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Introduction

In phenomenology study:
▶ Bound state: stable states.
▶ In particle physics, a peak in he cross section is always related

to a resonance: Unstable

▶ Unstable particles are everywhere in physics. How to describe
the unstable particle nonperturbatively in quantum theory is a
problem.

▶ Another kind of state: Virtual state



A quantum mechanics example: Virtual state
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δ-well

V(x) = −γ δ(x), γ > 0

There is a bound state with even parity:

ψ(x) = 1√
L

e−|x|/L , L = ℏ2/mγ

E =− mγ2

2ℏ2



Scattering in the Delta potential

ψ(x) =
{

eikx + R e−ikx x < 0 ;
T eikx x > 0 .

R =
imγ/kℏ2

1 − imγ/kℏ2 , T =
1

1 − imγ/kℏ2

▶ There is a pole in R and T, which corresponds to the bound
state before.

k = imγ
ℏ2 , E =

ℏ2k2

2m = −mγ2

2ℏ2

Thus we can read out the bound state information from the
scattering amplitude.

▶ In the k plane, it is on the positive imaginary axis.
▶ The energy plane is also continued to a two-sheeted complex

plane with a cut at (0,+∞), since E ∼ k2. The pole lies on
the negative real axis of the first sheet.



Transmission coefficient and reflection coefficient

R =
mγ2/(2ℏ2E)

1 + mγ2/(2ℏ2E) , T =
1

1 + mγ2/(2ℏ2E)

The same for positive or negative γ.
▶ For γ < 0, there is also a pole of R and T, k = imγ

ℏ2 , virtual
state or anti-bound state. No well defined normalization.

▶ It lies on the real axis of the second sheet of the energy plane.



Square well

m
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V (x)
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−a/2 a/2

Consider potential

V(x) =
{

0, −a/2 ≤ x ≤ a/2
V0, |x| > a/2

▶ Boundstates: (κ =
√

2m(V0 − E)/ℏ, k =
√

2mE/ℏ)

k tan(ka/2) = κ, Even parity
−k cot(ka/2) = κ, Odd parity



▶ Resonance: (k → iκ, κ→ ik)

T eika = − 2ik/κ
[1 − (k/κ)2] sinh(κa)− 2 k

κ cosh(κa)

The pole position satisfies the same equation as the
eigenvalue for bound state.

▶ There are also complex solutions: Resonances responsible for
the resonant energy level and peaks in the |scattering
amplitude|.

E = 0.197976 + 0.153714i, 1.76434 + 0.314351i, 3.92488 +
0.428143i, . . .



The simplest Friedrichs model[Friedrichs, Commun.

Pure Appl. Math.,1(1948),361]

▶ The system couples one bare state |1⟩ and a continuum state
|ω⟩, (ω > 0), which are eigenstates of the free Hamiltonian

H0|1⟩ = ω0|1⟩, H0|ω⟩ = ω|ω⟩.

▶ Orthonormal condition: ⟨1|1⟩ = 1, ⟨1|ω⟩ = 0, and
⟨ω|ω′⟩ = δ(ω − ω′)

Completeness: |1⟩⟨1|+
∫∞

0 dω|ω⟩⟨ω| = 1
▶ The free Hamiltonian can be expressed as:

H0 = ω0|1⟩⟨1|+
∫ ∞

0
ω|ω⟩⟨ω|dω

▶ Interaction: ⟨ω|V|1⟩ = λf(ω), ⟨ω′|V|ω⟩ = ⟨1|V|1⟩ = 0.

V = λ

∫ ∞

0
[f(ω)|ω⟩⟨1|+ f∗(ω)|1⟩⟨ω|]dω



Eigenvalue equation:

H|Ψ(x)⟩ = (H0 + V)|Ψ⟩ = x|Ψ(x)⟩.

Solutions:
▶ Continuum: Eigenvalue x > 0, real Solution: define
η±(x) = x − ω0 − λ2 ∫∞

0
f(ω)f∗(ω)
x−ω±iϵ dω

|Ψ±(x)⟩ = |x⟩+ λ
f∗(x)
η±(x)

[
|1⟩+ λ

∫ ∞

0

f(ω)
x − ω ± iϵ |ω⟩dω

]
▶ S-matrix:

S(E,E′) = δ(E − E′)
(

1 − 2πiλf(E)f∗(E)
η+(E)

)
.

▶ Discrete states:The zero point of η(x) corresponds to
eigenvalues of the full Hamiltonian — discrete states.



Discrete state solutions:Bound states

ηI(x) = x − ω0 − λ2
∫ ∞

0

f(ω)f∗(ω)
x − ω

dω = 0

ηII(x) = ηI(z)− 2iπG(z), G ≡ λ2f(x)f∗(x)

▶ Bound states: solutions on the first sheet real axis below the
threshold.

|zB⟩ = NB

(
|1⟩+ λ

∫ ∞

0

f(ω)
zB − ω

|ω⟩dω
)

where NB = (η′(zB))
−1/2 = (1 + λ2 ∫ dω |f(ω)|2

(zB−ω)2 )
−1/2, such that

⟨zB|zB⟩ = 1.
▶ Elementariness: Z = N2

B;
Compositeness: X = N2

Bλ
2 ∫ dω |f(ω)|2

(zB−ω)2 .
▶ Eg. If ω0 < 0 , there could be a bound state. In the weak

coupling limit, it → |1⟩,
▶ Eg. there could also be dynamically generated bound state in

the strong coupling.



Discrete state solutions:Virtual states
▶ Virtual states: Solutions on the second sheet real axis below

the threshold.

|z±v ⟩ = N±
v

(
|1⟩+ λ

∫ ∞

0

f(ω)
[zv − ω]±

|ω⟩dω
)
, ⟨z̃±v | = ⟨z∓v | ,

where
N−

v = N+∗
v = (η′+(zv))−1/2 = (1 + λ2 ∫ dω |f(ω)|2

[(zv−ω)+]2 )
−1/2,

such that ⟨z̃±v |z±v ⟩ = 1.
▶ When ω < 0, a bound state generated from |1⟩ is always

accompanied with a virtual state in weak coupling.



Discrete state solutions:Virtual states
▶ Virtual states from the singularity of the form factor,

analytically continued G(ω) = |f(ω)|2:

ηI =z − ω0 − λ2
∫ ∞

0

|f(ω)|2
z − ω

dω

ηII(ω) =ηI(ω) + 2πiλ2 GII(ω) = ηI(ω)− 2λ2πi G(ω),

▶ Virtual state generated from the bare states: ω0 < 0



Discrete state solutions: Resonance

▶ Resonant states: ω0 > threshold, the discrete state becomes a
pair of solutions zR, z∗R, on the second sheet of the complex
plane. Ĥ|zR⟩ = zR|zR⟩

|zR⟩ = NR
(
|1⟩+ λ

∫ ∞

0
dω f(ω)

[zR − ω]+
|ω⟩

)
,

|z∗R⟩ = N∗
R

(
|1⟩+ λ

∫ ∞

0
dω f(ω)

[z∗R − ω]−
|ω⟩

)
,



Discrete state solutions: Resonance
Resonant states:
▶ Normalization: ⟨zR|zR⟩ = 0, naïve argument, z∗R ̸= zR,

⟨zR|Ĥ|zR⟩ = zR⟨zR|zR⟩ = z∗R⟨zR|zR⟩ = 0

|zR⟩ is not in the Hilbert space — need rigged Hilbert space
description.

▶ Left eigenstates:⟨z̃R|Ĥ = ⟨z̃R|zR

⟨z̃R| = NR
(
⟨1|+ λ

∫ ∞

0
dω f(ω)

[zR − ω]+
⟨ω|

)
,

⟨z̃∗R| = N∗
R

(
⟨1|+ λ

∫ ∞

0
dω f(ω)

[z∗R − ω]−
⟨ω|

)
.

NR is a complex normalization parameter,
NR = (η′+(zR))

−1/2 = (1 + λ2 ∫ dω |f(ω)|2
[(zR−ω)+]2 )

−1/2 such that
⟨z̃R|zR⟩ = 1



Discrete state solutions: Accidental higher
order poles

Eg. a triple pole

|z±v ⟩ = N±
v

(
|1⟩+ λ

∫ ∞

0

f(ω)
[zv − ω]±

|ω⟩dω
)
, ⟨z̃±v | = ⟨z∓v | ,

|z±v2⟩ = −Nv2λ

∫ ∞

0

f(ω)
([zv − ω]±)2 |ω⟩dω, ⟨z̃±v2| = ⟨z∓v2| ,

|z±v3⟩ = Nv3λ

∫ ∞

0

f(ω)
([zv − ω]±)3 |ω⟩dω , ⟨z̃±v3| = ⟨z∓v3| .

Normalization: ⟨z̃±v3|z±v ⟩ = 1 and ⟨z̃±v2|z
±
v2⟩ = 1.

Then Nv = Nv2 = Nv3 = (6/η′′′)1/2.



Completeness relation

▶ In general, the resonance state and the virtual states do not
enter the completeness relation. If there is only continuum
eigenstates:

1 =

∫ ∞

0
dω|Ψ+(ω)⟩⟨Ψ+(ω)|.

With one bound state |EB⟩ eigenstate:

1 =|EB⟩⟨EB|+
∫ ∞

0
dω|Ψ+(ω)⟩⟨Ψ+(ω)|.



Completeness relation
To treat the resonances and virtual states the same as the bound
state and Continuum state:
▶ Petrosky, Prigogine, Tasaki: in solving the large Poincaré

problem, propose a definition of continuum state.
|Ψ+(x)⟩ as a distribution, includes the integral contour
information

1
η+d (x)

≡ 1
η+(x)

x − ω̃1 + iγ
[x − ω̃1 + iγ]+

,

|Ψ±(x)⟩ =|x⟩+ λ
f(x)
η±d (x)

[
|1⟩+ λ

∫ ∞

0
dω f(ω)

x − ω ± iϵ |ω⟩
]
.



Completeness relation

▶ The left state is not modified:

⟨Ψ̃±(x)| =⟨x|+ λ
f(x)
η∓(x)

[
⟨1|+ λ

∫ ∞

0
dω f(ω)

x − ω ∓ iϵ ⟨ω|
]
.

▶ Using these continuum states, the completeness relation reads,

1 =

∫ ∞

0
dω|Ψ+(ω)⟩⟨Ψ̃+(ω)|+ |zR⟩⟨z̃R|.

The resonant state enters the completeness relation.



Completeness relation: higher-order pole
When there is an nth-order pole, n degenerate states:

|z(1)⟩ =N
(
|1⟩+ λ

∫ ∞

0

f(ω)
[z − ω]+

|ω⟩dω
)
,

⟨z̃(1)| =N
(
⟨1|+ λ

∫ ∞

0

f(ω)
[z − ω]+

⟨ω|dω
)
,

|z(n)⟩ =N(−1)n−1λ

∫ ∞

0
dω f(ω)

([z − ω]+)n |ω⟩ , for n ≥ 2 ,

⟨z̃(n)| =N(−1)n−1λ

∫ ∞

0
dω f(ω)

([z − ω]+)n ⟨ω| , for n ≥ 2 ,

N = ( n!
η(n)(z))

1/2 =
(
(−)n−1 λ2

n!
∫

dω |f(ω)|2
([z−ω]+)n+1

)−1/2
is chosen such

that ⟨z̃(r)|z(n−r+1)⟩ = 1. the completeness relation can also be
deduced

1 =

∫ ∞

0
dω|Ψ+(ω)⟩⟨Ψ̃+(ω)|+

n∑
r=1

|z(r)⟩⟨z̃(n−r+1)|.



Coupled channel Friedrichs model
Hamiltonian: H = H0 + V

H = ω0|1⟩⟨1|+
∫ ∞

a1

dωω|ω⟩11⟨ω|+
∫ ∞

a2

dωω|ω⟩22⟨ω|

+ λ1

∫ ∞

a1

dω[f1(ω)|ω⟩1⟨1|+ f∗1(ω)|1⟩ 1⟨ω|]

+ λ2

∫ ∞

a2

dω[f2(ω)|ω⟩2⟨1|+ f∗2(ω)|1⟩ 2⟨ω|]

Solution:
Continuous states,

|Ψi±(x)⟩ = |x⟩i +
λif∗i (x)
η±(x)

[
|1⟩+

∑
j=1,2

λj

∫ ∞

aj

dω fj(ω)
x − ω ± iϵ |ω⟩j

]
.

where η±(x) = x − ω0 − λ2
1
∫∞

a1

G1(ω)
x−ω±iϵdω − λ2

2
∫∞

a2

G2(ω)
x−ω±iϵdω .

Orthonormal condition: ⟨Ψi(x′)|Ψj(x)⟩ = δijδ(x′ − x).



Discrete states are determined by η(z) = 0, analytically continued
to different Riemann sheets.

η(x) = x − ω0 − λ2
1

∫ ∞

a1

G1(ω)

x − ω ± iϵdω − λ2
2

∫ ∞

a2

G2(ω)

x − ω ± iϵdω .



Wave function

|zI
0⟩ =NI

(
|1⟩+ λ1

∫ ∞

a1

dω f1(ω)
zI

0 − ω
|ω⟩1 + λ2

∫ ∞

a2

dω f2(ω)
zI

0 − ω
|ω⟩2

)
,

|zII
0 ⟩ =NII

(
|1⟩+ λ1

∫ ∞

a1

dω f1(ω)
[zII

0 − ω]+
|ω⟩1 + λ2

∫ ∞

a2

dω f2(ω)
zII

0 − ω
|ω⟩2

)
,

|zIII
0 ⟩ =NIII

(
|1⟩+ λ1

∫ ∞

a1

dω f1(ω)
[zIII

0 − ω]+
|ω⟩1 + λ2

∫ ∞

a2

dω f2(ω)
[zIII

0 − ω]+
|ω⟩2

)
,

|zIV
0 ⟩ =NIV

(
|1⟩+ λ1

∫ ∞

a1

dω f1(ω)
zIV

0 − ω
|ω⟩1 + λ2

∫ ∞

a2

dω f2(ω)
[zIV

0 − ω]+
|ω⟩2

)
,



Completeness relation

Continuum state:

|Ψd
i±(x)⟩ = |x⟩i +

λif∗i (x)
η±d (x)

[
|1⟩+

∑
j=1,2

λj

∫ ∞

aj

dω fj(ω)
x − ω ± iϵ |ω⟩j

]
⟨Ψ̃i±(x)| = i⟨x|+

λifi(x)
η∓(x)

[
⟨1|+

∑
j=1,2

λj

∫ ∞

aj

dω
f∗j (ω)

x − ω ∓ iϵ j⟨ω|
]

η±d (ω) ≡ η±(ω)
∏

J=II,III,IV

NJ∏
i=1

ω − zJ
i

[ω − zJ
i ]±

.

∑
i=1,2

∫ ∞

ai

dx|Ψd
i (x)⟩⟨Ψ̃i(x)|+

∑
J,i

|zJ
0,i⟩⟨z̃J

0,i| = 1



Generalization

To use this model in the real world
▶ Partial wave decomposition.
▶ Include more discrete states.
▶ Include interaction among continuum.



Non-relativistic partial wave decomposition
A general Hamiltonian, in the c.m. frame, a discrete particle with
spin l, |0; llz⟩ interacting with a two-particle continuum state with
total spin S, |⃗p;SSz⟩

H =H0 + V

H0 =M0
∑
M

|0; JM⟩⟨0; JM|+
∑
Sz

∫
d3pω|⃗p;SSz⟩⟨⃗p;SSz| ,

⟨0; JM|V|⃗p;SSz⟩ =
∑
lm

ilg̃l(p2)CJM
lm,SSzY

m∗
l (p̂)

l is the orbital angular momentum. The continuum momentum
eigenstate can be expanded using the angular momentum
eigenstates,

|⃗p;SSz⟩ =
∑
lm

ilYm∗
l (p̂)|p; lm,SSz⟩ =

∑
JM,lm

ilYm∗
l (p̂)CJM

lm,SSz |p; JM; lS⟩



Non-relativistic partial wave decomposition
In angular momentum eigenstates

H0 =M0|0; JM⟩⟨0; JM|+
∑

l

∫
p2dpω|p; JM; lS⟩⟨p; JM; lS| ,

H01 =
∑

l

∫
µpdωg̃l(p2)|0; JM⟩⟨p; JM; lS|+ h.c.

We suppose the system conserves J and M, and restrict to such
subspace. Redefine

|ω, l⟩ = √
µp|p; JM; lS⟩ , |0⟩ = |0; JM⟩ , gl(ω) =

√
µpg̃l(p2) ,

H = M0|0⟩⟨0|+
∑

l

∫
dω ω|ω, l⟩⟨ω, l|+

∑
l

∫
dωgl(ω)|0⟩⟨ω, l|+ h.c.

The simplest Friedrichs model.



Including direct continuum interaction
Including two kinds of continuum, spins S1 and S2

⟨⃗p′S2S2z|V|⃗pS1S1z⟩

=
∑

JMl′1m′
1l′2m′

2

(−i)l′2Ym′
2

l′2
(p̂′)CJM∗

l′2m′
2,S2S2z

il
′
1Ym′

1∗
l′1

(p̂)CJM
l′1m′

1,S1S1z
f̃JM
l′2S2,l′1S1

(p′2, p2)

f̃JM
l′2S2,l′1S1

(p′2, p2) = ⟨p′JM; l′2S2|V|p, JM; l′1S1⟩

Redefine:

|ω, li; i⟩ =
√
µip|p; JM; liSi⟩ , for i = 1, 2 ,

f(21)
l2l1 (ω

′, ω) =
√
µpµ′p′̃fJM

l2S2,l1S1(p
′2, p2) .

Suppose conservation of the total angular momentum JM. Restrict
to subspace with fixed JM. The interaction Hamiltonian then
becomes

HJM
21 =

∑
l2,l1

∫
dω′ dω f(21)

l2l1 (ω
′, ω)|ω′, l2; 2⟩⟨ω, l1; 1|+ h.c.



D discrete states and C continuum states

We can include D discrete states and C continuum states, and
restrict the discussion in a fixed JM channel. Relabel the states
with different (li, i) using consecutive 1, 2, 3 . . . .

H =

D∑
i=1

Mi|i⟩⟨i|+
C∑

i=1

∫ ∞

Mi,th

dωiωi|ωi; i⟩⟨ωi; i|

+
∑
i2,i1

∫
Mi1,th

dω′
∫

Mi2,th

dω fi2,i1(ω′, ω)|ω′; i2⟩⟨ω; i1|

+

D∑
i=1

C∑
j=1

∫
Mj,th

dωgi,j(ω)|i⟩⟨ω; j|+ h.c.

We get the most general Friedrichs-like model.



Solution: A special kind of form factor
For general form factors, the generlized Friedrichs model is not
solvable. If the form factor is factorizable like in [E. Hernández et.al,
PRC29(1984),722;Aceti et.al., PRD86,(2012),014012;Sekihara,
PTEP(2015)063D04]:

gij(ω) = u∗
ijf∗j (ω) , fj′j(ω′, ω) = vj′jfj′(ω′)f∗j (ω)

H =

D∑
i=1

Mi|i⟩⟨i|+
C∑

i=1

∫ ∞

ai

dω ω|ω; i⟩⟨ω; i|

+

C∑
i,j=1

vij
(∫ ∞

ai

dωfi(ω)|ω; i⟩
)(∫ ∞

aj

dωf∗j (ω)⟨ω; j|
)

+

D∑
j=1

C∑
i=1

[
u∗

ji|j⟩
(∫ ∞

ai

dωf∗i (ω)⟨ω; i|
)
+ uji

(∫ ∞

ai

dωfi(ω)|ω; i⟩
)
⟨j|
]

then it is solvable. vij hermitian.



Discrete Solutions:

Define Gj(E) ≡
∫

aj
dω |fj(ω)|2

ω−E ,Vij ≡ vij −
∑D

l=1
u∗

ljuli
Ml−E ,

Mji ≡ δji + Gj(E)Vji, for i = 1, · · · ,C.
▶ Discrete state: pole positions are determined by

detM(E) = 0, discrete eigenvalues Ẽk.

|Ψ(Ẽk)⟩ =
C∑

i=1
Ai(Ẽk)

(
−

D∑
l=1

u∗
li

Ml − Ẽk
|l⟩

+
C∑

j=1
G−1

i (Ẽk)

∫
ai

dω fi(ω)
ω − Ẽk

|ω; i⟩
)
.

Ai are vectors satisfying
∑

j Mij(Ẽk)Aj(Ẽk) = 0.
▶ M∗

ij(E) = Mji(E∗), solutions should be symmetric w.r.t the
real axis.



Discrete Solutions:

▶ If the solution is on the real axis below the threshold EB, it is
a bound state. Normalization:

∑
Zl +

∑
i Xi = 1

Zl =|αl(EB)|2 =

∑
ij Aiu∗

liuljA∗
j

(Ml − EB)2 ,

Xi =|ψi(EB)|2 = G′
i(EB)

∑
jj′

AjA∗
j′V∗

ij′Vij

Zl: elementariness, Xi compositeness.
▶ If the solutions are on the complex plane: Resonances. Ẽk

complex, on unphysical sheets. We have the left eigenstate
⟨Ψ̃(Ẽk)| with the same eigenvalue Ẽk. Normalization:

⟨Ψ̃(Ẽk)|Ψ(Ẽk)⟩ =
∑

Zl +
∑

i
Xi = 1.

Zl and Xi become complex.



Continuum solutions:

▶ Solution with energy eigenvalue E > ak

|Ψ(k)
± (E)⟩ =γk(E)

[
|E; k⟩ − f∗k(E)

C∑
j=1

(M−1
± )jk

×
(
−

C∑
i=1

Vij

∫
dω fi(ω)

E − ω ± iϵ |ω; i⟩+
D∑

l=1

u∗
lj

Ml − E |l⟩
)]

▶ |Ψ+(E)⟩ is the in-state, and |Ψ−(E)⟩ is the out-state.
▶ S matrix:

Sk′,k(E′,E) = ⟨Ψ(k′)
− (E′)|Ψ(k)

+ (E)⟩
=δ(E′ − E)− 2πiδ(E′ − E)fk′(E)f∗k(E)(V−1 + G+)

−1
k′k



Eg.: Dynamically generated states

▶ No discrete bare states → dynamically generated discrete state
— Bound state (molecular state), resonances, or virtual state.

▶ Hamiltonian:

H =

∫
a

dω ω|ω⟩⟨ω| ± λ2
∫

a
dω

∫
a

dω′f(ω)f∗(ω′)|ω⟩⟨ω′| (1)

▶ Form factor
f(ω) = (ω − a)(l+1/2)/2 exp{−(ω − a)/(2Λ)}.

▶ Discrete state pole position:

M±(E) = det M± = 1 ± λ2G(E) = 1 ± λ2
∫

a
dω |f(ω)|

2

ω − E = 0

▶ ± sign: attractive or repulsive in the long range.



Eg: S-wave dynamically generated states
S-wave: repulsive potential.
▶ No solution on the first sheet for M+ = 0 : No bound state.
▶ There are a pair of resonance poles on the second sheet:
▶ As the coupling is turning down, the poles move to the

negative infinity.

Threshold a = 0.5, Λ = 2.



Eg: S-wave dynamically generated states

S-wave: attractive potential.
▶ Strong coupling: a solution on the first Riemann sheet —

bound state.
▶ Weak coupling : The bound state moves to the second sheet

— virtual state.
▶ As the coupling is turning off, the virtual pole moves to the

negative infinity.



Eg: P-wave dynamically generated states

P-wave: repulsive potential.
▶ No bound state.
▶ There is a virtual state on the second sheet.
▶ As the coupling decreases, it moves to the negative infinity.
▶ Strong coupling limit of the pole position: GII

P (E) = 0.



Eg: P-wave dynamically generated states
P-wave: attractive potential.
▶ Strong coupling: A bound state and a virtual state. Virtual

state has a limiting point in the strong coupling limit,
determined by GII

P (E) = 0.
▶ Weak coupling: The bound state and the virtual state move

to the threshold and to the second sheet — a pair of
resonance poles.

▶ Bound state and an accompanied virtual state: Threshold
effect.



Difference between the dynamically generated states by attractive
potential and the states from the bare state:
▶ S-wave: The dynamically generated bound state do not need

to have acompanied virtual state.
Higher partial wave, no such difference: The dynamically
generated states if appear from the theshold, it must
acompanied with a virtual state.

▶ In weak coupling limit: The dynamically generated states do
not go to bare states (but go to the complex plane in our
example).



Summary:
▶ Friedrichs model in single channel and coupled channels:

exactly solvable model.
▶ Wave function for bound state, virtual state, and Resonances

can be solved in terms of the bare states.
▶ Dynamically generated poles and poles generated from bare

states: different properties.
▶ Probability explanation: Compositeness and elementariness.

Good for bound state, not for resonances and virtual state.
▶ Strong-weak duality?

The perturbative quantum field theory can not use a
fundamental field to describe the S-wave dynamically
generated states having no accompanied virtual states.



Friedrichs model in P-wave first excited charmonium



Introduction

Recent years, more and more new X,Y,Z states were found which
can not be satisfactorily explained by the naive quark model.
▶ The quark model such as Godfrey-Isgur can describe the

hadron spectrum below the open flavor thresholds. Such as
J/ψ, hc(1P), χc0,1,2(1P) .

▶ But for resonances above the open flavor thresholds, general
descrepancies are found between the quark model and the
experimental observation.

▶ There are also charged exotic states which do not present in
the quark model: Zc(3900), Zc(4020)



Charmonium-like states

red ones are GI’s prediction.



GI’s potential model
Godfrey-Isgur’s relativized quark potential model,
[PRD32,189,(1985)]
▶ A relativized quark potential model:

HGI = H0 + V = H0 + H̃conf
ij + H̃hyp

ij + H̃so
ij + HA

▶ By diagnalizing the meson-meson matrix ⟨Mesoni|H|Mesonj⟩,
the mass spectra are obtained.

▶ However, the hadron loop effects in the propagator from the
interactions are not included in the spectra. This is the main
reason for the discrepancy of the GI’s results and the
experimentsal ones above the open flavor thresholds.

▶ We will use Friedrichs model, combined with QPC (3P0)
model, to incorporate this effect into the spectra.

▶ We then analyze the spectra of 2P charmonium-like states
using this method.



Friedrichs Model

▶ If one has the interaction between the discrete states
(charmonium) and the continuum states fi (open flavor
threshold), then the eigenstates for the full Hamiltonian are
obtained— the masses, widths and wave functions for the
states.

▶ The interactions can be estimated using differnent models: we
will use the QPC (3P0) model.



QPC model
▶ The meson coupling A → BC can be defined using the

transition matrix element

⟨BC|T|A⟩ = δ3(P⃗f − P⃗i)MABC

where the transition operator T is the one in the QPC model

T =− 3γ
∑
m

⟨1m1 − m|00⟩
∫

d3p⃗3d3p⃗4δ
3(p⃗3 + p⃗4)

× Ym
1 (

p⃗3 − p⃗4
2 )χ34

1−mϕ
34
0 ω

34
0 b†3(p⃗3)d†4(p⃗4).

γ parameterize the strength of creating a quark-antiquark pair
from the vacuum which is fixed to be a typical standard value
[Godfrey & Isgur, PRD32,189(1985)].

▶ The wave function of A, B, C are GI’s results.
After we have the interaction between the discrete states and the
continuum states, we can use the solution to the Friedrichs model
to find out the different eigenstates of the full Hamiltonian.



2P Charmonium-like states

L = 1, S = 1, JPC = 0, 1, 2++,χc0,1,2; L = 1, S = 0, JPC = 1+−,
hc(2P).

Current status:
▶ 23P2 is well established: X(3930),

[Belle,PRL96,082003;BaBar,PRD81,092003]
▶ 23P1 channel: X(3872) [Belle,PRL91,262001;] molecular state

or cc̄? Mixture of molecule and cc̄, and which is the dominant
component?

▶ If X(3872) is a dynamically generated molecular state, where
is the charmonium χc1(2P) state.

▶ 21P1 channel: The hc(2P) state still has not been seen by
experiments.



▶ 23P0 channel: X(3915)
[Belle,PRL104,092001;BaBar,PRD86,072002] used to be assigned
to χc0. However there are some arguement against this
assignment [Guo,Meissner,PRD,86,091501; Olsen,PRD91,057501].

The real χc0 state may lie far below, around 3860, and may
be a wide one.

▶ A reanalysis of the BABAR and Belle Data shows that the
2++ assignment to X(3915) can not be excluded and it may
possibly be the same tensor state as X(3930) [PRL115,022001].

▶ In 2017, Belle’s also found a possible alternative χc0(2P)
candidate around 3860MeV (M = 3862+66

−45, Γ = 201+242
−149).

[PRD95,112003].



Our scheme

▶ Using the masses and wave functions from the Godfrey-Isgur
model for the bare states in the Friedrichs model and the QPC
model.

▶ Bare discretes states: χc0(2P) at 3917 MeV, χc1(2P) at 3953
MeV, χc2(2P) at 3979 MeV. hc(2P) at 3956MeV.

▶ Continuum states: DD̄, DD̄∗, D∗D̄∗ threshold, upto D-wave.
Coupled channels:
χc0(2P): DD̄ (S-wave), D∗D̄∗ (S-wave, D-wave).
χc1(2P): DD̄∗(S,D-wave), D∗D̄∗ (D-wave)
χc2(2P): DD̄ (D-wave), DD̄∗ (D-wave), D∗D̄∗ (S,D-wave)
hc(2P): to DD̄∗ (S,D-wave), D∗D̄∗ (S,D-wave).

▶ Parameterize the interaction between the bare states and the
continuum using the QPC model.



Our scheme

Try to understand the mass spectrum and width using our method
▶ Solution of η(z) = 0 gives the mass and width of the

resonances zR = M + iΓ/2, or masses of the bound states.
▶ We also give a Breit-Wigner mass for narrow resonances to

compare with the experimental results, i.e. from Real part of
η(z) = 0,

MBW − ω0 − λ2
∑

n
P
∫ ∞

ωth,n

∑
SL |fnSL(ω)|2

MBW − ω
dω = 0,

Γn
BW = 2π

∑
S,L

|fnSL(MBW)|2,



Numerical results

Table: Comparison of the experimental masses and the total widths (in
MeV) [PDG2016] with our results.

n2s+1LJ Mexpt Γexpt MBW ΓBW pole GI
23P2 3927.2 ± 2.6 24 ± 6 3910 12 3908-5i 3979
23P1 3942 ± 9 37+27

−17 3917-45i 3953
3871.69 ± 0.17 < 1.2 3871 0 3871-0i

23P0 3862+66
−45 201+242

−149 3860 25 3861-11i 3917
21P1 3890 26 3890-22i 3956



Numerical results
▶ The there is a narrow 23P2 state which can be assigned to the

well-established χc2.
▶ The 23P0 state is found to be around 3860 MeV, which is

consistent with mass of the experimental reanalysis of the
Belle data. Our result prefers an unexpected narrow width,
whereas the experimental result has a large uncertainty
201+242

−149 MeV.
There are also other predictions with small width, [Barnes
et.al., PRD72,054026;Eichten et.al, PRD69,094019]
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Figure: γγ → DD̄ from BABAR [PRD81,092003] and Belle [RPL,96,082003]. The two dashed
lines are set at m(DD̄) = 3850 MeV and 3875 MeV.



Numerical results
(23P1) : X(3872) & χc1
▶ A dynamically generated bound state , located just at 3871 is

naturally assigned to X(3872).
▶ The X(3872) is not originated from the bare state χc1, but

from the interaction between the bare state and the
continuum.

▶ If we reduce the γ parameter, the X(3872) pole will move to
the second sheet becoming a virtual state.

▶ The bare state pole is shifted to about 3917 MeV with a large
width — may be related to X(3940) observed by the
experiment.

▶ X(3872):
elementariness
compositeness = 1 : 2.7.

A large portion of continuum state DD̄∗ — more molecular
component than the cc̄ component.



Numerical results

21P1: a prediction of hc,
▶ Mass: shifted from GI’s result 3956 to 3890.
▶ JPC = 1+−: need a negetive C-parity channel to look for it,

such as ηcγ, J/ψη.



Summary

▶ We study the first excited P-wave charmonium-like states in a
Friedrichs-like model method. This method can also be
generalized to study other states above the open flavor states.

▶ The X(3872) is naturally dynamically generated by the
interaction of χc1 state and the continuum states. The
continuum components constitute a larger portion of the
X(3872) than the cc̄.

▶ With the compositeness and the elementariness, the further
properties of X(3872) can also be studied which is a work in
progress.

▶ In our scheme, the χc0 state is a narrow one around 3860.
▶ We also give a prediction of the position and width of the

hc(2P).



Thank you !
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