Summary 00000 000000

Higher Spin and Yangian

Wei Li

Strings-QFT-Cosmology Workshop

Huzhou, 2018/11/24

Reference

Stringy symmetry

1. Higher Spins and Yangian Symmetries

JHEP **1704**, 152 (2017), [arXiv:1702.05100] with Matthias Gaberdiel, Rajesh Gopakumar, and Cheng Peng

- Twisted sectors from plane partitions
 JHEP 1609, 138 (2016), [arXiv:1606.07070]
 with Shouvik Datta, Matthias Gaberdiel, and Cheng Peng
- 3. The supersymmetric affine yangian JHEP 1805, 200 (2018), [arXiv:1711.07449] with Matthias Gaberdiel, Cheng Peng, and Hong Zhang
- 4. Twin plane partitions and $\mathcal{N} = 2$ affine yangian JHEP 1812, xxx (2018), [arXiv:1807.11304]

with Matthias Gaberdiel and Cheng Peng

Summary 00000 000000

Stringy symmetry

Main question: what is the hidden stringy symmetry?

Summary 00000 000000

Stringy symmetry

Dualites in string theory: M

Stringy symmetry

Summary 00000 000000

Dualites in string theory: AdS/CFT

Summary 00000 000000

Stringy symmetry

There is a large hidden symmetry in string theory

Intro	W—Affine Yangian—Plane Partition
000000000000000000000000000000000000000	000000
000	0000000

Stringy symmetry

Summary 00000 000000

How to see these symmetries explicitly?

Summary 00000 000000

Stringy symmetry

Different manifestation of stringy symmetry

Stringy symmetry

Higher spin symmetry and stringy symmetry

- String theory has infinite number of massive higher spin particles
- Tensionless limit:

massive higher spin particle \Longrightarrow massless \Longrightarrow stringy symmetry

 subalgebra: Vasiliev higher spin symmetry (one per spin) (from Leading Regge trajectory) Vasiliev '91

Sundborg '01, Witten '01, Mikhailov '02, Klebanov-Polyakov '02

► Tensionless String in AdS₃ ⇒ maximal stringy symmetry?

Gaberdiel Gopakumar '15

• higher spin symmetry $\implies \mathcal{W}$ symmetry

(Virasoro + higher spin currents)

Campoleoni Fredenhagen Pfenninger Theisen '10, Henneaux Rey '10

Stringy symmetry

Integrability and string theory

Integrability $\Longrightarrow \infty$ number of conserved charges

Also appear in string theory

- CFT dual of string in AdS
 - string in $AdS_5 \times S^5$

Minahan Zarembo '02, Beisert Kristjansen Staudacher '03 Bena Polchinsk Roiban '03

• string in $AdS_4 \times \mathbb{CP}^3$

Minahan Zarembo '08, Gromov Vieira '08...

• string in $AdS_3 \times S^3 \times \mathcal{M}_4$

Babichenko Stefanski Zarembo '09, Ohlson-Sax Stefanski '11 Borsato Ohlsson-Sax Sfondrini Stefanski Torrielli '12.....

- supersymmetric gauge theories fromg string
 - AGT and its extensions....

Summary 00000 000000

Stringy symmetry

Different manifestation of stringy symmetry

Stringy symmetry

Summary 00000 000000

Different manifestation of stringy symmetry

Intro

W—Affine Yangian—Plane Partition

Stringy symmetry

Today

Summary 00000 000000

Stringy symmetry

A concrete relation between HS and integrability

Summary 00000 000000

Stringy symmetry

Application: plane partition as representations of \mathcal{W}_∞

Two questions

- 1. Supersymmetrize \triangle ?
- 2. \triangle as lego pieces for new VOA/affine Yangian?

A surprising (partial) answer

Glue two riangle to get $\mathcal{N}=2$ version of riangle

Intro	W—Affine Yangian—Plane Partition
000000000000000000000000000000000000000	000000
000	
000	00000000

Summary 00000 000000

$\mathcal{N} = 2$ version?

Gluing

Intro	W—Affine Yangian—Plane Partition
000000000000000000000000000000000000000	000000
000	

Gluing

Summary 00000 000000

New Yangian algebra from W algebra

Corner chiral algebra

Summary 00000 000000

Finite truncation of affine Yangian of \mathfrak{gl}_1

Fukuda Matsuo Nakamura Zhu '15

Prochazka '15

gives chiral algebra of Y-junction

Gaiotto Rapcak '17

 Gluing of these finite truncations should give chiral algebra of Y-junction webs

Rapcak Prochazka'17

NS5

5-brane junction with D3 brane interfaces

 $x_3 \xrightarrow{x_3} x_2$

 x_4, x_5, x_6

L D3

 $\begin{array}{c} & & & \\ &$

N D3

picture: Gaiotto Rapcak '17

Gaiotto Rapcak '17

conjecture: VOA on the 2D junction of 4D QFT

Intro	W—Affine Yangian—Plane Partition			
000000000000000000000000000000000000000	000000			
000				
Corner chiral algebra				

Summary 00000 000000

Outline

Intro

W—Affine Yangian—Plane Partition

Gluing and $\mathcal{N}=2$ affine Yangian

Summary

Summary 00000 000000

W—Affine Yangian

Relation between W algebra and affine Yangian

	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	
000000000000000000000000000000000000000	000000	0000000000	00000
000	0000000	00000000000	
W—Affine Yangia	in		

Modes of $\mathcal{W}_{1+\infty}$

		$W^{(s)}($	$z) = \sum_{n \in I}$	$\sum_{\mathbb{Z}} \frac{W_n^{(s)}}{z^{n+s}}$	s =	1, 2, 3	,				
÷	:	•	:	:	:	÷	÷	÷	÷	÷	
spin-5		X_{-4}	X_{-3}	X_{-2}	X_{-1}	X_0	X_1	X_2	X_3	X_4	
spin-4		U_{-4}	U_{-3}	U_{-2}	U_{-1}	U_0	U_1	U_2	U_3	U_4	
spin-3		W_{-4}	W_{-3}	W_{-2}	W_{-1}	W_0	W_1	W_2	W_3	W_4	
spin-2		L_{-4}	L_{-3}	L_{-2}	L_{-1}	L_0	L_1	L_2	L_3	L_4	
spin-1		J_{-4}	J_{-3}	J_{-2}	J_{-1}	J_0	J_1	J_2	J_3	J_4	

Intro	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	Sur
00000000	0000000000	00000000000	00
000	0000000	0000000000	00
W—Affine `	Yangian		

Regrouping the modes

$$W^{(s)}(z) = \sum_{n \in \mathbb{Z}} \frac{W_n^{(s)}}{z^{n+s}} \qquad s = 1, 2, 3, \dots$$

				•	•				
:	:	:	:	:	:	:	:	:	:
spin-5		X_{-3}	X_{-2}	$X_{-1} \sim e_4$	$X_0 \sim \psi_5$	$X_1 \sim f_4$	X_2	X_3	X_4
spin-4		U_{-3}	U_{-2}	$U_{-1} \sim e_3$	$U_0 \sim \psi_4$	$U_1 \sim f_3$	U_2	U_3	U_4
spin-3		W_{-3}	W_{-2}	$W_{-1} \sim e_2$	$W_0 \sim \psi_3$	$W_1 \sim f_2$	W_2	W_3	W_4
spin-2		L_{-3}	L_{-2}	$L_{-1} \sim e_1$	$L_0 \sim \psi_2$	$L_1 \sim f_1$	L_2	L_3	L_4
spin-1		J_{-3}	J_{-2}	$J_{-1} \sim e_0$	$J_0 \sim \psi_1$	$J_1 \sim f_0$	J_2	J_3	J_4

affine Yangian generators

$$e(z) = \sum_{j=0}^{\infty} \frac{e_j}{z^{j+1}} \qquad \psi(z) = 1 + \sigma_3 \sum_{j=0}^{\infty} \frac{\psi_j}{z^{j+1}} \qquad f(z) = \sum_{j=0}^{\infty} \frac{f_j}{z^{j+1}}$$

Intro	W—Affine Yangian—Plane Partition
000000000000000000000000000000000000000	000000
000	0000000

Summary 00000 000000

Affine Yangian of \mathfrak{gl}_1

<u>Def:</u> Associative algebra with generators e_j, f_j and $\psi_j, j = 0, 1, \ldots$

Generators

W—Affine Yangian

$$\psi(z) = 1 + (h_1 h_2 h_3) \sum_{j=0}^{\infty} \frac{\psi_j}{z^{j+1}} \qquad e(z) = \sum_{j=0}^{\infty} \frac{e_j}{z^{j+1}} \qquad f(z) = \sum_{j=0}^{\infty} \frac{f_j}{z^{j+1}}$$

- Parameters (h_1, h_2, h_3) with $h_1 + h_2 + h_3 = 0$
- One S_3 invariant function $\varphi(z) = \frac{(z+h_1)(z+h_2)(z+h_3)}{(z-h_1)(z-h_2)(z-h_3)}$
- Defining relations

$$\begin{split} [e(z), f(w)] &= -\frac{1}{h_1 h_2 h_3} \frac{\psi(z) - \psi(w)}{z - w} \\ \psi(z) \, e(w) &\sim \quad \varphi(z - w) \, e(w) \, \psi(z) \quad \psi(z) \, f(w) \, \sim \, \varphi(w - z) \, f(w) \, \psi(z) \\ e(z) \, e(w) \, \sim \quad \varphi(z - w) \, e(w) \, e(z) \quad f(z) \, f(w) \, \sim \, \varphi(w - z) \, f(w) \, f(z) \end{split}$$

Summary 00000 000000

W—Affine Yangian

W algebra and affine Yangian

$\mathcal{Y}[\widehat{\mathfrak{gl}_1}] \cong \mathrm{UEA}[\mathcal{W}_{1+\infty}[\lambda]]$

Procházka '15

Gaberdiel Gopakumar Li Peng '17

for q-version $\mathcal{U}[\widehat{\mathfrak{gl}_1}] \cong \mathrm{UEA}[q\text{-}\mathcal{W}_{1+\infty}[\lambda]]$ *Miki '07*

Feigin Jimbo Miwa Mukhin '10-11

W-Affine Yangian

Advantages of affine Yangian over \mathcal{W}_∞

- 1. number of generators
 - \mathcal{W}_{∞} : ∞

 $J(z), T(z), W^{(3)}(z), W^{(4)}(z) \dots$

• affine Yangian of \mathfrak{gl}_1 : only 3

$$\psi(z), e(z), f(z)$$

- 2. Defining relations
 - \mathcal{W}_{∞} :

non-linear, fixed order by order by Jacobi-identities

affine Yangian of gl₁:

linear, given explicitly

- 3. S_3 invariance
 - \mathcal{W}_{∞} : Hidden
 - affine Yangian of gl₁: manifest

Summary 00000 000000

Plane partition

Plane partition as representations of affine Yangian

Summary 00000 000000

Plane partition

Plane partition via box stacking

Plane partition

Summary 00000 000000

Plane partition with non-trivial asymptotics

Ground state of $(\Lambda_x, \Lambda_y, \Lambda_z)$

Plane partition

Summary 00000 000000

Plane partition with non-trivial asymptotics

a level-7 excited states of $(\Lambda_x,\Lambda_y,\Lambda_z)$

ntro W—Affine Yangian—Plane Partition

Summary 00000 000000

Plane partition

Plane partitions are faithful representations of $\hat{\mathcal{Y}}(\mathfrak{gl}_1)$

Plane partition

Summary 00000 000000

Action of $\hat{\mathcal{Y}}(\mathfrak{gl}_1)$ on a plane partition

 $\begin{array}{l} \flat \ \psi(z) \text{ acts diagonally} & Tsymbaliuk '14, \ Prochazka '15 \\ \psi(z)|\Lambda\rangle = \psi_{\Lambda}(z)|\Lambda\rangle \\ \\ \psi_{\Lambda}(z) \equiv \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \prod_{\square \in (\Lambda)} \varphi(z - h(\square)) \\ \\ \\ h(\square) = h_1 x(\square) + h_2 y(\square) + h_3 z(\square) \end{array}$

• e(z) adds one box

$$e(z)|\Lambda\rangle = \sum_{\square \in \operatorname{Add}(\Lambda)} \frac{\left[-\frac{1}{\sigma_3} \operatorname{Res}_{w=h(\square)} \psi_{\Lambda}(w)\right]^{\frac{1}{2}}}{z-h(\square)} |\Lambda + \square\rangle$$

• f(z) removes one box

$$f(z)|\Lambda\rangle = \sum_{\square\in \operatorname{Rem}(\Lambda)} \frac{\left[-\frac{1}{\sigma_3} \operatorname{Res}_{w=h(\square)} \psi_{\Lambda}(w)\right]^{\frac{1}{2}}}{z-h(\square)}|\Lambda-\square\rangle$$

Wei Li

Higher Spin and Yangian

Plane partition

Summary 00000 000000

plane partition as representations

Summary 00000 000000

Plane partition

Plane partition as representations of W

vacuum

perturbative in Vasiliev

non-perturbative in Vasiliev new representation

character of $\mathcal{W}_{1+\infty}$ = generating function of plane partition

Intro

W—Affine Yangian—Plane Partition

00000000 00000000

Applications

Application

Summary 00000 000000

► Make S₃ symmetry in W CFT manifest

Character computation more transparent
Applications

Summary 00000 000000

S_3 action on 't Hooft coupling

 $\mathcal{W}_{N,k}$ coset

Applications

 $\mathfrak{su}(N)_k \oplus \mathfrak{su}(N)_1$ $\mathfrak{su}(N)_{k+1}$ 't Hooft coupling $\lambda = \frac{N}{N+k}$ transform under \mathcal{S}_3 $\frac{N}{N+k}$ σ_1 σ_2 $\frac{N}{N+k+1}$ σ_2 σ_1 N $\frac{N}{N+k+1}$ σ_1 σ_2 $\frac{N}{N+k}$

Summary 00000 000000

Triality symmetry for higher spin holography

For fixed c, three $\mathcal{W}_{\infty}[\lambda]$ are isomorphic Gaberdiel Gopakumar '12

Crucial in Higher spin AdS_3/CFT_2 (Vasiliev theory in $AdS_3 = W_{N,k}$ coset)

• \mathcal{S}_3 symmetry in $\mathcal{W}_\infty\mathsf{CFT}$ is highly non-trivial

hard to check/prove

Gaberdiel Gopakumar '12, Linshaw '17

- ▶ UV IR
- Manifest in $\mathcal{Y}[\widehat{\mathfrak{gl}_1}]$

	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	
00000000	000000000	0000000000	0000
000	0000000	0000000000	0000
	000000000		
Applications			

$$\mathcal{Y}[\widehat{\mathfrak{gl}_1}]$$
 depends on (h_1,h_2,h_3) symmetrically

$$h_1 = -\sqrt{\frac{N+k+1}{N+k}} \qquad h_2 = \sqrt{\frac{N+k}{N+k+1}} \qquad h_3 = \frac{1}{\sqrt{(N+k)(N+k+1)}}$$

Procházka '15, Gaberdiel Gopakumar Li Peng '17

Under S_3 transformation on (N, k)

Summary 00000 000000

\mathcal{S}_3 symmetry of plane partition

The representations of \mathcal{W}_∞ comes in \mathcal{S}_3 family

W—Affine Yangian—Plane Partition

000000000

Applications

Application

Character computation more transparent

	W—Affine Yangian—Plane Partition			
0000000000000000				
000	00000000			
$\mathcal{N} = 2 \mathcal{W}_{\infty}$				

Summary 00000 000000

Outline

Intro

W—Affine Yangian—Plane Partition

Gluing and $\mathcal{N}=2$ affine Yangian

Summary

 $\mathcal{N} = 2 \mathcal{W}_{\infty}$

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 000000

Bosonic W and affine Yangian

Summary 00000 000000

Two questions

1. Supersymmetrize \triangle ?

△ as lego pieces for new VOA/affine Yangian? Rapcak Prochazka '17, Gaberdiel Li Peng Zhang'17

A surprising (partial) answer

Glue two riangle to get $\mathcal{N}=2$ version of riangle

Gaberdiel Li Peng Zhang'17

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 000000

$\mathcal{N} = 2$ version?

 $\mathcal{N} = 2 \mathcal{W}_{\infty}$

Constructing $\mathcal{N} = 2$ version

1. Rewrite representations of $\mathcal{N}=2$ \mathcal{W}_{∞} in terms of (some version) of plane partitions

Twin plane partition

- 2. Define $\mathcal{N}=2$ affine Yangian such that
 - twin plane partitions are faithful representations
 - reproduce $\mathcal{N} = 2 \mathcal{W}_{\infty}$ charges

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 000000

$\mathcal{N}=2$ version

 $\underline{N} = 2 W_{\infty}$

 $\mathcal{N} = 2 \mathcal{W}_{\infty}$

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 000000

Simplest gluing: 2 vertices and 1 internal leg

	W—Affine Yangian—Plane Partition			
0000000000000000				
000	00000000			
$\mathcal{N} = 2 \ \mathcal{W}_{\infty}$				

Summary 00000 000000

Two copies: left and right

 $\mathcal{N} = 2 \mathcal{W}_{\infty}$

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 000000

Gluing: two external legs facing opposite directions

 $\mathcal{N} = 2 \mathcal{W}_{\infty}$

Gluing and $\mathcal{N}=2$ affine Yangian

Summary 00000 000000

Gluing: two external legs fuse and become internal leg

Summary 00000 000000

Building blocks and gluing

1. Algebra: $\mathcal{W}_{1+\infty} \Rightarrow$ affine Yangian of \mathfrak{gl}_1 2. Representation:plane partitions

- Algebra: internal leg ⇒ additional operators
 Representation:
 - bi-module: change b.c. for both vertices

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 000000

Building blocks and gluing

 $\mathcal{N} = 2 \mathcal{W}_{\infty}$

Summary 00000 000000

$\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$ algebra

One $\mathcal{N} = 2$ multiplet per spin Creutzig, Hikida, Ronne '11 Candu Gaberdiel '12 $\begin{pmatrix} & T & & \\ G^- & & G^+ \\ & J & & \\ & & & W^{(2)0} \end{pmatrix} \begin{pmatrix} & W^{(2)1} & & \\ W^{(2)-} & & W^{(2)+} \\ & & & & W^{(3)0} \end{pmatrix} \begin{pmatrix} & W^{(3)1} & & \\ & & & W^{(3)+} \\ & & & & W^{(3)0} \end{pmatrix} \dots$ Rearrange by spin $W^{(3)1}$ 4 7 2 3 5 2 2 3 2 1 $W^{(3)} W^{(3)+}$ $W^{(3)0}$ $W^{(2)+}$

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 000000

$\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$ algebra

One $\mathcal{N} = 2$ multiplet per spin Creutzig, Hikida, Ronne '11 Candu Gaberdiel '12 $\begin{pmatrix} & T & & \\ G^- & & G^+ \\ & J & & \\ & & & W^{(2)-} & & \\ & & & W^{(2)+} \\ & & & & W^{(3)-} & & \\ & & & & W^{(3)+} \\ & & & & & \\ & & & & & W^{(3)+} \end{pmatrix} \dots$ Rearrange by spin $W^{(3)1}$ $\frac{4}{72} \frac{7}{2} \frac{3}{52} \frac{5}{2} \frac{3}{2} \frac{3}{2} \frac{1}{2}$ $W^{(3)} W^{(3)+}$ $W^{(2)-} = egin{array}{c} W^{(2)1} \ W^{(2)0} \end{array}$ $W^{(2)+}$ $W^{(3)0}$ $\begin{array}{cc} & T \\ G^- & & G^+ \end{array}$ U $\mathfrak{u}(1) \oplus \mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda]$ has 2 fields per spin Wei Li Higher Spin and Yangian 58 / 94

Decomposing $\mathcal{N} = 2 \mathcal{W}_{\infty}[\lambda]$ — bosonic part • Conjecture: $\mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda]$ has two bosonic \mathcal{W}_{∞} subalgebra Vasiliev shs[λ] \supset hs[λ] \oplus hs[$1 - \lambda$] Prokushkin Vasiliev '98 wedge subalgbra $\mathcal{N} = 2 \quad \mathcal{W}_{\infty}[\lambda] \quad \supset \quad \mathcal{W}_{\infty}[\lambda] \oplus \mathcal{W}_{\infty}[1-\lambda]$ Truncation $\mathcal{N} = 2$ \mathcal{W}_3 \supset Virasoro \oplus Virasoro Romans '92

Decomposing $\mathcal{N} = 2 \mathcal{W}_{\infty}[\lambda]$ — bosonic part • Conjecture: $\mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda]$ has two bosonic \mathcal{W}_{∞} subalgebra Vasiliev shs[λ] \supset hs[λ] \oplus hs[$1 - \lambda$] Prokushkin Vasiliev '98 wedge subalgbra $\mathcal{N} = 2 \quad \mathcal{W}_{\infty}[\lambda] \quad \supset \quad \mathcal{W}_{\infty}[\lambda] \oplus \mathcal{W}_{\infty}[1-\lambda]$ Truncation $\mathcal{N} = 2 \quad \mathcal{W}_3 \quad \supset \quad \text{Virasoro} \oplus \text{Virasoro}$ Romans '92 • Checked up to s = 3 (non-trivial!) Gaberdiel Li Peng Zhang '17 to appear

Decomposing $\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$ — fermionic part

Bosonic sub-algebra

$$\mathfrak{u}(1) \oplus \mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda] \supset \mathcal{W}_{1+\infty}[\lambda] \oplus \mathcal{W}_{1+\infty}[1-\lambda]$$

How do fermions fit in?

Summary 00000 000000

Decomposing $\mathcal{W}^{\mathcal{N}=2}_\infty[\lambda]$ vacuum character

• Vacuum character of $\mathfrak{u}(1) \oplus \mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda]$

$$\begin{split} \chi_{0}^{\mathrm{Full}}(q,y) &= \prod_{n=1}^{\infty} \frac{(1+yq^{n+\frac{1}{2}})^{n}(1+\frac{1}{y}q^{n+\frac{1}{2}})^{n}}{(1-q^{n})^{2n}} \\ &= \chi_{\mathrm{pp}}(q) \Biggl(\sum_{\mathrm{R}} y^{|\mathrm{R}|} \chi_{\mathrm{R}}^{(\mathrm{wedge})\,[\lambda]}(q) \cdot \chi_{\bar{\mathrm{R}}^{T}}^{(\mathrm{wedge})\,[1-\lambda]}(q) \Biggr) \\ &\quad \cdot \Biggl(\sum_{\mathrm{S}} \frac{1}{y^{|\mathrm{S}|}} \chi_{\bar{\mathrm{S}}}^{(\mathrm{wedge})\,[\lambda]}(q) \cdot \chi_{\mathrm{S}^{T}}^{(\mathrm{wedge})\,[1-\lambda]}(q) \Biggr) \chi_{\mathrm{pp}}(q) \end{split}$$

Fermions transform as

$$(
ho,\overline{
ho^t})$$
 $(\overline{
ho^t},
ho)$ of $\mathcal{W}_{1+\infty}[\lambda]\oplus\mathcal{W}_{1+\infty}[1-\lambda]$

Gluing and $\mathcal{N} = 2$ affine Yangian

Gaberdiel Li Peng Zhang '17

Summary 00000 000000

Decomposing $\mathcal{N} = 2 \mathcal{W}_{\infty}[\lambda]$

1. Bosonic sub-algebra

 $\mathcal{W}_{1+\infty}[\lambda] \oplus \mathcal{W}_{1+\infty}[1-\lambda]$

2. Fermions:

 $(
ho, \overline{
ho^t})$ $(\overline{
ho^t},
ho)$

How to translate these into affine Yangian ?

Wei Li

Higher Spin and Yangian

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 000000

Decomposing $\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$

Gaberdiel Li Peng Zhang '17

1. Bosonic sub-algebra

Left plane partition

right plane partition

2. Fermions: internal legs \implies additional operators $(\rho, \overline{\rho^t})$ $(\overline{\rho^t}, \rho)$

How to translate these into affine Yangian ?

Higher Spin and Yangian

Summary 00000 000000

$(\Box,\overline{\Box})$ connecting two plane partitions

Summary 00000 000000

$(\Box, \overline{\exists})$ connecting two plane partitions

Summary 00000 000000

(\square, \square) connecting two plane partitions

Summary 00000 000000

$(\overline{\square}, \square)$ connecting two plane partitions

Summary 00000 000000

What are the generators of internal leg?

From plane partition building blocks to yangian generators Bosonic sub-algebra $\widehat{\mathcal{Y}(\mathfrak{gl}_1)} \oplus \widehat{\mathcal{Y}(\mathfrak{gl}_1)}$

e/f: adds/removes

- $\hat{\psi}$: Cartan of right $\widehat{\mathcal{Y}(\mathfrak{gl}_1)}$
- \hat{e}/\hat{f} : adds/removes $\widehat{\Box}$

Fermions = internal legs = additional operators

Gaberdiel Li Peng Zhang '17

e

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 000000

Building blocks of bosonic affine Yangian of \mathfrak{gl}_1

ψ

Summary 00000 000000

Building blocks of bosonic affine Yangian of \mathfrak{gl}_1

Summary 00000 000000

A pair of bosonic affine Yangian of \mathfrak{gl}_1

Summary 00000 000000

Building blocks of $\mathcal{N}=2$ affine Yangian of \mathfrak{gl}_1

Constructing $\mathcal{N} = 2$ version

1. Rewrite representations of $\mathcal{N}=2$ \mathcal{W}_{∞} in terms of (some version) of plane partitions

Twin plane partition

- 2. Define $\mathcal{N}=2$ affine Yangian such that
 - twin plane partitions are faithful representations
 - reproduce $\mathcal{N} = 2 \mathcal{W}_{\infty}$ charges

Summary 00000 000000

Bosonic affine Yangian: $\varphi_3(z)$ plays central role

 $\begin{array}{lll} \psi(z) \, e(w) &\sim & \varphi_3(z-w) \, e(w) \, \psi(z) & & \psi(z) \, f(w) \, \sim & \varphi_3(w-z) \, f(w) \, \psi(z) \\ e(z) \, e(w) &\sim & \varphi_3(z-w) \, e(w) \, e(z) & & f(z) \, f(w) \, \sim & \varphi_3(w-z) \, f(w) \, f(z) \end{array}$

$$\varphi_3(z) = \frac{(z+h_1)(z+h_2)(z+h_3)}{(z-h_1)(z-h_2)(z-h_3)}$$

 $\flat \psi(z)|\Lambda\rangle = \psi_{\Lambda}(z)|\Lambda\rangle$

$$\psi_{\Lambda}(z) \equiv \left(1 + rac{\psi_0 \sigma_3}{z}
ight) \prod_{\square \in \Lambda} \varphi_3(z - h(\square))$$

Wei Li

Higher Spin and Yangian

76 / 94

Summary 00000 000000

Internal leg: $\varphi_2(z)$ build directly from $\varphi_2(z)$

$$\begin{cases} \psi(z) &= \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \prod_{n=0}^{\infty} \varphi_3(z - nh_2) = \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \varphi_2(z) \\ \hat{\psi}(z) &= \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \varphi_2^{-1}(-z - \sigma_3 \hat{\psi}_0) \\ \\ \hline \varphi_2(z) &= \frac{z(z + h_2)}{(z - h_1)(z - h_3)} \end{cases}$$

Summary 00000 000000

Building $\mathcal{N} = 2$ affine Yangian of \mathfrak{gl}_1

Summary 00000 000000

Building $\mathcal{N} = 2$ affine Yangian of \mathfrak{gl}_1

Summary 00000 000000

Building $\mathcal{N} = 2$ affine Yangian of \mathfrak{gl}_1

Summary 00000 000000

Building $\mathcal{N} = 2$ affine Yangian of \mathfrak{gl}_1

Gluing and $\mathcal{N}=2$ affine Yangian

Summary 00000 000000

Summary 00000 000000

Lessons

- plane partition is also very useful in the gluing process
 - visualize Fock space
 - Define algebra by faithful representation

	W—Affine Yangian—Plane Partition	
0000000000000000		
	0000000	

Summary

Outline

Intro

W—Affine Yangian—Plane Partition

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary

Summary

HS and integrability within stringy symmetry

Summary

Summary

W — affine Yangian — Plane partition

Summary

Summary

Applications of bosonic triangle

► Make S₃ symmetry in W CFT manifest

Character computation more transparent

	W—Affine Yangian—Plane Partition
	000000
000	00000000

Summary

New affine Yangian via gluing

	W—Affine Yangian—Plane Partition	
0000000000000000		
000	0000000	
Future		

Open problems

1. large
$$\mathcal{N} = 4 \mathcal{W}_{\infty}[\lambda]$$

- 2. Classification of affine Yangians from gluing
- 3. Gluing of finite truncations

Future

chiral algebra of the $\left(p,q\right)$ web

	W—Affine Yangian—Plane Partition
	000000
000	0000000

Future

Gluing example: 4 vertices and 3 internal legs

More open problems

Future

- 1. Deeper relation between higher spin symmetry and integrable structure ?
- 2. What is stringy symmetry?

3. Application of stringy symmetry?

Summary 00000 000000

Future

Different manifestation of stringy symmetry

	W—Affine Yangian—Plane Partition	
0000000000000000		
000	0000000	

Future

Thank you very much !