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Entanglement Entropy in TT-deformed CFT

陈斌

北京大学

Huzhou, Nov. 24, 2018

Based on the work with Lin Chen and Peng-xiang Hao, 1807.08293
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Integrable currents
The TT-deformed CFT belongs to a large class of integrable
deformationsSmirnov and Zomolodchikov 1608.05499

Define
T = −2πTzz, T = −2πTz̄z̄, Θ = 2πTzz̄

Assumption 1: Local translation and rotational symmetry

Tµν = Tνµ, ∂µTµν = 0.

This leads to
∂z̄T = ∂zΘ, ∂zT = ∂z̄Θ.

These are the integrability conditions. Consequently

P+ =

∮
C
(Tdz +Θdz̄), P− =

∮
C
(Tdz̄ +Θdz),

are conserved currents.
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TT deformations

Assumption 2: Global translation symmetry

∂z < Oi(z) >= 0.

Assumption 3: Infinite separations along one direction

lim
t→∞

⟨Oi(z + t)Oj(z′)⟩ = ⟨Oi⟩⟨Oj⟩

Under these assumptions, one finds that

lim
z→z′

(T(z)T(z′)−Θ(z)Θ(z′)) = OTT(z′) + derivative terms.

where OTT is a local operator.
The so-called TT deformation is actually the one

TT(z) ≡ OTT(z)

In a CFT, there is Θ = 0.
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TT-deformed theory

Now we consider a 2D CFT deformed by TT operator

S(µ) = SCFT + µ

∫
M

OTT.

The TT operator is an irrelevant operator, and the parameter µ is of the
dimension (Length)2. The deformation may lead to a RG flow to the UV.
However, it is not necessary to think in this way.

Simply speaking, the deformation defines a one-parameter family of
QFTs.
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Zamolodchikov equation

⟨TT⟩ = ⟨T⟩⟨T⟩ − ⟨Θ⟩2

Consider the function

Ξ(z,w) ≡ ⟨T(z)T(w)−Θ(z)Θ(w)⟩.

In two different limits:

lim
w→z

Ξ(z,w) = ⟨TT −Θ2⟩

lim
w→∞

Ξ(z,w) = ⟨T⟩⟨T⟩ − ⟨Θ⟩2

As Ξ(z,w) is a constant, we get the Zomolodchikov equation.
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Spectrum

One remarkable fact is that the deformed theory has the same spectrum
structure as the original one.
Consider a CFT on a cylinder: a spatial circle with a period L

Pn =
2π

L Jn, Jn ∈ Z,

En =
E(µ/L2)

L .

For a CFT,

ECFT
n =

E(µ = 0)

L =
2π

L Mn,

Jn = ∆n −∆n.

with
Mn = ∆n +∆n −

c
12

.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Spectrum II

Inserting a complete basis of states of CFT into the Zomolodchikov
equation, we find that

4
∂En
∂µ

+ En
∂En
∂L +

P2
n

L = 0,

which is the forced inviscid Burgers equation. The solution is

En(µ, L)L = En(µ̃) =
2π

µ̃

(
1−

√
1− 2µ̃Mn + µ̃2J2n

)
,

with
µ̃ =

πµ

L2
.

For each state in the original CFT, there is a corresponding state in the
deformed CFT, with a modified spectrum.
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µ̃ < 0 case
We have been working in the Euclidean theory. In the Minkowski theory,
we need to

µ̃ → −λ̃.

For a negative µ̃ or a positive λ̃, the spectrum is now

En(λ, L)L = En(µ̃) =
2π

λ̃

(√
1 + 2λ̃Mn + λ̃2J2n − 1

)
,

It has a vacuum: ∆n = ∆n = 0,Mn = − c
12 .

For simplicity, we set Jn = 0,

E(λ̃) = 2π

(
− 1

λ̃
+

√
1

λ̃2
+

2M
λ̃

)
There are large number of states with |M| << 1/λ̃, the energy is little
modified by the perturbation E ≃ M.
As Mλ̃ becomes larger, the deviation increases.
If |Mλ̃| >> 1, then

E(λ̃) ≃ 2π

√
2M
λ̃

,

which is L-independent.
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Entropy and LST

In a 2D CFT, the degeneracy of the highly excited states is captured by
the Cardy entropy

SC(M) = 2π

√
c
3

M.

Correspondingly, we have

SC(E) = 2π

√
c
6
(2E + λ̃E2)

If 1 << E << 1/λ̃, we still have Cardy entropy.
However, if E >> 1/λ̃, we have the Hagedorn behavior

SH ≃ 2π

√
λ̃c
6
E .

This indicates the intriguing relation with the Little string theory. A. Giveon

et.al. 1701.05576
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Modular invariance

Consider the theory is defined on a torus with modular parameter τ . It
was found that the partition function of the TT-deformed theory obeys
the modular propertyDatta and Jiang, 1806.07426, Aharony et.al. 1808.02492

Z
(

aτ + b
cτ + d ,

aτ̄ + b
cτ̄ + d | λ̃

|cτ + d|2

)
= Z(τ, τ̄ |λ̃),

where (
a b
c d

)
∈ SL(2,Z).

In other words λ̃ transforms as the modular form of weight (−1,−1).
With the boundary condition

Z(τ, τ̄ |λ̃ = 0) = ZCFT(τ, τ̄)

This allows us to determine the spectrum completely to all orders of λ̃.
No non-trivial non-perturbative effects.
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µ̃ > 0 case

Let us focus on the case µ̃ > 0.

E(µ̃) = 2π

µ̃

(
1−

√
1−2µ̃Mn + µ̃2J2n

)
,

In this case, there is a shock singularity. Consider the case Jn = 0, then
there must be a high energy cutoff

µ̃Mn ≤ 1

2
.

In other words, the spectrum must be truncated.
Open question: UV completion?
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AdS3 gravity in a finite region
Consider the holographic CFT which is dual to the AdS3 gravity, under
the TT deformation

S(µ) = SCFT + µ

∫
M

OTT.

The deformed CFT is conjectured to be dual to a gravity on a compact
subregion of AdS3L. McGough, M.Mezei and H. Verlinde, 1611.03470

ds2 =
dr2
r2 + r2gαβdxαdxβ , r < rc,

with
r2c =

6l4
πcµ.

One needs to impose the Dirichlet B.C.

ds2|r=rc = r2cgαβdxαdxβ ,
ϕi|r=rc = 0.
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Caution

A finite Dirichlet cutoff induces dramatic deformation of the gravitational
theory.

The cutoff surface plays the role of a mirror. It induces negative image
masses on the other side, which screen the gravitational force. This may
lead to the violation of causality.
In other words, the theory cannot be UV completed as an ordinary QFT.

There could be other issues on the Dirichlet cutoff:
Lack of strong ellipticity in Euclidean quantum gravity. Consequently,
there exists infinite number of zero modes, and there exists no trace of
the heat-kernels. I.G. Avramidi and G. Esposito 9708163

No well-defined perturbation theory. E. Witten 1805.11559
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Caution

A finite Dirichlet cutoff induces dramatic deformation of the gravitational
theory.

The cutoff surface plays the role of a mirror. It induces negative image
masses on the other side, which screen the gravitational force. This may
lead to the violation of causality.
In other words, the theory cannot be UV completed as an ordinary QFT.

There could be other issues on the Dirichlet cutoff:
Lack of strong ellipticity in Euclidean quantum gravity. Consequently,
there exists infinite number of zero modes, and there exists no trace of
the heat-kernels. I.G. Avramidi and G. Esposito 9708163

No well-defined perturbation theory. E. Witten 1805.11559
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Pieces of Evidence

The are a few pieces of evidence to support Verlinde et.al.’s proposal in
the large c limit: c → ∞, µc fixed.

1. Deformation of the lightcone ∼ Superluminal propagating modes
J. Cardy 1507.07266, D. Marolf and M. Rangamani, 1201.1233

2. Deformed energy spectrum ∼ The quasi-local energy of a BTZ BH
of mass M and angular momentum J
The truncation of the spectrum ∼ rc → rH.

3. Exact RG flow equation ∼ Hamilton-Jacobi equation

Here we would like to present another piece of evidence from the study of
the entanglement entropy.
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Pieces of Evidence

The are a few pieces of evidence to support Verlinde et.al.’s proposal in
the large c limit: c → ∞, µc fixed.

1. Deformation of the lightcone ∼ Superluminal propagating modes
J. Cardy 1507.07266, D. Marolf and M. Rangamani, 1201.1233

2. Deformed energy spectrum ∼ The quasi-local energy of a BTZ BH
of mass M and angular momentum J
The truncation of the spectrum ∼ rc → rH.

3. Exact RG flow equation ∼ Hamilton-Jacobi equation

Here we would like to present another piece of evidence from the study of
the entanglement entropy.
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Entanglement entropy

Entanglement entropy is an important notion in quantum world. It has
played an important role in understanding AdS/CFT in the past decade.

A

B

For A and its complement B
▶ Htot = HA ⊗HB and

ρtot = |Ψ⟩⟨Ψ|
▶ Reduced density matrix:

ρA = trBρtot
▶ Entanglement entropy

SA = −trAρA ln ρA

▶ Rényi entropy S(n)
A = − ln trAρ

n
A

n−1

▶ SA = limn→1 S(n)
A
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Replica trick
In order to compute trAρn

A, one can use the replica trickJ. Callan et.al. 9401072

For a 2D QFT, we have the picture Figures from T. Takayanagi’s lecture
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Replica trick II

The entanglement entropy is given by

S(A) = lim
n→1

Sn(A), Sn(A) =
1

1− n log Zn(A)
Z(A)n ,

where Z(A) is the partition function on M, Zn(A) is the partition
function on the manifold Mn(A) which is obtained by gluing n copies of
M together along A.

For a 2D CFT, the Rényi entropy for one interval could be readP. Calabrese and

J.L. Cardy 0405152

Sn =
c
6

(
1 +

1

n

)
log ℓ

ϵ
,

and
S(A) = c

3
log ℓ

ϵ
,
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Perturbative framework

For the deformed CFT,

S = SCFT + µ

∫
M

TT,

let’s compute the partition function perturbatively in µ.

Zn(A)
Zn =

( ∫
Mn e−SCFT[∫
M e−SCFT

]n
)(

1− nµ
∫
M

[⟨
TT
⟩
Mn −

⟨
TT
⟩
M

]
+ O(µ2)

)
.

Then we can read the leading order correction to Sn(A)

δSn(A) =
−nµ
1− n

∫
M

[⟨
TT
⟩
Mn −

⟨
TT
⟩
M

]
.
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Finite temperature case
The first case is a 2D deformed CFT at a finite temperature 1/β. The
spatial direction is not compactified and the manifold M on which the
theory is defined is an infinitely long cylinder with circumference β.

S(A) = S0(A) + δS(A).

where

S0(A) =
c
3

log
(

β

πϵ0
sinh

(
πℓ

β

))
,

δS(A) =
−µπ4c2ℓ coth

(
πℓ
β

)
9β3

∼ −(µ̃c) ℓ
β

coth
(
πℓ

β

)
c

At low T, β >> ℓ, δS(A) ∼ −(µ̃c)c.
At high T, β << ℓ, δS(A) ∼ − ℓ

β (µ̃c)c.
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Rényi entropy

δSn(A) = −
π4c2ℓµ(n + 1) coth

(
πℓ
β

)
18β3n +

πc2µ(n − 1)(n + 1)2

576n3ϵ2

−
π3c2µ(n − 1)(n + 1)2

(
cosh

(
2πℓ
β

)
− 7
)

csch2
(

πℓ
β

)
864β2n3

+

π3c2µ(n − 1)(n + 1)2 coth2
(

πℓ
β

)
log
(

β sinh(πℓ
β )

2πϵ

)
36β2n3

.

When n = 1, only the first term survives, and it gives the leading order
correction to the entanglement entropy. The second term diverges as
1/ϵ2 and does not depend on β and ℓ. The third term does not depend
on the cutoff ϵ and can have a finite contribution when n ̸= 1. The last
term has the form # log

(β sinh(πℓ
β )

2πϵ

)
, recalling that log

(β sinh(πℓ
β )

2πϵ

)
is the

original entanglement entropy.
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Finite size case

Another simple case is a 2D deformed CFT at zero temperature but with
a finite size L. The spatial direction is now compactified, while the time
direction is non-compact so the manifold M is still an infinitely long
cylinder with circumference L.
Remarkably, the correction to the entanglement entropy is simply
vanishing

δS(A) = 0.

The entanglement entropy is simply

S(A) = c
3

log
(

L
πϵ0

sin
(
πℓ

L

))
,

with ϵ0 the CFT cutoff.
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Rényi entropy

δSn(A) =
πc2µ(n − 1)(n + 1)2

576n3ϵ2

−
π3c2µ(n − 1)(n + 1)2

(
11 cos

(
2πℓ

L
)
+ 19

)
csc2

(
πℓ
L
)

864L2n3

+

π3c2µ(n − 1)(n + 1)2 cot2
(
πℓ
L
)

log
(

L sin(πℓ
L )

2πϵ

)
36L2n3

.

When n = 1, it is vanishing as we expect. Let us compare it with the
finite T case: the quadratic divergent terms (1/ϵ2) are the same, which is
independent of the finite temperature or finite size; their logarithmic
terms are the same under the identification L ↔ iβ.
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Remarks

Our results suggest that at the leading order of µ, the correction to the
(Rényi) entanglement entropy takes a universal form, independent of the
details of the CFT.

It holds for a generic CFT and no matter the parameter µ is positive or
negative.

In the following, we would like to compare them with the holographic
computation.
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Holographic entanglement entropy

Ryu and Takayanagi(2006): Find a codimension two minimal surface ΣA
in the bulk that is homogeneous to A.

▶ The holographic entanglement
entropy (for Einstein gravity)

SA =
Area(ΣA)

4GN

For the AdS3 gravity, the minimal surface is simply a geodesic ending on
the branch points.
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HEE in the deformed theory
For the holographic CFT

c =
3l
2G ,

one has to take the large c limit

c → ∞, µ̃c fixed

Considering the BTZ BH with radial truncation at r = rc, the holographic
EE is captured by the geodesic length via the RT formula

λ

4G ≃ S0(ℓ)−
π4c2µℓ
9β3

coth
(
πℓ

β

)
Now the cutoff surface induce

ϵ0 =
l2
rc
.

The HEE is in exact agreement with the field theory result at finite T to
the leading order of µ.

Holographically, δS(A) = 0 in the finite size case could be understood as
the redefinition of the cutoff.
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HEE in the deformed theory
For the holographic CFT

c =
3l
2G ,

one has to take the large c limit

c → ∞, µ̃c fixed

Considering the BTZ BH with radial truncation at r = rc, the holographic
EE is captured by the geodesic length via the RT formula

λ

4G ≃ S0(ℓ)−
π4c2µℓ
9β3

coth
(
πℓ

β

)
Now the cutoff surface induce

ϵ0 =
l2
rc
.

The HEE is in exact agreement with the field theory result at finite T to
the leading order of µ.
Holographically, δS(A) = 0 in the finite size case could be understood as
the redefinition of the cutoff.
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More general picture

Actually, for a general state in CFT, the holographic EE always agrees
with the field theory result.
The bulk action of the truncated geometry is

I = IEH + IGH + ICT,

= − c
96π

∫
dzdz̄(2a2 + a4b2e−2ϕ − 8∂∂̄ϕ).

where a = ∂ϕ, with ϕ being the Liouville field and

b2 =
µc
24π

.

In the Fefferman-Graham gauge with a proper regulator surface, the first
term in the above action gives the usual holographic Rényi entropy. The
last term is vanishing, while the middle term gives the correction to the
HRE

I2 = −µ < TT >CFT .
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Conclusions and Discussions

We computed the correction to the single-interval (Rényi) entanglement
entropy due to the TT deformation.

The correction is of universal feature, independent of the details of the
CFT.

For the holographic CFT, we compared the result with the dual gravity
computation and found the consistent picture.
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Open questions

The TT-deformed holographic CFT opens a new window to study the
AdS3 gravity in a compact region.

Quantum gravity in a finite region? say, in de Sitter space?

Other kinds of boundary conditions at the finite cutoff surface?
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Thanks for your attention!
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