hat{S}^\mu&=&-\frac{1}{2m}\epsilon^{\mu\nu\rho\sigma}\hat{j}_{\nu\rho}\hat{P}_\sigma\\ \hat{S}^\mu\hat{S}_\mu&=&-S(S+1) \end{array} \qquad \hat{S}^\mu\hat{P}_\mu=0,\; \left[\hat{S}^\mu,\hat{P}^\nu\right]=0
$$

• **Insertion between physical state (e.g. nucleon) gives expectation value (Xiangdong Ji, 1994,1996)** $\langle N \big| \widehat{P}^{\mu} \big| N \big\rangle = P^{\mu}_N \qquad \langle N \big| \widehat{S}^{\mu} \big| N \big\rangle = S^{\mu}_N \,.$

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Global spin polarization: a different story

• **Instead of taking expectation value between a nucleon state, we take expectation value between thermalized states of quark/nuclear mattter described by global equilibrium density operator**

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Global OAM and Magnetic field in HIC

• **Huge global orbital angular momenta are produced**

$\mathbf{L} \sim 10^5 \hbar$

• **Very strong magnetic fields are produced**

 $\rm\,B\sim m_{\pi}^{2}\sim 10^{18}~\rm{Gauss}$

- **Can and how does orbital angular momentum be transferred to the matter created?**
- **Any way to measure angular momentum?**

Figure taken from Becattini et al, 1610.02506

Rotation vs Polarization

• **Barnett effect: rotation to polarization**

uncharged object in rotation

- **→ spontaneous magnetization**
- **→ polarization (spin-orbital coupling)**

[Barnett, Rev.Mod.Phys.7,129(1935)]

- **Einstein-de Haas Effect: polarization to rotation magnetic field (impulse)**
	- **→ polarization of electrons**
	- **→ ΔL_electron**
	- **→ ΔL_mechanical = - ΔL_electron**

[Einstein, de Haas, DPG Verhandlungen 17, 152(1915)]

Theoretical models and proposals: early works on global polarization in HIC

With such correlation between rotation and polarization in materials, we expect the same phenomena in heavy ion collisions. Some early works along this line:

- **Polarizations of Λ hyperons and vector mesons through spin-orbital coupling in HIC from global OAM**
- **-- Liang and Wang, PRL 94,102301(2005), PRL 96, 039901(E) (2006) [nuclth/0410079]**
- **-- Liang and Wang, PLB 629, 20(2005) [nucl-th/0411101]**
- **Polarized secondary particles in un-polarized high energy hadron-hadron collisions**
- **-- Voloshin, nucl-th/0410089**
- **Polarization as probe to vorticity in HIC**
- **-- Betz, Gyulassy, Torrieri, PRC 76, 044901(2007) [0708.0035]**
- **Angular momentum conservation in HIC**
- **-- Becattini, Piccinini, Rizzo, PRC 77, 024906 (2008) [0711.1253]**

Polarization of Λ hyperon

• $\;\;$ <code>A</code> is 'self-analyzing' in weak decay $\;\Lambda\;\;\rightarrow\;\;{\rm p}+\pi^{-}\;$ which breaks **parity (proton emission preferentially along Λ spin in Λ's rest frame)**

• **Λ polarization can be determined by event average of proton momentum direction in Λ's rest frame**

$$
\Pi_\Lambda \quad = \quad \frac{3}{\alpha_H} \left\langle \cos \Theta^* \right\rangle_{\rm ev}
$$

Measurement of Λ polarization

Corrections for event plane

Reaction plane can be estimated by event plane → **needs corrections by reaction plane resolution**

STAR, PRC 76,024915 (2007); 1701.06657

STAR results for global Λ polarization

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Largest vorticity ever observed

• **The fluid vorticity may be estimated from the data using the hydrodynamic relation with a systematic uncertainty of a factor of 2, mostly due to uncertainties in the temperature**

$$
\begin{array}{|c|c|} \hline \omega & \sim & k_BT(\mathscr{P}_{\Lambda}+\mathscr{P}_{\bar{\Lambda}})/\hbar \\ & \approx & (9\pm1)\times10^{21}\,\mathrm{s}^{-1} \\ \hline \end{array}
$$

STAR Collab.,Nature, 548, 62(2017); Becattini et al., PRC95,054902(2017); Pang et al., PRC 94, 024904(2016); Many others, ……

• **This far surpasses the vorticity of all other known fluids**

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Spin-orbit coupling as microscopic picture for global polarization

Global OAM in HIC

• **Non-central collisions produce global orbital angular momentum**

Liang & Wang, PRL 94, 102301(2005); PLB 629, 20(2005); Gao, Chen, Deng, Liang, QW, Wang, PRC 77, 044902(2008); Huang, Huovinen, Wang,PRC 84,054910(2011); Jiang, Lin, Liao, PRC 94,044910(2016); Deng,Huang, PRC 93,064907(2016); many others ……

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Global OAM in HIC

Liang & Wang (2005); Gao, et al. (2008); Betz, Gyulassy, Torrieri (2007); Becattini, Piccinini, Rizzo (2008); Jiang, Lin, Liao (2016); Deng, Huang (2016); many others ……

Quark scatterings in potential

- **Quark scatterings at small angle in static potential with screening mass**
- **Unpolarized and polarized cross sections**

Polarization for small angle scattering and $m_q \gg p, \mu$

$$
P_q \approx -\pi \frac{\mu p}{4m_q^2} \sim -\frac{\Delta E_{LS}}{E_0}
$$

Liang, Wang, PRL 94, 102301(2005)

 $\left\langle p\right\rangle$

mass

 $\mu \sim T \sqrt{\alpha_S}$

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Quark-quark scattering

• **Beyond small angle approximation with HTL gluon progagator**

Quark polarization as functions of the square root of parton-parton scattering energy over T [≈ local OAM or vorticity] which increases with α_S

> **Liang, Wang, PRL 94, 102301(2005); PLB 629, 20(2005); Gao, Chen, Deng, Liang, QW, Wang, PRC 77, 044902(2008)**

Statistical-hydro model

¹⁸ Qun Wang (USTC, China), Global polarization in heavy ion collisions

Rotation effect in non-inertial frame

• **A particle of mass m moves in a non-inertial rotating frame in potential U(r)**

Covariant form of quantum statistical physics (local equilibrium)

• **To obtain covariant form in local equilibrium, we use principle of maximal entropy with conservation of total energymomentum and particle number, space-like hyper-surface**

$$
\hat{\rho}_{\rm LE} = \frac{1}{Z} \exp \left[\int d\Sigma_{\mu} \left(\hat{T}^{\mu\nu} \beta_{\nu} - \frac{1}{2} \omega_{\alpha\beta} \hat{J}^{\mu, \alpha\beta} - \zeta \hat{N}^{\mu} \right) \right] \quad \stackrel{\text{2} \text{ubar}}{\text{Neert}}
$$
\n
$$
\hat{\rho}_{\rm LE} = \frac{1}{Z} \exp \left[\int d\Sigma_{\mu} \left(\hat{T}^{\mu\nu} \beta_{\nu} - \frac{1}{2} \omega_{\alpha\beta} \hat{J}^{\mu, \alpha\beta} - \zeta \hat{N}^{\mu} \right) \right] \quad \stackrel{\text{2} \text{ubar}}{\text{Neert}}
$$

- **Zubarev (1979); Weert (1982); Becattini et al. (2012-2015); Hayat, et al. (2015); Floerchinger (2016)**
- **Given n^μ, one can determine β^μ , ωαβ and ζ by**

 $\begin{array}{rcl} n_{\mu} {\rm Tr}(\hat{\rho} \hat{T}^{\mu\nu}) &=& n_{\mu} T^{\mu\nu} \\ \frac{n_{\mu} {\rm Tr}(\hat{\rho} \hat{J}^{\mu,\alpha\beta}) &=& n_{\mu} J^{\mu,\alpha\beta} \\ n_{\mu} {\rm Tr}(\hat{\rho} \hat{N}^{\mu}) &=& n_{\mu} N^{\mu} \end{array}$ **Energy-momentum conservation Angular momentum conservation Charge conservation For symmetric Tμν=Tνμ** $n_{\mu} \text{Tr}(\hat{\rho} \hat{S}^{\mu, \alpha \beta}) = n_{\mu} S^{\mu, \alpha \beta}$ $\partial_\mu \hat{S}^{\mu , \alpha \beta} \quad = \quad \hat{T}^{\beta \alpha} - \hat{T}^{\alpha \beta} = 0$

Global equilibrium and stationary conditions

Stationary conditions

$$
\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu} = 0, \qquad \partial_{\mu}\zeta = 0
$$

Killing equation

Becattini (2012); Becattini, Bucciantini, Grossi, Tinti (2015) Becattini, Grossi (2015)

Spin and polarization

Spin (Pauli-Lubanski) pseudovector

$$
\hat{S}^{\mu} = -\frac{1}{2m} \epsilon^{\mu\nu\rho\sigma} \hat{J}^{\rm S}_{\nu\rho} \hat{P}_{\sigma}
$$

$$
S^{\mu} = \text{Tr}(\hat{\rho}_{\rm GE} \hat{S}^{\mu})
$$

$$
\Pi^{\mu} = \frac{1}{S} S^{\mu}
$$

$$
\begin{aligned}\n[\hat{S}^{\mu}, \hat{P}^{\nu}] &= 0, \quad \hat{S}^{\mu} \hat{P}_{\mu} = 0 \\
\hat{S}^{\mu} \hat{S}_{\mu} &= -S(S+1)\n\end{aligned}
$$

properties of spin vector

phase space spin density for spin ½-fermions

$$
S^{\mu}(x,p) = -\frac{1}{8m}[1 - n_F(x,p)]\epsilon^{\mu\rho\sigma\tau}p_{\tau}\varpi_{\rho\sigma}
$$

spin at freezeout hypersurface

$$
S^{\mu} = \frac{1}{N} \int \frac{d^3p}{E_p} \int d\Sigma_{\lambda} p^{\lambda} n_F(x, p) S^{\mu}(x, p)
$$

particle number at freezeout

$$
N = \int \frac{d^3p}{E_p} \int d\Sigma_{\lambda} p^{\lambda} n_F(x, p)
$$

Becattini, et al., 1610.02506; Karpenko, Becattini, 1610.04717

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Kinetic model with Wigner function

- **To describe polarization for massive spin ½ fermions, we have to explicitly know their momentum p, therefore we need to know information in phase space (t,x,p), that's why we use kinetic approach**
- **Classical kinetic approach: f(t,x,p)**
- **Quantum kinetic approach: W(t,x,p)**

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Wigner functions for fermions in background EM field

- **The Wigner function for spin 1/2 fermions in constant EM field satisfies EOM, which can be solved perturbatively in (Fμν) ⁱ and** $(\partial_x)^i$
- **Wigner function can be decomposed in 16 generators of Clifford algebra**

$$
W = \frac{1}{4} \left[\mathcal{F} + i \gamma^5 \mathcal{P} + \gamma^{\mu} \mathcal{V}_{\mu} + \gamma^5 \gamma^{\mu} \mathcal{A}_{\mu} + \frac{1}{2} \sigma^{\mu \nu} \mathcal{S}_{\mu \nu} \right]
$$

scalar p-scalar vector axial-vector tensor 4x4 matrix

$$
j^{\mu} = \int d^4p \mathscr{V}^{\mu}, \quad j^{\mu}_5 = \int d^4p \mathscr{A}^{\mu}, \quad T^{\mu\nu} = \int d^4pp^{\mu}\mathscr{V}^{\nu}
$$

Heinz, Phys.Rev.Lett. 51, 351 (1983); Vasak, Gyulassy and Elze, Annals Phys. 173, 462 (1987); Elze, Gyulassy and Vasak, Nucl. Phys. B 276, 706(1986).

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Spin tensor component

• **Spin tensor component of Wigner function**

$$
\mathcal{M}^{\mu\alpha\beta}(x,p) \equiv \frac{1}{2} \text{Tr} \left[\{ \gamma^{\mu}, S^{\alpha\beta} \} W(x,p) \right]
$$

$$
= -\frac{1}{2} \epsilon^{\mu\alpha\beta\rho} \mathcal{A}_{\rho}(x,p),
$$

Fang, Pang, QW, Wang, PRC 94,024904(2016); Yang, Fang, QW, Wang, PRC97,034917(2018).

Pauli matrices

• **For αβ=ij (space indices)**

 $A^i(x) = \psi^{\dagger}(x)\Sigma_i\psi(x)$
= $\int d^4p \mathscr{A}^i(x,p)$ $\mathscr{M}^{ij}(x,p) = \frac{1}{2} \epsilon^{ijk} \mathscr{A}^k(x,p)$

• **We can regard axial vector as spin vector (up to ½)**

$$
\Pi^{\mu}(x) \sim \frac{1}{2} \int d^4 p \mathscr{A}^{\mu}(x, p)
$$

$$
\sim \frac{1}{2} \int d^4 p \frac{|p_0|}{m} \mathscr{A}^{\mu}(x, p)
$$

Non-relativistic limit

To match Pauli-Lubanski pseudo-vector

Axial vector component of Wigner function for massive fermions

• **Axial vector component: zero (i=0) and first (i=1) order in (Fμν) i and (∂^x) i : where A and V**

are related to $\mathscr{A}^{\mu} = \text{Tr}[\gamma^{\mu}\gamma^5 W]$ **distribution** $\mathscr{A}^\mu_{(0)}(x,p) = m [\theta(p_0) n^\mu(\mathbf{p}, \mathbf{n}) - \theta(-p_0) n^\mu(-\mathbf{p}, -\mathbf{n})] \delta(p^2 - m^2) A$ **functions** $\mathscr{A}_{(1)}^{\alpha}(x,p) \quad = \quad -\frac{1}{2}\hbar\beta\tilde{\Omega}^{\alpha\sigma}p_{\sigma}\frac{dV}{d(\beta\widetilde{p_{0}})}\delta(\widetilde{p^{2}-m^{2}}) \nonumber \\ -\,Q\hbar\tilde{F}^{\alpha\lambda}p_{\lambda}\underline{V}\frac{\delta(p^{2}-m^{2})}{p^{2}-m^{2}}$ $\sum \tilde{F}^{\alpha\lambda} = \frac{1}{2} \epsilon^{\alpha\lambda\rho\sigma} F_{\rho\sigma}$ • **Spin (pseudo-)vector in Lab frame** $n^{\mu}(\mathbf{p}, \mathbf{n}) = \Lambda^{\mu}_{\nu}(-\mathbf{v}_p)n^{\nu}(0, \mathbf{n}) = \left(\frac{\mathbf{n} \cdot \mathbf{p}}{m}, \mathbf{n} + \frac{(\mathbf{n} \cdot \mathbf{p})\mathbf{p}}{m(m+E_p)}\right)$ $\tilde{\Omega}^{\alpha \lambda} = \frac{1}{2} \epsilon^{\alpha \lambda \rho \sigma} \Omega_{\rho \sigma}$ **Spin in Lorentz boost Spin in** $\widehat{\Omega_{\rho\sigma}} = \frac{1}{2}(\partial_{\rho}u_{\sigma} - \partial_{\sigma}u_{\rho})$ **Lab frame from cms to cms frame Lab frame Fang, Pang, QW, Wang, PRC 94,024904(2016);**

Fang, Pang, QW, Wang, PRD 95, 014032(2017)

Polarization (spin) vector

- **Polarization at zeroth order is vanishing if we assume that the chemical potential for spin-up and spin-down fermions are equal.**
- **Polarization vector at the first order**

Fang, Pang, QW, Wang, PRC(2016); Yang, Fang, QW, Wang, PRC97,034917(2018)

Global Λ polarization from transport models

Fluid velocity and vorticity from AMPT

- **Velocity:**
- **(a) average in cell**

$$
\mathbf{v}(t, \mathbf{x}) = \frac{\sum_{i} \mathbf{p}_i}{\sum_{i} E_i}
$$

(b) Other method: Gaussian smearing

$$
\mathbf{v}(t, \mathbf{x}) = \frac{\sum_{i} \mathbf{p}_i G(\mathbf{x}_i - \mathbf{x})}{\sum_{i} E_i G(\mathbf{x}_i - \mathbf{x})}
$$

- **(c) Sum is over particles and events (d) 10⁵ events at each energy in BES range**
- **Vorticity: finite-difference method**

Other methods: Oliinychenko, Petersen 2016 Deng, Huang 2016

> **Vorticity from AMPT: Jiang, Lin, Liao, 2016**

Vorticity fields from AMPT

Qun Wang (USTC, China), Global polarization in heavy ion collisions

30

Vorticity fields in reaction plane

The odd-symmetry can be understood by the radial flow. Li, Pang, QW, Xia, RC96,054908(2017)

Vorticity fields and matter distribution

Due to global OAM, fireball or matter distribution is tilted

Li, Pang, QW, Xia, PRC96,054908(2017)

Number distribution of Λ

More tilted at 7.7 GeV

More symmetric at 200 GeV due to rapid expansion in beam direction

Li, Pang, QW, Xia, PRC96,054908(2017)

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Vorticity fields from other methods

Global polarization of Λ from AMPT

• **Polarization of Λ: average over events with |η|<1**

Li, Pang, QW, Xia, PRC96,054908(2017)

Global polarization of Λ from Chiral Kinetic approach

- **Chiral kinetic approach+ AMPT model**
- **Spin polarizations of quarks and antiquarks**
- **Quarks and antiquarks are converted to hadrons via the coalescence Model**

Chiral kinetic approach:

Son, Yamamoto, PRL 109 (2012) 181602; Stephanov, Yin, PRL 109 (2012) 162001; Chen, Pu, QW, Wang, PRL 110 (2013) 262301; Mueller, Venugopalan, PRD 96 (2017) 016023.

Sun, Ko, PRC96, 024906(2017)

Global polarization of Λ from other methods

Karpenko, Becattini, EPJC 77,213(2017) UrQMD + vHLLE hydro

Xie,Wang,Csernai,PRC 95,031901(2017) PICR hydro

Other approach: Aristova, Frenklakh, Gorsky, Kharzeev, JHEP 1610, 029 (2016)

Circular vorticity

FIG. 2. Left: Schematic illustration of the quadrupole pattern of ω_v generated from $\partial_z v_{\perp}$ in the reaction plane, where the vorticity is along the $-y$ direction (\otimes) in the $xz > 0$ quadrants and the y direction $\circled{\odot}$ in the $xz < 0$ quadrants. Right: A three dimensional view of the circular structure of the transverse vorticity $\omega_{\perp} = (\omega_x, \omega_y)$.

FIG. 3. The distribution of the transverse vorticity ω_1 = (ω_x, ω_y) in the transverse plane at longitudinal positions $\eta_s =$ -1 (left) and $\eta_s = 1$ (right) at time $t = 5$ fm/c in 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The color represents the value of the component ω_y .

⁴⁰ Qun Wang (USTC, China), Global polarization in heavy ion collisions

Circular vorticity

Turbulence and vortices in high energy HIC

Spin-spin correlation of Λ can probe the vortical structure of sQGP

Pang, Petersen, QW, Wang, PRL 117, 192301 (2016)

Qun Wang (USTC, China), Global polarization in heavy ion collisions

Polarization along the beam direction

Summary

- **Λ polarization provides a way of measuring vortical structure of sQGP**
- **STAR data in Beam Energy Scan program show a clear non-vanishing global polarization for Λ**
- **Theoretical models for hadron polarizations: microscopic spin-orbital coupling model, statisticalhydro models, Wigner function approach, quark coalescence model, transport model, etc.**
- **"Discovery of global Λ polarization opens new directions in the study of the hottest, least viscous – and now, most vortical – fluid ever produced in the laboratory." --- from STAR Collab., Nature, 548, 62-65 (2017)**