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The topic
➤ The “God” particle 

➤ Discovered in 2012 at 
LHC 

➤ Electroweak symmetry 
breaking 

➤ Quark masses and lepton 
masses



A key quest of LHC: Higgs properties

ATLAS-CONF-2019-005

Probing Higgs Couplings at the LHC �4
The Higgs boson at the LHC.
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What do we expect to gain?



The Higgs potential
Key to electroweak phase transition, vacuum stability, etc.

But: LHC (currently) can only tell us very limited information!



The Higgs potential

Each possibility associated to completely different EWSB mechanism, with crucial implications for the 
hierarchy problem, the structure of quantum field theory, and New Physics at the EW scale

Current measurements (couplings in single Higgs production) probe  Higgs potential close to minimum!

Double Higgs production essential to reconstruct the full Higgs potential and clarify EWSB mechanism!

The Higgs potential is ad-hoc: many other EWSB mechanisms conceivable

3

Higgs mechanism Coleman-Weinberg mechanism

single h prod double h prod

Arkani-Hamed, Han, Mangano, Wang, arxiv:1511.06495

EW symmetry breaking: what we don’t know

Juan Rojo                                                                                                                   DIS2017, Birmingham, 04/04/2017

What LHC can tell us now What’s the global picture?

V (h) =
m2

h

2
h2 + · · ·
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Key to electroweak phase transition, vacuum stability, etc.

But: LHC (currently) can only tell us very limited information!



Higgs potential: alternatives
The SM assumes V (�) = �µ2�†�+
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Higgs potential: alternatives
The SM assumes V (�) = �µ2�†�+
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Not the only option!

Coleman-Weinberg?

Not fundamental?
More than one Higgs?



Higgs self-coupling
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FIG. 1: Sample Feynman graphs contributing to pp → hh+X. Graphs of type (a) yield vanishing contributions due to color
conservation.

cal configuration†, which is characterized by a large di-
higgs invariant mass, but with a potentially smaller Higgs
s-channel suppression than encountered in the back-to-
back configuration of gg → hh.
The goal of this paper is to provide a comparative

study of the prospects of the measurement of the trilinear
Higgs coupling applying contemporary simulation and
analysis techniques. In the light of recent LHC measure-
ments, we focus our eventual analyses on mh = 125 GeV.
However, we also put this particular mass into the con-
text of a complete discussion of the sensitivity towards
the trilinear Higgs coupling over the entire Higgs mass
range mh

<∼ 1 TeV. As we will see, mh ≃ 125 GeV is a
rather special case. Since Higgs self-coupling measure-
ments involve end-of-lifetime luminosities we base our
analyses on a center-of-mass energy of 14 TeV.
We begin with a discussion of some general aspects

of double Higgs production, before we review inclusive
searches for mh = 125 GeV in the pp → hh+X channel
in Sec. II C. We discuss boosted Higgs final states in pp →
hh+X in Sec. II D before we discuss pp → hh+j+X with
the Higgses recoiling against a hard jet in Sec. III. Doing
so we investigate the potential sensitivity at the parton-
and signal-level to define an analysis strategy before we
apply it to the fully showered and hadronized final state.
We give our conclusions in Sec. IV.

II. HIGGS PAIR PRODUCTION AT THE LHC

A. General Remarks

Inclusive Higgs pair production has already been stud-
ied in Refs. [14–17] so we limit ourselves to the details
that are relevant for our analysis.
Higgs pairs are produced at hadron colliders such as

the LHC via a range of partonic subprocesses, the most
dominant of which are depicted in Fig. 1. An approxima-
tion which is often employed in phenomenological studies
is the heavy top quark limit, which gives rise to effective

†The phenomenology of such configurations can also be treated sep-
arately from radiative correction contributions to pp → hh+X.

ggh and gghh interactions [20]

Leff =
1

4

αs

3π
Ga

µνG
aµν log(1 + h/v) , (2)

which upon expansion leads to

L ⊃ +
1

4

αs

3πv
Ga

µνG
aµνh−

1

4

αs

6πv2
Ga

µνG
aµνh2 . (3)

Studying these operators in the hh+X final state should
in principle allow the Higgs self-coupling to be con-
strained via the relative contribution of trilinear and
quartic interactions to the integrated cross section. Note
that the operators in Eq. (3) have different signs which
indicates important interference between the (nested)
three- and four point contributions to pp → hh + X al-
ready at the effective theory level.
On the other hand, it is known that the effective theory

of Eq. (3) insufficiently reproduces all kinematical prop-
erties of the full theory if the interactions are probed
at momentum transfers Q2 >∼ m2

t [11] and the massive
quark loops are resolved. Since our analysis partly re-
lies on boosted final states, we need to take into account
the full one-loop contribution to dihiggs production to
realistically model the phenomenology.

B. Parton-level considerations

In order to properly take into account the full dynam-
ics of Higgs pair production in the SM we have imple-
mented the matrix element that follows from Fig. 1 in
the Vbfnlo framework [21] with the help of the Fey-

nArts/FormCalc/LoopTools packages [22], with
modifications such to include a non-SM trilinear Higgs
coupling‡. Our setup allows us to obtain event files ac-
cording to the Les Houches standard [23], which can be
straightforwardly interfaced to parton showers. Decay
correlations are trivially incorporated due to the spin-0
nature of the SM Higgs boson.

‡The signal Monte Carlo code underlying this study is planned to
become part of the next update of Vbfnlo and is available upon
request until then.

V (h) =
m2

h

2
h2 + �3h

3 + �4h
4 + · · ·

<latexit sha1_base64="CxnXaG9EqVvPi0ak9pxLIjs7kII="></latexit>

May test the next term in the Taylor expansion of the potential 
around our vacuum

Higgs pair production

Sounds good…



Not that simple!
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Figure 1: The Feynman diagrams contributing to gg ! hh, including those induced by
higher-dimensional operators. The grey blobs indicate the points of insertion of D = 6

EFT vertices. At the order that we are considering in the present article, no two EFT
insertions can occur in a single diagram. Diagrams with only one grey blob only appear in
the effective theory.

Note that the function G2 is sub-dominant in this limit, in correspondence with the fact
that the spin-2 terms are absent in Eq. (3.6).

We now derive, starting from Eq. (3.7), the cross section for the hh process in the
D = 6 EFT. The complete set of diagrams is shown in Fig. 1. Using the above limiting

– 7 –

This paper is organised as follows: in section 2 we examine the EFT Lagrangian con-
taining a complete set of relevant dimension-6 operators, which will form the basis of our
investigation. In section 3 we focus on the terms relevant to gluon fusion-initiated Higgs
boson pair production after EWSB and compare them to the SM EFT, i.e. the SM with the
top quark integrated out. In section 4 we examine the impact of the dimension-6 operators
on the decays of the Higgs boson and in section 5 we present our setup for the analysis of
the key process pp ! hh ! (bb̄)(⌧+⌧�), that we then employ explicitly as an example of
our framework to generate constraints. We conclude in section 6. We provide additional
information on our conventions in appendix A. Appendix B provides technical details on
the derivation of the Lagrangian after EWSB in the D = 6 EFT.

2 Higgs boson effective theory

New Physics associated to a new scale ⇤ � v can be described in a model-independent
way by augmenting the Lagrangian of the SM with all possible gauge-invariant operators
of mass dimension D > 4, where the leading effects arise from D = 6 operators (neglecting
lepton-number violating operators, irrelevant to our study). Working at this level, the
extension of the SM that we consider for our analysis of Higgs boson pair production reads
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(2.1)

where ↵s is the strong coupling constant and ↵
0
⌘ g

0 2
/4⇡.

The full set of D = 6 operators that can be formed out of the SM field content was first
obtained in [63] and reduced to a non-redundant minimal set in [64]. Here, we employed
equations of motion to move to the basis used in [65, 66] and then imposed constraints from
precision tests to neglect a class of operators whose effect is already constrained to be at
most 1% with respect to the SM, following [67–71]. Including these operators would have a
negligible numerical impact on the analysis, given the experimental and theoretical errors.4

Precision measurements also lead to the approximate restrictions [65]

cHB

16⇡2
= �

cHW

16⇡2
= �cB = cW , (2.2)

4In our numerical study, we also neglect possible small CP-odd effects, described by LCP, as well as
effects from four-fermion operators L4f, which could enter the relevant background processes at leading
order. See appendix A for details. Note that, in order to translate to the form of the basis used in [65, 66],
we have assumed a trivial flavour structure for the latter operators. See Ref. [72] for a detailed discussion.

– 3 –

Goertz, Papaefstathiou, LLY, Zurita: 1410.3471

New physics effects may enter through 
multiple effective operators
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Requires a global analysis…

destructive interference with the box contributions leads to a reduction in the cross section.
The coefficient is constrained to lie within �0.1 . ct . 0.4 at 3000 fb�1 and for fth = 0.3,
after marginalization (1�-equivalent). It is evident that improving the knowledge on the
poorly-constrained ‘top Yukawa’ ct, entering hh production in various ways, will be helpful
to improve the exclusion range for c6.

Figure 6: The p-values obtained after marginalization over the directions orthogonal to
the (ct, c6)-plane, for the process hh ! (bb̄)(⌧+⌧�). On the top plots we show the results
at 600 fb�1 of integrated luminosity, without (fth = 0.0) and with (fth = 0.3) theoretical
uncertainty included and on the bottom we show the corresponding plots at 3000 fb�1. We
also present the 1-sigma contours as black dashed lines.

The expected constraints for cg, which adds tree-level couplings of one or two Higgs
boson to two gluons, are shown in the (cg, c6)-plane in Fig. 7. The results reflect the fact
that an enhanced production cross section due to values of cg away from the minimum
(right panel, Fig. 3) can compensate a reduction due to positive c6. The constraint on cg

is found to be �0.2 . cg . 0.1 at 3000 fb�1 given that fth = 0.3, after marginalization.
We present the results involving c� in Fig. 8, which enters the process under consider-

ation indirectly, through modification of the branching ratios (via single Higgs boson data
p-values). The correlation with c6 is weak, and no significant constraint is expected to be
imposed through hh ! (bb̄)(⌧+⌧�).

– 18 –
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precision tests to neglect a class of operators whose effect is already constrained to be at
most 1% with respect to the SM, following [67–71]. Including these operators would have a
negligible numerical impact on the analysis, given the experimental and theoretical errors.4

Precision measurements also lead to the approximate restrictions [65]

cHB

16⇡2
= �

cHW

16⇡2
= �cB = cW , (2.2)

4In our numerical study, we also neglect possible small CP-odd effects, described by LCP, as well as
effects from four-fermion operators L4f, which could enter the relevant background processes at leading
order. See appendix A for details. Note that, in order to translate to the form of the basis used in [65, 66],
we have assumed a trivial flavour structure for the latter operators. See Ref. [72] for a detailed discussion.
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New physics effects may enter through 
multiple effective operators

Requires a global analysis…

destructive interference with the box contributions leads to a reduction in the cross section.
The coefficient is constrained to lie within �0.1 . ct . 0.4 at 3000 fb�1 and for fth = 0.3,
after marginalization (1�-equivalent). It is evident that improving the knowledge on the
poorly-constrained ‘top Yukawa’ ct, entering hh production in various ways, will be helpful
to improve the exclusion range for c6.

Figure 6: The p-values obtained after marginalization over the directions orthogonal to
the (ct, c6)-plane, for the process hh ! (bb̄)(⌧+⌧�). On the top plots we show the results
at 600 fb�1 of integrated luminosity, without (fth = 0.0) and with (fth = 0.3) theoretical
uncertainty included and on the bottom we show the corresponding plots at 3000 fb�1. We
also present the 1-sigma contours as black dashed lines.

The expected constraints for cg, which adds tree-level couplings of one or two Higgs
boson to two gluons, are shown in the (cg, c6)-plane in Fig. 7. The results reflect the fact
that an enhanced production cross section due to values of cg away from the minimum
(right panel, Fig. 3) can compensate a reduction due to positive c6. The constraint on cg

is found to be �0.2 . cg . 0.1 at 3000 fb�1 given that fth = 0.3, after marginalization.
We present the results involving c� in Fig. 8, which enters the process under consider-

ation indirectly, through modification of the branching ratios (via single Higgs boson data
p-values). The correlation with c6 is weak, and no significant constraint is expected to be
imposed through hh ! (bb̄)(⌧+⌧�).
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2. The SM Higgs boson at hadron colliders

We summarize here the rates for the main Higgs production mechanisms at hadron col-
liders, including the higher order radiative corrections and the associated theoretical un-
certainties, as well as the decay and detection channels, focusing on the SM Higgs case.

2.1 The SM Higgs production cross sections

There are essentially four mechanisms for the single production of the SM Higgs boson
at hadron colliders; some Feynman diagrams are shown in Fig. 1.

Figure 1. Feynman diagrams for the leading production mechanisms of the SM Higgs
boson at hadron colliders.

The total production cross sections, borrowed from Refs [19, 20] and obtained using
adapted versions of the programs of Ref. [21], are displayed in Fig. 2 for the Tevatron with√
s = 1.96 TeV and the LHC with

√
s = 7 TeV as a function of the Higgs mass; the top

quark mass is set to mt = 173.1 GeV [6] and the MSTW [22] parton distributions func-
tions (PDFs) have been adopted. The most important higher order QCD and electroweak
corrections, summarized below for each production channel, have been implemented .
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Figure 2. The production cross sections for the SM Higgs boson at the Tevatron and
early LHC as a function ofMH in the main channels. From Refs. [19, 20].

The gluon–gluon fusion process gg → H is by far the dominant production channel for
SM–like Higgs particles at hadron colliders. The process, which proceeds through trian-
gular heavy quark loops, has been proposed in the late 1970s in Ref. [23] where the ggH
vertex and the production cross section have been derived. In the SM, it is dominantly
mediated by the top quark loop contribution, while the bottom quark contribution does not
exceed the 10% level at leading order. This process is known to be subject to extremely
large QCD radiative corrections that can be described by an associated K–factor defined
as the ratio of the higher order (HO) to the lowest order (LO) cross sections, consistently
evaluated with the value of the strong coupling αs and the parton distribution functions
taken at the considered perturbative order.
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FIG. 1: Sample Feynman graphs contributing to pp → hh+X. Graphs of type (a) yield vanishing contributions due to color
conservation.

cal configuration†, which is characterized by a large di-
higgs invariant mass, but with a potentially smaller Higgs
s-channel suppression than encountered in the back-to-
back configuration of gg → hh.
The goal of this paper is to provide a comparative

study of the prospects of the measurement of the trilinear
Higgs coupling applying contemporary simulation and
analysis techniques. In the light of recent LHC measure-
ments, we focus our eventual analyses on mh = 125 GeV.
However, we also put this particular mass into the con-
text of a complete discussion of the sensitivity towards
the trilinear Higgs coupling over the entire Higgs mass
range mh

<∼ 1 TeV. As we will see, mh ≃ 125 GeV is a
rather special case. Since Higgs self-coupling measure-
ments involve end-of-lifetime luminosities we base our
analyses on a center-of-mass energy of 14 TeV.
We begin with a discussion of some general aspects

of double Higgs production, before we review inclusive
searches for mh = 125 GeV in the pp → hh+X channel
in Sec. II C. We discuss boosted Higgs final states in pp →
hh+X in Sec. II D before we discuss pp → hh+j+X with
the Higgses recoiling against a hard jet in Sec. III. Doing
so we investigate the potential sensitivity at the parton-
and signal-level to define an analysis strategy before we
apply it to the fully showered and hadronized final state.
We give our conclusions in Sec. IV.

II. HIGGS PAIR PRODUCTION AT THE LHC

A. General Remarks

Inclusive Higgs pair production has already been stud-
ied in Refs. [14–17] so we limit ourselves to the details
that are relevant for our analysis.
Higgs pairs are produced at hadron colliders such as

the LHC via a range of partonic subprocesses, the most
dominant of which are depicted in Fig. 1. An approxima-
tion which is often employed in phenomenological studies
is the heavy top quark limit, which gives rise to effective

†The phenomenology of such configurations can also be treated sep-
arately from radiative correction contributions to pp → hh+X.

ggh and gghh interactions [20]

Leff =
1

4

αs

3π
Ga

µνG
aµν log(1 + h/v) , (2)

which upon expansion leads to

L ⊃ +
1

4

αs

3πv
Ga

µνG
aµνh−

1

4

αs

6πv2
Ga

µνG
aµνh2 . (3)

Studying these operators in the hh+X final state should
in principle allow the Higgs self-coupling to be con-
strained via the relative contribution of trilinear and
quartic interactions to the integrated cross section. Note
that the operators in Eq. (3) have different signs which
indicates important interference between the (nested)
three- and four point contributions to pp → hh + X al-
ready at the effective theory level.
On the other hand, it is known that the effective theory

of Eq. (3) insufficiently reproduces all kinematical prop-
erties of the full theory if the interactions are probed
at momentum transfers Q2 >∼ m2

t [11] and the massive
quark loops are resolved. Since our analysis partly re-
lies on boosted final states, we need to take into account
the full one-loop contribution to dihiggs production to
realistically model the phenomenology.

B. Parton-level considerations

In order to properly take into account the full dynam-
ics of Higgs pair production in the SM we have imple-
mented the matrix element that follows from Fig. 1 in
the Vbfnlo framework [21] with the help of the Fey-

nArts/FormCalc/LoopTools packages [22], with
modifications such to include a non-SM trilinear Higgs
coupling‡. Our setup allows us to obtain event files ac-
cording to the Les Houches standard [23], which can be
straightforwardly interfaced to parton showers. Decay
correlations are trivially incorporated due to the spin-0
nature of the SM Higgs boson.

‡The signal Monte Carlo code underlying this study is planned to
become part of the next update of Vbfnlo and is available upon
request until then.

Heavy quark Yukawa couplings: everywhere in Higgs physics

Precise knowledge highly-wanted!
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2. The SM Higgs boson at hadron colliders

We summarize here the rates for the main Higgs production mechanisms at hadron col-
liders, including the higher order radiative corrections and the associated theoretical un-
certainties, as well as the decay and detection channels, focusing on the SM Higgs case.

2.1 The SM Higgs production cross sections

There are essentially four mechanisms for the single production of the SM Higgs boson
at hadron colliders; some Feynman diagrams are shown in Fig. 1.
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boson at hadron colliders.

The total production cross sections, borrowed from Refs [19, 20] and obtained using
adapted versions of the programs of Ref. [21], are displayed in Fig. 2 for the Tevatron with√
s = 1.96 TeV and the LHC with

√
s = 7 TeV as a function of the Higgs mass; the top

quark mass is set to mt = 173.1 GeV [6] and the MSTW [22] parton distributions func-
tions (PDFs) have been adopted. The most important higher order QCD and electroweak
corrections, summarized below for each production channel, have been implemented .
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Figure 2. The production cross sections for the SM Higgs boson at the Tevatron and
early LHC as a function ofMH in the main channels. From Refs. [19, 20].

The gluon–gluon fusion process gg → H is by far the dominant production channel for
SM–like Higgs particles at hadron colliders. The process, which proceeds through trian-
gular heavy quark loops, has been proposed in the late 1970s in Ref. [23] where the ggH
vertex and the production cross section have been derived. In the SM, it is dominantly
mediated by the top quark loop contribution, while the bottom quark contribution does not
exceed the 10% level at leading order. This process is known to be subject to extremely
large QCD radiative corrections that can be described by an associated K–factor defined
as the ratio of the higher order (HO) to the lowest order (LO) cross sections, consistently
evaluated with the value of the strong coupling αs and the parton distribution functions
taken at the considered perturbative order.
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cal configuration†, which is characterized by a large di-
higgs invariant mass, but with a potentially smaller Higgs
s-channel suppression than encountered in the back-to-
back configuration of gg → hh.
The goal of this paper is to provide a comparative

study of the prospects of the measurement of the trilinear
Higgs coupling applying contemporary simulation and
analysis techniques. In the light of recent LHC measure-
ments, we focus our eventual analyses on mh = 125 GeV.
However, we also put this particular mass into the con-
text of a complete discussion of the sensitivity towards
the trilinear Higgs coupling over the entire Higgs mass
range mh

<∼ 1 TeV. As we will see, mh ≃ 125 GeV is a
rather special case. Since Higgs self-coupling measure-
ments involve end-of-lifetime luminosities we base our
analyses on a center-of-mass energy of 14 TeV.
We begin with a discussion of some general aspects

of double Higgs production, before we review inclusive
searches for mh = 125 GeV in the pp → hh+X channel
in Sec. II C. We discuss boosted Higgs final states in pp →
hh+X in Sec. II D before we discuss pp → hh+j+X with
the Higgses recoiling against a hard jet in Sec. III. Doing
so we investigate the potential sensitivity at the parton-
and signal-level to define an analysis strategy before we
apply it to the fully showered and hadronized final state.
We give our conclusions in Sec. IV.

II. HIGGS PAIR PRODUCTION AT THE LHC

A. General Remarks

Inclusive Higgs pair production has already been stud-
ied in Refs. [14–17] so we limit ourselves to the details
that are relevant for our analysis.
Higgs pairs are produced at hadron colliders such as

the LHC via a range of partonic subprocesses, the most
dominant of which are depicted in Fig. 1. An approxima-
tion which is often employed in phenomenological studies
is the heavy top quark limit, which gives rise to effective

†The phenomenology of such configurations can also be treated sep-
arately from radiative correction contributions to pp → hh+X.
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Studying these operators in the hh+X final state should
in principle allow the Higgs self-coupling to be con-
strained via the relative contribution of trilinear and
quartic interactions to the integrated cross section. Note
that the operators in Eq. (3) have different signs which
indicates important interference between the (nested)
three- and four point contributions to pp → hh + X al-
ready at the effective theory level.
On the other hand, it is known that the effective theory

of Eq. (3) insufficiently reproduces all kinematical prop-
erties of the full theory if the interactions are probed
at momentum transfers Q2 >∼ m2

t [11] and the massive
quark loops are resolved. Since our analysis partly re-
lies on boosted final states, we need to take into account
the full one-loop contribution to dihiggs production to
realistically model the phenomenology.

B. Parton-level considerations

In order to properly take into account the full dynam-
ics of Higgs pair production in the SM we have imple-
mented the matrix element that follows from Fig. 1 in
the Vbfnlo framework [21] with the help of the Fey-

nArts/FormCalc/LoopTools packages [22], with
modifications such to include a non-SM trilinear Higgs
coupling‡. Our setup allows us to obtain event files ac-
cording to the Les Houches standard [23], which can be
straightforwardly interfaced to parton showers. Decay
correlations are trivially incorporated due to the spin-0
nature of the SM Higgs boson.

‡The signal Monte Carlo code underlying this study is planned to
become part of the next update of Vbfnlo and is available upon
request until then.

Heavy quark Yukawa couplings: everywhere in Higgs physics

Precise knowledge highly-wanted!

Light quark Yukawa couplings: 
are they really that small?
Is the mass difference between proton 
and neutron a pure accident?



Gauge coupling
Key quantity for electroweak symmetry breaking

Modified by ~v2/Λ2 if, e.g., Higgs has inner structure

Relevant for unitarity

Sub-percent effect if new physics enters at a few TeV!

VV Scattering at the LHC

Characterized by VVjj final state:

triple and quartic gauge couplings (QGCs)

Higgs exchange and Higgs production via VBF

I Sensitivity to QGC ! setting exclusion limits on aQGCs
I Additional non-VV scattering contributions to the final state:
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surements and electroweak observables attainable by the CEPC are summarized below.
The details of the analysis underpinning these projections are presented in Section 11.1

LHC 300/3000 fb-1

CEPC 240 GeV at 5.6 ab-1 wi/wo HL-LHC

�b �t|�c �g �W �� �Z ��
10-3

10-2

10-1

1

R
el
at
iv
e
Er
ro
r

Precision of Higgs coupling measurement (7-parameter Fit)

(a) (b)

Figure 2.1: (a) Higgs coupling extraction in the -framework. (b) Projection for the precision of the
Z-pole measurements.

The CEPC will operate primarily at a center-of-mass energy of
p

s ⇠ 240 GeV. The
main mode of Higgs boson production is through e+e� ! ZH process, and with an
integrated luminosity of 5.6 ab�1, over one million Higgs bosons will be produced. At
CEPC, in contrast to the LHC, Higgs boson candidate events can be identified through
a technique known as the recoil mass method without tagging its decay products. This
allows Higgs boson production to be disentangled from Higgs boson decay in a model-
independent way. Moreover, the cleaner environment at a lepton collider allows much
better exclusive measurement of Higgs boson decay channels. All of these give CEPC
impressive reach in probing Higgs boson properties. The resulting precision attainable by
CEPC in measurements of Higgs couplings is shown in the left panel of Figure 2.1(a) in
terms of the  framework [4]. The results can be further improved by including additional
measurements. For example, Z and W would be tightly constrained to be very close to
each other by the electroweak precision measurements.

Several aspects of the precision attainable at CEPC stand out. The CEPC will be able
to measure the Higgs coupling to the Z boson with an accuracy of 0.25%1, about a factor
of 10 better than the reach of the High Luminosity upgrade of the LHC (HL-LHC). Such
a precise measurement gives CEPC unprecedented reach into interesting new physics sce-
narios which are very difficult to probe at the LHC. The CEPC also has strong capability in
detecting invisible decays of the Higgs boson. For example, with 5.6 ab�1, it can improve
the accuracy of the measurement of the Higgs boson invisible branching ratio to 0.3%,
also more than 10 times better than the projected precision achievable by the HL-LHC.
In addition, it is expected to have excellent sensitivity to exotic decay channels which are
swamped by backgrounds at the LHC. It is also important to stress that an e+e� Higgs fac-
tory can perform model independent measurement of the Higgs boson width. This unique
feature in turn allows for the determination of the Higgs couplings without assumptions
about Higgs boson decay channels.

1This is the result from a 10-parameter fit. In particular, it includes the Higgs boson width as a free param-
eter. The result shown in Figure 2.1 is from a more constrained 7-parameter fit. See Section 11.1 for a full
set of results and more detailed explanations.
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Figure 2.2: (a) The reach of the Higgs measurement on the size of effective field theory operators,
normalized as ci(Oi/v

2). (b) the CEPC limit on the oblique parameters in comparison with the current
precision. (c) 68% (dash-dot) and 95% (solid) contours from CEPC measurement.

The CEPC is also designed to run at the Z pole (with about 10
12 Z bosons) and near the

W+W� threshold (with about 10
7 W pairs). This enables a robust program of electroweak

precision measurements to complement the Higgs precision program. The projected pre-
cision for a set of such observables is shown in on the Figure 2.1(b). CEPC can improve
the current precision by about one order of magnitude.

The combination of precision Higgs and electroweak measurements at CEPC is par-
ticularly powerful. This is most readily apparent in the potential for CEPC to constrain
departures from the Standard Model parametrized in the language of Effective Field The-
ory (EFT). The reach of CEPC Higgs measurements in constraining Wilson coefficients
of select dimension-6 operators in the SM EFT is shown in Figure 2.2, while the reach of
CEPC electroweak precision measurements in terms of the so-called oblique parameters
(likewise expressible in terms of Wilson coefficients of dimension-6 operators in the SM
EFT) is shown in the lower panel of Figure 2.2. The significant improvement of CEPC
relative to both current and projected LHC measurements is apparent. Later in this sec-

Future facilities will dramatically improve the experimental 
precisions of various observables

CEPC CDR 1811.10545
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of select dimension-6 operators in the SM EFT is shown in Figure 2.2, while the reach of
CEPC electroweak precision measurements in terms of the so-called oblique parameters
(likewise expressible in terms of Wilson coefficients of dimension-6 operators in the SM
EFT) is shown in the lower panel of Figure 2.2. The significant improvement of CEPC
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Future facilities will dramatically improve the experimental 
precisions of various observables

In order to extract the Higgs properties from these 
precision measurements, we need equally precision 
theoretical calculations!
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2. The SM Higgs boson at hadron colliders

We summarize here the rates for the main Higgs production mechanisms at hadron col-
liders, including the higher order radiative corrections and the associated theoretical un-
certainties, as well as the decay and detection channels, focusing on the SM Higgs case.

2.1 The SM Higgs production cross sections

There are essentially four mechanisms for the single production of the SM Higgs boson
at hadron colliders; some Feynman diagrams are shown in Fig. 1.

Figure 1. Feynman diagrams for the leading production mechanisms of the SM Higgs
boson at hadron colliders.

The total production cross sections, borrowed from Refs [19, 20] and obtained using
adapted versions of the programs of Ref. [21], are displayed in Fig. 2 for the Tevatron with√
s = 1.96 TeV and the LHC with

√
s = 7 TeV as a function of the Higgs mass; the top

quark mass is set to mt = 173.1 GeV [6] and the MSTW [22] parton distributions func-
tions (PDFs) have been adopted. The most important higher order QCD and electroweak
corrections, summarized below for each production channel, have been implemented .
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Figure 2. The production cross sections for the SM Higgs boson at the Tevatron and
early LHC as a function ofMH in the main channels. From Refs. [19, 20].

The gluon–gluon fusion process gg → H is by far the dominant production channel for
SM–like Higgs particles at hadron colliders. The process, which proceeds through trian-
gular heavy quark loops, has been proposed in the late 1970s in Ref. [23] where the ggH
vertex and the production cross section have been derived. In the SM, it is dominantly
mediated by the top quark loop contribution, while the bottom quark contribution does not
exceed the 10% level at leading order. This process is known to be subject to extremely
large QCD radiative corrections that can be described by an associated K–factor defined
as the ratio of the higher order (HO) to the lowest order (LO) cross sections, consistently
evaluated with the value of the strong coupling αs and the parton distribution functions
taken at the considered perturbative order.
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Figure 2: Sample two-loop diagrams contributing to gg → H at NNLO. The right
vertex stands for the effective coupling of the Higgs particle to gluons. The bubble
in diagram (e) represents any quark except for the top quark.

These relations allow to compute any such planar diagram with arbitrary powers of the
denominators and irreducible numerators.

In our case, however, we also need to compute non-planar diagrams, e.g. Fig. 2 (b). For this
reason, we follow an algorithm that has recently been published by Baikov and Smirnov [1].
It relates the recurrence relations for l-loop integrals with n + 1 external legs to the ones
for (l + 1)-loop integrals with n external legs. Here we have n = l = 2, and thus the
massless two-loop vertex diagrams of Fig. 2 are mapped onto massless three-loop two-
point functions. The algorithm to compute the latter ones is known [18] and implemented
in the computer program MINCER [19], written in FORM [20]. Following the recipe of [1],
we modified the MINCER routines such that they are applicable to the class of two-loop
three-point functions at hand. For the generation of the diagrams we used QGRAF [21] as
integrated in the program package GEFICOM [22]2.

The only integral that can not be reduced to convolutions of one-loop integrals in this
approach is the non-planar one with all propagators appearing in single power, and with
numerator equal to one. However, the result for this integral is known as an expansion in
ϵ up to its finite part [15].

As a check of our setup we re-did the calculation of the electro-magnetic quark form factor
in QCD to two loops and found full agreement with [16]. We performed this calculation in
a general Rξ gauge and explicitly checked its gauge parameter independence in this way.
We also computed the two-loop three-gluon vertex in Rξ gauge with two gluons on-shell
and found agreement with [17,23,24]. Finally, the calculation of the present paper was also
performed in Rξ gauge and we verified that the gauge parameter dependence disappears
in the sum of all diagrams.

2I acknowledge the kind permission by the authors of GEFICOM to use this program.
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HL-LHC demands more theoretical inputs
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Fig. 30: (left) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic
uncertainties) on the coupling modifier parameters for ATLAS (blue) and CMS (red). The filled coloured
box corresponds to the statistical and experimental systematic uncertainties, while the hatched grey area
represent the additional contribution to the total uncertainty due to theoretical systematic uncertainties.
(right) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic uncer-
tainties) on the coupling modifier parameters for the combination of ATLAS and CMS extrapolations.
For each measurement, the total uncertainty is indicated by a grey box while the statistical, experimental
and theory uncertainties are indicated by a blue, green and red line respectively.

a simple scaling of the cross sections and luminosities is applied, which is a fair assessment with the
current systematic uncertainties and assuming that the experimental performance and systematic uncer-
tainties are unchanged with respect to the current LHC experiments. Two scenarios are then assumed
for the theoretical and modelling systematic uncertainties on the signal and backgrounds. The first (S2)
is the foreseen baseline scenario at HL-LHC, and the second (S20) is a scenario where theoretical and
modelling systematic uncertainties are halved, which in many cases would correspond to uncertainties
roughly four times smaller than for current Run 2 analyses. It should be noted that HL-LHC measure-
ments, whose precision is limited by systematic uncertainties, would also improve for S2’. The results
of these projections are reported in Table 40.

2.8 Higgs couplings precision overview in the Kappa-framework and the nonlinear EFT24

After the discovery of the Higgs boson at the LHC, the first exploration of the couplings of the new
particle at Run I and Run II has achieved an overall precision at the level of ten percent. One of the main
goals of Higgs studies at the HL-LHC or HE-LHC will be to push the sensitivity to deviations in the
Higgs couplings close to the percent level.

In this section we study the projected precision that would be possible at such high luminosity
and high energy extensions of the LHC from a global fit to modifications of the different single-Higgs
couplings. Other important goals of the Higgs physics program at the HL/HE-LHC, such as extend-
ing/complementing the studies of the total rates with the information from differential distributions, or
getting access to the Higgs trilinear coupling, will be covered in other parts of this document.

In order to study single-Higgs couplings, we introduce a parametrisation, the nonlinear EFT, that
24 Contacts: J. de Blas, O. Catà, O. Eberhardt, C. Krause

67

2.2.1.1 Gluon fusion

In this section we document cross section predictions for a standard model Higgs boson produced through
gluon fusion in 27 TeV pp collisions. To derive predictions we include contributions based on pertur-
bative computations of scattering cross sections as studied in Ref. [47]. We include perturbative QCD
corrections through next-to-next-to-next-to-leading order (N3LO), electroweak (EW) and approximated
mixed QCD-electroweak corrections as well as effects of finite quark masses. The only modification
with respect to YR4 [45] is that we now include the exact N3LO heavy top effective theory cross section
of Ref. [48] instead of its previous approximation. The result of this modification is only a small change
in the central values and uncertainties. To derive theoretical uncertainties we follow the prescriptions
outlined in Ref. [47]. We use the following inputs:

ECM 27 TeV
mt(mt) 162.7 GeV
mb(mb) 4.18 GeV

mc(3 GeV) 0.986 GeV
↵S(mZ) 0.118

PDF PDF4LHC15_nnlo_100 [49]

(5)

All quark masses are treated in the MS scheme. To derive numerical predictions we use the program
iHixs [50].

Sources of uncertainty for the inclusive Higgs boson production cross section have been assessed
recently in refs. [47, 51, 52, 45]. Several sources of theoretical uncertainties were identified.
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Fig. 1: The figure shows the linear sum of the different sources of relative uncertainties as a function
of the collider energy. Each coloured band represents the size of one particular source of uncertainty as
described in the text. The component �(PDF+↵S) corresponds to the uncertainties due to our imprecise
knowledge of the strong coupling constant and of parton distribution functions combined in quadrature.

– Missing higher-order effects of QCD corrections beyond N3LO (�(scale)).
– Missing higher-order effects of electroweak and mixed QCD-electroweak corrections at and be-

yond O(↵S↵) (�(EW)).
– Effects due to finite quark masses neglected in QCD corrections beyond NLO (�(t,b,c) and �(1/mt)).
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Challenges from experiments: 
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uncertainties!



Perturbative calculations

Generic procedure for a perturbative calculation

loop amplitudes tree amplitudes

Need to combine them to get rid of infrared divergences



Tree-level amplitudes
➤ Spinor helicity 

➤ Little group scaling 

➤ On-shell recursion 

➤ Hints from N=4 SUSY 

➤ Collinear limit 

➤ Soft limit 

➤ …

We already have rather good 
understanding of tree-level 
amplitudes in gauge theories
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Figure 6: Factorization of a QCD amplitude when two color-adjacent partons a and b become
collinear.

Inserting eq. (4.7) into eq. (3.45), we find that

A5(1
+
ē , 2

−
e , 3

+
q , 4

+, 5−q̄ ) = i
⟨2 5⟩2

⟨1 2⟩ ⟨3 4⟩ ⟨4 5⟩ ≈ 1√
1− z ⟨3 4⟩

× i
⟨2 5⟩2

⟨1 2⟩ ⟨P 5⟩
→ Split−(3

+
q , 4

+
g ; z) ×A4(1

+
ē , 2

−
e , P

+
q , 5−q̄ ) .

(4.9)

Here we have introduced the splitting amplitude Split−λP
(aλa , bλb ; z), which governs the

general collinear factorization of tree amplitudes depicted in fig. 6,

Atree
n (. . . , aλa , bλb , . . .)

a∥b−−−→
∑

λP=±

Split−λP
(aλa , bλb ; z)Atree

n−1(. . . , P
λP , . . .) . (4.10)

In contrast to the soft factor, the splitting amplitude depends on whether a and b are

quarks or gluons, and on their helicity. It also includes a sum over the helicity λP of the

intermediate parton P . (Note that the labeling of λP is reversed between the (n− 1)-point

tree amplitude and the splitting amplitude, because we apply the all-outgoing helicity

convention to the splitting amplitude as well.) The (n − 1)-point tree amplitude on the

right-hand side of eq. (4.10) is found by merging the two partons, according to the possible

splittings in QCD: g → gg, g → qq̄, q̄ → q̄g and (in this case) q → qg. For the splitting

amplitude Split−(a
+
q , b

+
g ; z) entering eq. (4.9), quark helicity conservation implies that only

one of the two intermediate helicities survives. For intermediate gluons, both signs of λP

can appear in general. As in the case of the soft limit, the four-point amplitude A4 is found

by relabeling eq. (3.28).

One can also extract from eq. (3.45) the splitting amplitude for the case that the

(anti)quark and gluon have the opposite helicity, by taking the collinear limit 4 ∥ 5. The

two results can be summarized as:

Split−(q
+, g+) =

1√
1− z ⟨q g⟩

, Split−(q
+, g−) = − z√

1− z [q g]
, (4.11)

Split−(g
+, q̄+) =

1√
z ⟨g q̄⟩

, Split−(g
−, q̄+) = − 1− z√

z [g q̄]
. (4.12)

where the other cases (including some not shown, with opposite quark helicity) are related

by parity or charge conjugation.
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Figure 5: Factorization of a QCD amplitude when a soft gluon s is emitted between the hard
partons a and b.

Now we choose the reference momentum q = k5 in order to make the second graph vanish,

A5 = −i
⟨2 5⟩
s12

⟨1+| (k̸3+ k̸4) |5+⟩ [4 3]
s34 ⟨5 4⟩

= −i
⟨2 5⟩ [1 2] ⟨2 5⟩ [4 3]

⟨1 2⟩ [2 1] ⟨3 4⟩ [4 3] ⟨4 5⟩ = i
⟨2 5⟩2

⟨1 2⟩ ⟨3 4⟩ ⟨4 5⟩ ,

(3.44)

where we used momentum conservation (3.15) and a couple of other spinor-product iden-

tities to simplify the answer to its final holomorphic form,

A5(1
+
ē , 2

−
e , 3

+
q , 4

+, 5−q̄ ) = i
⟨2 5⟩2

⟨1 2⟩ ⟨3 4⟩ ⟨4 5⟩ . (3.45)

(As an exercise in spinor-product identities, verify eq. (3.45) for other choices of q.)

Next we will study the behavior of A5 in various kinematic limits, which will give us

insight into the generic singular behavior of QCD amplitudes.

4. Soft and collinear factorization

In this section, we use the five-point amplitude (3.45) to verify some universal limiting

behavior of QCD amplitudes. In the next section, we will use this universal behavior to

derive recursion relations for general tree amplitudes.

4.1 Soft gluon limit

First consider the limit that the gluon momentum k4 in eq. (3.45) becomes soft, i.e. scales

uniformly to zero, k4 → 0. In this limit, we can factorize the amplitude into a divergent

piece that depends on the energy and angle of the emitted gluon, and a second piece which

is the amplitude omitting that gluon:

A5(1
+
ē , 2

−
e , 3

+
q , 4

+, 5−q̄ ) = i
⟨2 5⟩2

⟨1 2⟩ ⟨3 4⟩ ⟨4 5⟩
=

⟨3 5⟩
⟨3 4⟩ ⟨4 5⟩

× i
⟨2 5⟩2

⟨1 2⟩ ⟨3 5⟩
→ S(3, 4+, 5)×A4(1

+
ē , 2

−
e , 3

+
q , 5

−
q̄ ) . (4.1)

The soft factor (or eikonal factor) is given more generally by,

S(a, s+, b) = ⟨a b⟩
⟨a s⟩ ⟨s b⟩ , S(a, s−, b) = − [a b]

[a s] [s b]
, (4.2)
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Figure 8: Illustration of how Cauchy’s theorem leads to the BCFW recursion relation. The
magenta dot represents the residue at the origin; the blue dots the residues at zk. In the recursion
relation, the red lines carry complex, shifted momenta.

transverse (x, y) plane. This is only possible if vµ is a complex vector. It’s easy to see that

vµ = 1
2 ⟨1

+| γµ |n+⟩ satisfies the required orthogonality relations.

The function An(z) depends meromorphically on z. If it behaves well enough at infinity,

then we can use Cauchy’s theorem to relate its behavior at z = 0 (the original amplitude)

to its residues at finite values of z (the factorization singularities). If An(z) → 0 as z → ∞,

then we have,

0 =
1

2πi

∮

C
dz

An(z)

z
= An(0) +

∑

k

Res

[

An(z)

z

]∣

∣

∣

∣

z=zk

, (5.5)

where C is the circle at infinity, and zk are the locations of the factorization singularities in

the z plane. (See fig. 8.) These poles occur when the amplitude factorizes into a subprocess

with momenta (k̂1, k2, . . . , kk,−K̂1,k), where K̂1,k(zk) = k̂1(zk) + k2 + · · · + kk must be on

shell. This information lets us write a simple equation for zk,

0 = K̂2
1,k(zk) = (k̂1(zk) + k2 + · · ·+ kk)

2 = (zkλnλ̃1 +K1,k)
2 = zk

〈

n−
∣

∣ K̸1,k

∣

∣1−
〉

+K2
1,k ,

(5.6)

where K1,k = k1 + k2 + · · ·+ kk. The solution to eq. (5.6) is

zk = −
K2

1,k

⟨n−| K̸1,k |1−⟩
. (5.7)

We also have to compute the residue of A(z)/z at z = zk. To do that we use eq. (4.16),

which also holds for three-point factorizations in complex kinematics. The singular factor

in the denominator that produces the residue is

zP 2(z) = zK̂2
1,k(z) ≈ zk

〈

n−
∣

∣ K̸1,k

∣

∣1−
〉

(z − zk) ≈ −K2
1,k (z − zk). (5.8)

Thus after taking the residue it contributes a factor of the corresponding scalar propagator,

i/K2
1,k, evaluated for the original unshifted kinematics where it is nonsingular.
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Loop integrands
➤ Unitarity cuts 

➤ Integration-by-parts 

➤ Color-kinematics duality 

➤ …

We also have some techniques 
to simplify the integrands for 
loop-level amplitudes

1 = 0,1,2,3

1

2=      −    − ...1 k12

3

4

Figure 11: A quadruple cut pinches the loop integrand down into the product of four tree ampli-
tudes, connected cyclicly around the loop.

trated in fig. 10. The unitarity relation that generalizes eq. (6.5) is

Disc|s12...mA1−loop
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2 , km+1, . . . , kn, ℓ
h1
1 ) (6.8)

where ℓ2 = ℓ1 − (k1 + k2 + · · · km). The delta function δ(+)(kµ) = Θ(k0)δ(k2) enforces that

the intermediate states are on shell with real momenta and positive energies. The sum over

intermediate helicities may also include different particle types, for example, both gluons

and quarks in an n-gluon QCD loop amplitude. The two delta functions reduce the loop

momentum integral to an integral over the two-body phase space for on-shell momenta ℓ1
and −ℓ2.

Another way of stating eq. (6.7), which allows us to generalize it, is that for a given

set of external momenta ki, there is a family of loop momenta ℓ ≡ ℓ1 that solve the dual

constraints ℓ21 = ℓ22 = 0. On this solution set the loop integrand, which can be pictured as

the annular blob shown in fig. 10, factorizes into the product of two tree amplitudes,

i

ℓ21
Atree

m+2(−ℓ−h1
1 , k1, . . . , km, ℓh2

2 )
i

ℓ22
Atree
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1 ) , (6.9)

in much the same way that a tree amplitude factorizes on a single multi-particle pole,

eq. (4.16).

In this picture of the plastic loop integrand, we need not impose positivity of the

energies of the intermediate states, and the loop momenta can even be complex. This

opens up the possibility of more general solutions, where more than two lines are cut. If

we think of the loop momentum ℓµ as four-dimensional, then for generic kinematics we

can cut not just two lines, but up to four. The reason the maximum is four is that each

cut imposes a new equation of the form (ℓ − Ki)2 = 0 for some combination of external
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136 3 Loop-Level Structure

3.8 Integration by Parts and Differential Equations

In the previous sections we discussed how to introduce Feynman and Mellin-Barnes
representations for individual Feynman diagrams. In this section we discuss identi-
ties between different Feynman integrals. In a problem where many integrals need
to be computed, this allows to reduce the calculation to a smaller set of master inte-
grals. Knowing the reduction to master integrals also allows one to set up differential
equations for the latter, which can be an efficient method for computing them.

3.8.1 Integration by Parts Identities

Integration by parts identities are derived by noticing that total derivatives in Feyn-
man integrals vanish. Let us show the main idea using a simple example, and then
generalize.

Consider the one-loop massive bubble integral, for arbitrary integer powers of
the propagators,

J (a1, a2) :=
∫

dDk

iπD/2

1
(−k2 + m2)a1(−(k + p)2 + m2)a2

. (3.221)

The reason for considering integrals for arbitrary integer powers will become clear
shortly: it will allow us to derive relations between different integrals. Indeed, we
can derive an identity between integrals with different indices (a1, a2) by consider-
ing

0 =
∫

dDk

iπD/2

∂

∂kµ

(
kµ 1

(−k2 + m2)a1(−(k + p)2 + m2)a2

)
. (3.222)

In this way, after some algebra one obtains,

0 = (D − 2a1 − a2)J (a1, a2) − a2J (a1 − 1, a2 + 1)

+ 2m2a1J (a1 + 1, a2) +
(
2m2 − p2)a2J (a1, a2 + 1). (3.223)

A similar identity follows from the symmetry J (a1, a2) = J (a2, a1). This gives two
equations for J (a1 + 1, a2) and J (a1, a2 + 1) in terms of integrals for which the
sum of the indices equals a1 + a2. For a1 ≠ 0, a2 ≠ 0 this system is non-singular
and therefore we can always express J (b1, b2) in terms of integrals J (a1, a2) with
a1 +a2 = b1 +b2 −1. Let us discuss also the special case if one of the initial indices
is zero. For a2 = 0, Eq. (3.223) simply becomes

0 =(D − 2a1)J (a1,0) + 2m2a1J (a1 + 1,0), (3.224)

and therefore any J (a,0) can be expressed in terms of J (1,0).
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But: we have much less information about 
the results of these loop integrals! 
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3.8 Integration by Parts and Differential Equations

In the previous sections we discussed how to introduce Feynman and Mellin-Barnes
representations for individual Feynman diagrams. In this section we discuss identi-
ties between different Feynman integrals. In a problem where many integrals need
to be computed, this allows to reduce the calculation to a smaller set of master inte-
grals. Knowing the reduction to master integrals also allows one to set up differential
equations for the latter, which can be an efficient method for computing them.

3.8.1 Integration by Parts Identities

Integration by parts identities are derived by noticing that total derivatives in Feyn-
man integrals vanish. Let us show the main idea using a simple example, and then
generalize.
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sum of the indices equals a1 + a2. For a1 ≠ 0, a2 ≠ 0 this system is non-singular
and therefore we can always express J (b1, b2) in terms of integrals J (a1, a2) with
a1 +a2 = b1 +b2 −1. Let us discuss also the special case if one of the initial indices
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From experience, one encounters logarithms, polylogarithms 
and Riemann zeta values in the results for loop integrals

There are more!
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Good analytic and algebraic properties, e.g.,

G(a, b; z)G(c; z) = G(a, b, c; z) +G(a, c, b; z) +G(c, a, b; z)
<latexit sha1_base64="ZWFoHb/Ke/wjOFXqisHQfn8czPY=">AAACL3icbZDdSsMwGIZTf+f8q3roSXAIE8doVVAQYejBPJzgfmArI83SLSxNS5IKs+w6vA4vwFO9BPFEPBPvwrTrgdv8IOHJ+34fSV43ZFQqy/owFhaXlldWc2v59Y3NrW1zZ7chg0hgUscBC0TLRZIwykldUcVIKxQE+S4jTXd4k/jNByIkDfi9GoXE8VGfU49ipLTUNe1qEZXcy8ejahHrHV7BVCglh+MEcepqxKVJY9csWGUrLTgPdgYFkFWta353egGOfMIVZkjKtm2FyomRUBQzMs53IklChIeoT9oaOfKJdOL0a2N4qJUe9AKhF1cwVf9OxMiXcuS7utNHaiBnvUT8z2tHyrtwYsrDSBGOJxd5EYMqgElOsEcFwYqNNCAsqH4rxAMkEFY6zalbBiSMOFVyrJOxZ3OYh8ZJ2T4tW3dnhcp1llEO7IMDUAQ2OAcVcAtqoA4weAIv4BW8Gc/Gu/FpfE1aF4xsZg9MlfHzC+JGpRI=</latexit>

More: Hopf algebra



Iterated integrals and symbols
MPLs are iterated integrals

G(a1, . . . , an; z) =

Z z

0
d log(t1 � a1)

Z t1

0
d log(t2 � a2) · · ·

Z tn�1

0
d log(tn � an)

<latexit sha1_base64="AjVUMkX/XuIwCi7TOCKMGrMHZK0="></latexit>



Iterated integrals and symbols
MPLs are iterated integrals

G(a1, . . . , an; z) =

Z z

0
d log(t1 � a1)

Z t1

0
d log(t2 � a2) · · ·

Z tn�1

0
d log(tn � an)

<latexit sha1_base64="AjVUMkX/XuIwCi7TOCKMGrMHZK0="></latexit>

Symbol representation

(z � an)⌦ · · ·⌦ (z � a2)⌦ (z � a1)
<latexit sha1_base64="UujyPgPIWIgI7reZuo8Xm3dSMoU=">AAACNHicbVDLSgMxFM34rPVVdekmWIR2YZmpoi6LblxWsA/oDCWTpm1oJhmSO0It/RO/ww9wqz8guBNx5zeYPhDbeiFw7jn3cm5OGAtuwHXfnKXlldW19dRGenNre2c3s7dfNSrRlFWoEkrXQ2KY4JJVgINg9VgzEoWC1cLe9Uiv3TNtuJJ30I9ZEJGO5G1OCViqmTnPPZyQpsxjXwGPmME+bSkwv+1YLuZney/fzGTdgjsuvAi8KciiaZWbmS+/pWgSMQlUEGManhtDMCAaOBVsmPYTw2JCe6TDGhZKYs2Cwfh/Q3xsmRZuK22fBDxm/24MSGRMPwrtZESga+a1Efmf1kigfRkMuIwTYJJOjNqJwKDwKCzc4ppREH0LCNXc3oppl2hCwUY649JlcSI5mKFNxpvPYRFUiwXvtODenmVLV9OMUugQHaEc8tAFKqEbVEYVRNEjekYv6NV5ct6dD+dzMrrkTHcO0Ew53z8NZaod</latexit>

Encodes algebraic properties of MPLs!



Iterated integrals and symbols
MPLs are iterated integrals

G(a1, . . . , an; z) =

Z z

0
d log(t1 � a1)

Z t1

0
d log(t2 � a2) · · ·

Z tn�1

0
d log(tn � an)

<latexit sha1_base64="AjVUMkX/XuIwCi7TOCKMGrMHZK0="></latexit>

Symbol representation

(z � an)⌦ · · ·⌦ (z � a2)⌦ (z � a1)
<latexit sha1_base64="UujyPgPIWIgI7reZuo8Xm3dSMoU=">AAACNHicbVDLSgMxFM34rPVVdekmWIR2YZmpoi6LblxWsA/oDCWTpm1oJhmSO0It/RO/ww9wqz8guBNx5zeYPhDbeiFw7jn3cm5OGAtuwHXfnKXlldW19dRGenNre2c3s7dfNSrRlFWoEkrXQ2KY4JJVgINg9VgzEoWC1cLe9Uiv3TNtuJJ30I9ZEJGO5G1OCViqmTnPPZyQpsxjXwGPmME+bSkwv+1YLuZney/fzGTdgjsuvAi8KciiaZWbmS+/pWgSMQlUEGManhtDMCAaOBVsmPYTw2JCe6TDGhZKYs2Cwfh/Q3xsmRZuK22fBDxm/24MSGRMPwrtZESga+a1Efmf1kigfRkMuIwTYJJOjNqJwKDwKCzc4ppREH0LCNXc3oppl2hCwUY649JlcSI5mKFNxpvPYRFUiwXvtODenmVLV9OMUugQHaEc8tAFKqEbVEYVRNEjekYv6NV5ct6dD+dzMrrkTHcO0Ew53z8NZaod</latexit>

Encodes algebraic properties of MPLs!

Iterated integrals can be more generic and complicated
Z z

0
d logR1(t1) · · ·

Z tn�1

0
d logRn(tn)

<latexit sha1_base64="wL5jqIuSlEDEJcgsQdZTP00RlBY="></latexit>

May contain algebraic functions, e.g., square roots



There are more!

3

in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,
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where the integration measure is defined as
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“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.
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in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,
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“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.
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Figure 2: Examples of two-loop diagrams entering the virtual amplitude.

The amplitude generation leads to about 10000 integrals before any symmetries are
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h, only a small subset is known analytically. Besides the diagrams

which are factorizing into two one-loop diagrams [56], the known integrals are the two-

loop diagrams with two light-like legs and one massive leg, which enter single Higgs

boson production, calculated e.g. in Refs. [75–79], and the triangles with one light-
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in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,
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where the integration measure is defined as
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“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.
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in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,

m1

m2

m3

p

and the corresponding family of Feynman integrals reads

S‹1‹2‹3(S, m2
1, m2

2, m2
3) =

⁄
Ddk1 Ddk2

(k2
1 ≠ m2

1)‹1(k2
2 ≠ m2

2)‹2((k1 ≠ k2 + p)2 ≠ m2
3)‹3

, (II.1)

where the integration measure is defined as
⁄

Ddk © e“E‘

⁄ ddk

i fid/2 , (II.2)

“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.

Z
dx

log(R(x))p
Q(x)
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h, only a small subset is known analytically. Besides the diagrams

which are factorizing into two one-loop diagrams [56], the known integrals are the two-

loop diagrams with two light-like legs and one massive leg, which enter single Higgs

boson production, calculated e.g. in Refs. [75–79], and the triangles with one light-
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More than elliptic integrals?

Extremely difficult integrals in Higgs physics: 
massive particles flowing around! 

We either spend time with purely numeric methods, or 
we need clever approximations…
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Purely numerical computation using sector decomposition 
(resource demanding)

Borowka et al.: 1604.06447, 1608.04798

4 scales: s, t,mt,mh
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Tricky: singular behavior for mt→0



Small Higgs mass expansion

production, and show the comparison of our results in one of the topologies against the nu-
merical results from sector decomposition. We conclude and discuss future developments of
our method in Section 4. And finally in the Appendix, we list the basis of master integrals we
use in our calculation.

2 Expansion in terms of external Higgs masses

In this and the following sections, we will use Higgs boson pair production as the concrete
example to demonstrate our method, namely, we consider two-loop contributions to the process

g(p1) + g(p2) → H(p3) +H(p4) , (1)

where the kinematic invariants are

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p2 − p3)
2 , p21 = p22 = 0 , p23 = p24 = m2

h . (2)

They satisfy the usual relation s+ t+u = 2m2
h. As a result, the scattering amplitude depends

on 4 energy scales which can be chosen as s, t, mh and mt, where the top quark mass enters
through propagators.

The presence of multiple scales in the two-loop amplitude makes it rather difficult to cal-
culate. On one hand, it is highly non-trivial to reduce the amplitude into a set of master
integrals via the usual IBP method. On the other hand, many of the master integrals are
not expected to have a representation in terms of (generalized) polylogarithms or even elliptic
integrals. Given this situation, the various approximation methods mentioned in the intro-
duction exploit different kinematic limits to reduce the number of scales in the problem. This
simplifies both the reduction of the amplitude and the evaluation of the master integrals. For
example, the large mt expansion corresponds to the limit m2

t ≫ |s|, |t|, m2
h; the large energy

expansion corresponds to |s|, |t| ≫ m2
t ≫ m2

h; and the small pT expansion corresponds to
|s|, m2

t ≫ |t|, m2
h. Note that all the above expansions can be obtained by first expanding

around the limit m2
h → 0, and then further dealing with the 3 remaining scales s, t and m2

t .
This small Higgs mass limit is therefore more general and is valid in a broader region of phase
space.

In general, loop integrals may develop new singularities in the limit where one of the
internal or external masses is taken to zero. If that’s the case, the expansion around that limit
will not be a normal power series. An example is the limit of small top quark mass discussed
in [37], where the expansion involves powers of log(mt) in addition to powers of mt. However,
external Higgs bosons are special, since they only couple to massive particles directly. As a
result, no new singularities arise in the limit mh → 0, and we can Taylor-expand a generic
integral as3

I(s, t,m2
t , m

2
h, ϵ) =

∞
∑

n=0

m2n
h

n!
I(n)(s, t,m2

t , ϵ) , (3)

3Subtleties arise when more than two massless external partons are present, e.g., in H + j production [35].
In such cases certain integrals are singular in the limit mh → 0. However, the full amplitude remains finite in
that limit, and the expansion of the amplitude is well-behaved.

4

A novel approximation method

Taylor expansion: no singularity in the mh→0 limit

Xu, LLY: 1810.12002
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Taylor expansion: no singularity in the mh→0 limit

(a) (b)

Figure 1: Typical Feynman diagrams for (a) Higgs boson pair production and (b) Higgs boson
production associated with a jet in the gluon-fusion channel at the leading order.

calculation) and the scale mt does not appear in propagators anymore. These greatly simplify
the higher order calculations. In fact, the single Higgs boson production cross section has
been calculated in this approach to the next-to-next-to-next-to-leading order (NNNLO) in
QCD [15]. In [16–21], the H + j process were calculated at the next-to-next-to-leading order
(NNLO) in the HEFT way. As for the Higgs boson pair production, the NNLO corrections
in the infinite mt limit were calculated in [22–24], and also the third order virtual corrections
are available [25–27].

The HEFT approach provides reasonable approximations for the total cross section, as
well as for differential cross sections in the kinematic regions where the Higgs bosons are not
highly boosted. However, this approach has some drawbacks. First, with the increasing of the
perturbative order, the 1/mt power corrections to the effective theory becomes non-negligible.
This is the case for the inclusive single Higgs boson production, where the finite mt effect
at the NLO [28] is similar in size to the NNNLO contribution [15], and has to be taken into
account for phenomenology. More severely, if one considers the kinematic distributions, the
HEFT is simply not valid when the energy of the Higgs boson is comparable to or larger than
the top quark mass. These high energy tails of the differential distributions, on the other
hand, are sensitive to new physics effects and are phenomenologically much more interesting.
Therefore, the HEFT approach requires some refinements in these two aspects.

One improvement to the HEFT approximation is performing the 1/mt expansion of the
loop integrals to higher powers. This corresponds to including higher dimensional operators
in the effective field theory. In this approach, one takes the limit where mt is much larger
than the energies of external particles, and performs a power expansion in terms of pµ/mt

for the loop integrand, where pµ is some external momentum. The remaining integrals only
involves one mass scale, and are very easy to evaluate. This has been done at the NLO for
H + j production [29, 30] and for Higgs boson pair production [31–33]. It was found that the
expansion converges rather well for the total cross sections as well as in the low energy regions
of differential distributions. For these observables, the 1/mt expansion therefore provides a
fast method to obtain predictions with enough precision.

When the energies of external particles increase above the top quark mass, however, the
1/mt expansion quickly fails to converge. And one does not expect that this will work for
the high energy tails of distributions.1 If the energy is high enough, on the other hand, one

1It was recently shown in [34] that one could approximately reconstruct the non-analytic mt-dependence
from the threshold behavior of the amplitude using a Padé ansatz, however with increasing uncertainties at
higher energies.
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One loop example:

where

I(n)(s, t,m2
t , ϵ) = ∂n

m2
h
I(s, t,m2

t , m
2
h, ϵ)

∣
∣
∣
∣
m2

h=0

. (4)

The above expansion coefficients can be obtained by calculating integrals with only massless
external legs, which are simpler than the original ones.

To demonstrate our method, we take the one-loop integrals appearing in Figure 1(a) as an
example. The propagators are given by
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where d = 4−2ϵ is the space-time dimension in dimensional regularization. In order to perform
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Note that no reduction has been performed at this stage, which is important since the IBP
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order. The reduction can be carried out for the Ĩ integrals when necessary, which is much
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Comparing approximations at one-loop
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Figure 3: Left side: the partonic total cross section as a function of
√
s. Right side: the

transverse momentum distribution of the Higgs boson at the parton level with
√
s = 1000 GeV.

valid in a broader range, and provides a reasonable approximation to the exact result up to√
s ! 900 GeV. However, going beyond that, the p2T/s expansion quickly becomes divergent.

On the other hand, our small-mh expansion works perfectly across the whole range. To see
more clearly the behaviors of the small-pT expansion and our small-mh expansion, in the lower
panel of the plot we show the relative error with respect to the exact result. We find that the
qualities of the two approximations are similar for

√
s < 500 GeV. Beyond that, the small-pT

expansion becomes worse and worse, while the small mh expansion becomes better and better,
and provides a better-than-per-mille approximation to the exact result.

To see more clearly the difference between the p2T/s expansion and the small-mh expansion
at high energy, we show on the right side of Fig. 3 the transverse momentum distribution at
the parton level with

√
s = 1000 GeV. We find that the accuracy of the small-mh expansion

is at the level of 10−5 in the whole range of pT . We also observe that the distribution peaks
towards the right end, which means that the dominant contribution to the partonic total cross
section comes from the high pT region. It is clear that the small-pT expansion cannot be a
good approximation in this region, which is due to the fact that the condition pT ≪ mt is
no longer fulfilled. This also explains why the small-pT expansion fails for the partonic total
cross section at large

√
s, as observed from the left plot.

The above discussions demonstrate the validity of the small-mh expansion in the entire
phase space at the one-loop level. This makes us confident that the same will be true at higher
loop orders. In the following section, we apply our expansion to the two-loop amplitude, with
the goal to provide a fast and reliable method to evaluate the NLO QCD corrections to Higgs
boson pair production.

8

Our method is valid in the entire phase space
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Expansion at two-loop

(A) (B) (C)

(F)(E)(D)

Figure 4: Topologies relevant to the NLO QCD corrections to Higgs boson pair produc-
tion after expansion in the small mh limit. The thick lines represent massive propagators
(top quarks), while the thin lines represent massless propagators (gluons). The external legs
(dashed lines) are all light-like.

3 Expansion at the two-loop order

3.1 Setup

We now turn to the NLO (two-loop) QCD corrections to Higgs boson pair production. The
expansion in terms of m2

h takes the form as Eq. (3) and can be performed using the derivative
operator Eq. (7). We stress that this can be done at the amplitude level, without the need
of reduction beforehand. We have carried out the expansion up to order m4

h. The extension
to higher powers in mh is straightforward. The expansion coefficients can be obtained by
calculating integrals with massless external legs. After applying crossing symmetries, all the
integrals can be classified into 6 integral families. They corresponds to the 6 topologies depicted
in Fig. 4.

We employ the IBP identities to reduce the integrals in these topologies into master inte-
grals. It happens that after reduction, all the 7-propagator integrals in topology C and D can
be expressed in terms of integrals in sub-topologies with 6 propagators of less. All these sub-
topologies also appear in topology A and B, so that we don’t need to calculate them again. We
therefore only need to consider 4 integral families. We first define the mh-dependent integrals

I{ai}(s, t,m
2
t , m

2
h, ϵ) =

[

16π2

i

(
m2

t

4π

)ϵ

Γ(1 + ϵ)

]2 ∫
ddk1
(2π)d

ddk2
(2π)d

9
∏

i=1

1

Dai
i

, (17)

where k1 and k2 are loop momenta, and {ai} denotes the collection of powers ai on the
propagators Di. We then define

Ĩ{ai}(s, t,m
2
t , ϵ) = lim

m2
h→0

I{ai}(s, t,m
2
t , m

2
h, ϵ) , (18)

which are the main objects to be calculated in this section. The 4 relevant integral families
are defined by their corresponding propagators as the following:

A :
{

k2
1 −m2

t , (k1 + p1)
2 −m2

t , (k1 + p1 + p2)
2 −m2

t , (k1 + k2)
2, k2

2 −m2
t ,

9

Difficult part: two non-planar topologies
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Master integrals
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Figure 5: Pre-canonical master integrals in topology E. The thick lines represent massive
propagators (from top quarks) and the thin lines denote massless propagators (from gluons).
The labels s, t and u on the external lines represent the (squared) momenta flowing through
those legs. The external lines without labels have light-like momenta.

transcendental weight (we will simply call it “weight” in the following) is closely related to
iterated integrals. The weight of an algebraic number is defined to be 0, the weight of π is
defined to be 1, while the weight of the Riemann zeta value ζn is n. Given a weight-n function
g(x⃗), the weight of the integral

∫ x⃗

x⃗0

g(x⃗′) d log(α(x⃗′)) (28)

is defined to be n + 1, where α(x⃗) is an algebraic function of the kinematic variables. With
this definition, it is clear that the n-fold iterated integral of the form

F (x⃗) =

∫ x⃗

x⃗0

d log(αn(x⃗n)) · · ·
∫ x⃗3

x⃗0

d log(α2(x⃗2))

∫ x⃗2

x⃗0

d log(α1(x⃗1)) (29)

has transcendental weight n.
Now considering the expansion of the master integrals around ϵ = 0,

f⃗(x⃗, ϵ) =
∞
∑

i=0

f⃗ (i)(x⃗) ϵi . (30)
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Solve the master integrals using the method of 
differential equations
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Analytic results

Weight-2 functions reconstructed from symbols and similarly for the remaining two symbols. These symbols are simple enough, such that
their functional representations can be found via direct integration. The results are

p
�i + 1� 1

p
�i + 1 + 1

⌦ �i ! 2Li2(1� zi) +
1

2
log2(zi) ,

p
�i + 1� 1

p
�i + 1 + 1

⌦ (�i + 1) ! 2Li2(1� zi) + 2Li2(�zi) + 2 log(zi) log(zi + 1) +
⇡
2

6
,

p
�i + 1� 1

p
�i + 1 + 1

⌦

p
�i + 1�

p
�i + �j + 1

p
�i + 1 +

p
�i + �j + 1

+ (�i $ �j) (45)

! 2Li2(�xij)� 2Li2(xij)� log(xij) log
1� yij

1 + yij
� log(xij) log

1� xij

1 + xij

� 2Li2(�yij) + 2Li2(yij) + log(yij) log
1� yij

1 + yij
+ log(yij) log

1� xij

1 + xij
. (46)

We now turn to the weight-3 and weight-4 parts of the solution. These will involve the
third square root in Eq. (37). Although it is still possible to find explicit functional forms from
the symbols, it is often rather di�cult [45]. Therefore, we write them as one-fold integrals
over the weight-2 functions

~f
(3)(~x) =

Z ~x

~x0

dA(~x1)~f
(2)(~x1) + ~f

(3)(~x0) ,

~f
(4)(~x) =

Z ~x

~x0

dA(~x2)

Z ~x2

~x0

dA(~x1)~f
(2)(~x1) +

Z ~x

~x0

dA(~x1)~f
(3)(~x0) + ~f

(4)(~x0)

= A(~x)~f (3)(~x)� A(~x0)~f
(3)(~x0)�

Z ~x

~x0

A(~x1)dA(~x1)~f
(2)(~x1) + ~f

(4)(~x0) . (47)

So far, we have discussed the solutions valid in the unphysical region. In practice, we
need to do an analytic continuation to the physical region s > 2m2

h. Up to weight 2, this can
be simply done using the analytic expressions in Eq. (39) and (46), with the branch choice
according to s ! s+i� and m

2
t ! m

2
t �i�. The treatment of the weight-3 and weight-4 parts is

more tricky, since they are represented as one-fold integrals. We need to carefully deform the
integration contour to avoid possible singularities. For example, the integrals have a branch
cut 1/µ < �1 on the real axis in the complex-1/µ plane, which corresponds to s > 4m2

t .
Suppose that we want to evaluate the integrals for a phase-space point at 1/µ = ⇢� i�, with
⇢ < �1. We can integrate from the boundary point 1/µ0 = 0 to the point 1/µ along a half-
circle below the real axis. After the analytic continuation, we can numerically evaluate all
the master integrals for topology E in the physical region. The results are shown in the next
subsection.
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More complicated functions at higher transcendental weights!
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Numeric results
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Figure 8: The real part (left two plots) and the imaginary part (right two plots) of the order
ϵ−1 and ϵ0 coefficient of the two-loop integral I1,1,1,1,1,1,1,0,0 in topology E as a function of the
Higgs boson transverse momentum pT with

√
s = 1000 GeV. The integral has been multiplied

by m6
t to make it dimensionless.

We stress that although in this subsection we only studied the behavior of a single integral,
similar behavior is expected for the full amplitude. This has been verified at the one-loop level.
At the two-loop level, this can only be done with the results for topology F, which is the subject
of the next subsection.

Finally, we emphasize that due to the analytic nature, the evaluation of the integrals up
to weight 2 is extremely fast. The weight-3 and weight-4 parts involve one-fold integrals to be
performed. We have carried out the integration using Mathematica on a desktop computer
with 6 cores, without too much optimization. We have checked that to evaluate all the master
integrals f⃗ in topology E (which can be used to construct all the integrals I{ai} by simple
arithmetic operations) for one phase-space point, it takes about 20 seconds with 6 threads.
We believe that by using a dedicated C++ code and by performing a bit of optimization,
the time can be significantly shortened. For comparison, to evaluate just one master integral
I1,1,1,1,1,1,1,0,0 with pySecDec on the same computer, it takes about 25 minutes with 12 threads.
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Good convergence at two-loop
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Phenomenological applications upcoming!

Can also be applied to other processes (ZH, Hj, etc.)
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HZV vertex

H ! 4l
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Numeric integration using sector decomposition
Gong, Li, Xu, LLY, Zhao: 1609.03955  
Sun, Feng, Jia, Sang: 1609.03995

Time-consuming, especially for bottom quark loops and for 
high energies (above the top quark pair threshold)



HZV vertex: 1/mt expansion
Gong, Li, Xu, LLY, Zhao: 1609.03955
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Can be done at the level of integrands (with top quark loop only)

Simple analytic expressions
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these future facilities. We also see that the 1/mt expan-
sion approximates the exact results remarkably well for
these 3 energies. The digits in the parentheses reflect the
variations of the cross sections with respect to the renor-
malization scale µ by a factor of 2 around the default scale
µ0 =

√
s/2. We observe that the variations of the NLO

cross sections are too small to cover the higher order cor-
rections, which is common for electroweak observables.
The mixed QCD-EW corrections introduce dependence
on strong interactions for the first time in the perturba-
tive series. As a result, the NNLO cross sections exhibit
larger scale variations than the NLO ones. Comparing
Table I and II, one can see that the results in the two
schemes are quite close to each other. For the NNLO re-
sults, the difference between the two schemes are similar
in size to the effect of scale variation in the MS scheme.
We use these to give a rough estimate that the size of
even higher order corrections amounts to about 0.2%.
Once we go for higher energies above the tt̄ thresh-

old, the 1/mt expansion is expected to break down. In
this case one has to rely on the numerical methods.
Nevertheless, we observe from Table I and II that for√
s = 350 GeV, the 1/mt expansion still does a reason-

able job to describe the O(ααs) correction. We also see
that, due to the threshold enhancement, the NNLO cor-
rection can reach 1.5% of the NLO cross section. The
energy

√
s = 350 GeV is just slightly above the tt̄ thresh-

old2, and is a design energy of the ILC and the FCC-ee
to study the properties of the top quark, which makes it
particularly interesting. Our result provides the essen-
tial theoretical input to continue investigating the Higgs
boson at this collider energy.
Going further up to higher energies, the main task

of the colliders becomes producing new particles below
the TeV scale rather than precisely measuring standard
model processes, and the ZH cross section is not as im-
portant as in previous cases. Nevertheless, we give the
results for

√
s = 500 GeV in Table I and II for demonstra-

tion purposes. It is clear that the asymptotic expansion
completely fails here: the 1/mt expansion up to order
m−4

t overestimates the size of the NNLO correction by a
factor of 2.
To further assess the behavior of the 1/mt expansion,

we show in Table III the fractions of different orders of the
expansion in the full O(ααs) corrections at the default
scale µ =

√
s/2 in the MS scheme. Results in the α(mZ)

scheme are similar and we do not show them here. Again
we show the results for 5 different center-of-mass energies.

2 This fact also makes the numerical evaluation of the master in-
tegrals for

√

s = 350 GeV rather difficult. For this reason, many
optimizations over the original version of the program reported
in [27] are implemented to further improve the efficiency. We are
not able to cross-check this result using the current public ver-
sion of SecDec (3.0.9) with the computation resource attainable
to us.

√
s (GeV) O(m2

t ) O(m0
t ) O(m−2

t ) O(m−4
t )

240 81.8% 16.2% 1.4% 0.4%

250 81.7% 16.1% 1.5% 0.5%

300 80.0% 15.2% 2.1% 1.1%

350 69.7% 12.6% 2.7% 2.1%

500 137% 18.6% 17.3% 31.1%

TABLE III. Convergence of the 1/m2
t expansion for the mixed

QCD-EW corrections in the MS scheme with µ =
√
s/2.

The most important one is
√
s = 240 GeV, which exhibits

the largest production cross section and also very high lu-
minosity can be achieved experimentally, and therefore is
the design energy of Higgs factories. At this energy, we
see that the leading O(m2

t ) term accounts for about 82%
of the total corrections, while the subleading O(m0

t ) term
accounts for another 16%. The even higher power contri-
butions are negligible here. These demonstrate the good
convergence of the 1/mt expansion and the usefulness
of our approximate analytical formula, which evaluates
much faster than the sector decomposition method. It
provides an efficient and reliable way to perform high
precision physics analyses for Higgs factories.
As we increase the center-of-mass energy, it can be

seen that the size of the power corrections starts to grow
gradually. The 1/mt expansion still provides very good
approximations to the full results as long as the energies
are below or even slightly above the tt̄ threshold. For√
s = 500 GeV which is far beyond the threshold, the

power series tends to diverge as expected.

SUMMARY AND OUTLOOK

In this Letter, we calculated the mixed QCD-
electroweak corrections to the associated production of
a Higgs boson and a Z boson at future electron-positron
colliders. We found that the O(ααs) corrections increase
the cross sections by about 1.3%, which is significantly
larger than the expected experimental accuracies of the
Higgs factories. Our results should be used when ex-
tracting the properties of the Higgs boson, in particular
the HZZ coupling, from future precision measurements
of the ZH production cross section. While we only pre-
sented our predictions for the total cross sections in this
Letter, it is rather straightforward to use our formula
to study the kinematic distributions as well as polarized
scatterings with high precisions.
We have shown that for center-of-mass energies be-

low the tt̄ threshold, the approximate analytic formula
obtained in the 1/mt expansion agrees remarkably well
with the exact numeric results. This is especially im-
portant for the design energy of the Higgs factories√
s ∼ 240 GeV, as it provides a fast and reliable method

Good convergence for optimal energies of Higgs factories

m2
t c2

�↵↵s
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these future facilities. We also see that the 1/mt expan-
sion approximates the exact results remarkably well for
these 3 energies. The digits in the parentheses reflect the
variations of the cross sections with respect to the renor-
malization scale µ by a factor of 2 around the default scale
µ0 =

√
s/2. We observe that the variations of the NLO

cross sections are too small to cover the higher order cor-
rections, which is common for electroweak observables.
The mixed QCD-EW corrections introduce dependence
on strong interactions for the first time in the perturba-
tive series. As a result, the NNLO cross sections exhibit
larger scale variations than the NLO ones. Comparing
Table I and II, one can see that the results in the two
schemes are quite close to each other. For the NNLO re-
sults, the difference between the two schemes are similar
in size to the effect of scale variation in the MS scheme.
We use these to give a rough estimate that the size of
even higher order corrections amounts to about 0.2%.
Once we go for higher energies above the tt̄ thresh-

old, the 1/mt expansion is expected to break down. In
this case one has to rely on the numerical methods.
Nevertheless, we observe from Table I and II that for√
s = 350 GeV, the 1/mt expansion still does a reason-

able job to describe the O(ααs) correction. We also see
that, due to the threshold enhancement, the NNLO cor-
rection can reach 1.5% of the NLO cross section. The
energy

√
s = 350 GeV is just slightly above the tt̄ thresh-

old2, and is a design energy of the ILC and the FCC-ee
to study the properties of the top quark, which makes it
particularly interesting. Our result provides the essen-
tial theoretical input to continue investigating the Higgs
boson at this collider energy.
Going further up to higher energies, the main task

of the colliders becomes producing new particles below
the TeV scale rather than precisely measuring standard
model processes, and the ZH cross section is not as im-
portant as in previous cases. Nevertheless, we give the
results for

√
s = 500 GeV in Table I and II for demonstra-

tion purposes. It is clear that the asymptotic expansion
completely fails here: the 1/mt expansion up to order
m−4

t overestimates the size of the NNLO correction by a
factor of 2.
To further assess the behavior of the 1/mt expansion,

we show in Table III the fractions of different orders of the
expansion in the full O(ααs) corrections at the default
scale µ =

√
s/2 in the MS scheme. Results in the α(mZ)

scheme are similar and we do not show them here. Again
we show the results for 5 different center-of-mass energies.

2 This fact also makes the numerical evaluation of the master in-
tegrals for

√

s = 350 GeV rather difficult. For this reason, many
optimizations over the original version of the program reported
in [27] are implemented to further improve the efficiency. We are
not able to cross-check this result using the current public ver-
sion of SecDec (3.0.9) with the computation resource attainable
to us.

√
s (GeV) O(m2

t ) O(m0
t ) O(m−2

t ) O(m−4
t )

240 81.8% 16.2% 1.4% 0.4%

250 81.7% 16.1% 1.5% 0.5%

300 80.0% 15.2% 2.1% 1.1%

350 69.7% 12.6% 2.7% 2.1%

500 137% 18.6% 17.3% 31.1%

TABLE III. Convergence of the 1/m2
t expansion for the mixed

QCD-EW corrections in the MS scheme with µ =
√
s/2.

The most important one is
√
s = 240 GeV, which exhibits

the largest production cross section and also very high lu-
minosity can be achieved experimentally, and therefore is
the design energy of Higgs factories. At this energy, we
see that the leading O(m2

t ) term accounts for about 82%
of the total corrections, while the subleading O(m0

t ) term
accounts for another 16%. The even higher power contri-
butions are negligible here. These demonstrate the good
convergence of the 1/mt expansion and the usefulness
of our approximate analytical formula, which evaluates
much faster than the sector decomposition method. It
provides an efficient and reliable way to perform high
precision physics analyses for Higgs factories.
As we increase the center-of-mass energy, it can be

seen that the size of the power corrections starts to grow
gradually. The 1/mt expansion still provides very good
approximations to the full results as long as the energies
are below or even slightly above the tt̄ threshold. For√
s = 500 GeV which is far beyond the threshold, the

power series tends to diverge as expected.

SUMMARY AND OUTLOOK

In this Letter, we calculated the mixed QCD-
electroweak corrections to the associated production of
a Higgs boson and a Z boson at future electron-positron
colliders. We found that the O(ααs) corrections increase
the cross sections by about 1.3%, which is significantly
larger than the expected experimental accuracies of the
Higgs factories. Our results should be used when ex-
tracting the properties of the Higgs boson, in particular
the HZZ coupling, from future precision measurements
of the ZH production cross section. While we only pre-
sented our predictions for the total cross sections in this
Letter, it is rather straightforward to use our formula
to study the kinematic distributions as well as polarized
scatterings with high precisions.
We have shown that for center-of-mass energies be-

low the tt̄ threshold, the approximate analytic formula
obtained in the 1/mt expansion agrees remarkably well
with the exact numeric results. This is especially im-
portant for the design energy of the Higgs factories√
s ∼ 240 GeV, as it provides a fast and reliable method

Good convergence for optimal energies of Higgs factories

m2
t c2

�↵↵s
<latexit sha1_base64="jbvJMVNiBt44ZsnRf0lWrrDYY/s=">AAACKnicbZDLSgMxFIYz3u9WXboJFsGFlJkq6LLoxqWCrUKnDmfSTBtMMkNyRijDvITP4QO41UdwV9wKvobpZeHtQMLP/5/DSb44k8Ki7w+9mdm5+YXFpeWV1bX1jc3K1nbLprlhvMlSmZrbGCyXQvMmCpT8NjMcVCz5TXx/PspvHrixItXXOMh4R0FPi0QwQGdFlcMwMcAKFeFdnYaHlEX1sgit6Cm4K0KQWR8md2TLMqpU/Zo/LvpXBFNRJdO6jCqfYTdlueIamQRr24GfYacAg4JJXq6EueUZsHvo8baTGhS3nWL8q5LuO6dLk9S4o5GO3e8TBShrByp2nQqwb39nI/O/rJ1jctophM5y5JpNFiW5pJjSESLaFYYzlAMngBnh3kpZHxwmdCB/bOnzLNcC7YhM8JvDX9Gq14KjWv3quNo4mzJaIrtkjxyQgJyQBrkgl6RJGHkkz+SFvHpP3ps39N4nrTPedGaH/Cjv4wsq26iP</latexit>
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first scheme involves renormalizing α in the MS scheme
for all contributions except the top quark loop, which
is subtracted on-shell. In this scheme the fine struc-
ture constant becomes scale-dependent and we denote
it by α̂(µ). An alternative scheme is to subtract the
low-energy contributions due to light fermions from the
on-shell renormalized α(0), and define an effective cou-
pling α(mZ) = α(0)/

(

1 − ∆α(mZ)
)

. For a review of
these schemes and the recent evaluations of the hadronic
contributions to ∆α(mZ), see [29].
As mentioned before, the benefit of performing the ex-

pansion in 1/mt is that we obtain an approximate ana-
lytical formula for the cross section, which allows much
faster numerical evaluations compared to the sector de-
composition method. For our numerical results in the
next section we have used the expansion up to orderm−4

t .
Due to the limited space, we give below the analytic re-
sults up to order m0

t , which will prove to be a sufficiently
accurate approximation for

√
s ∼ 250 GeV. We begin

with the simpler ones:

Tααs

4,γ =
α

4π

αs

4π
CF

8QEZvt
m2

Z

+O(m−2
t ) , (7)

Tααs

5,γ =
α

4π

αs

4π
CF

[

8QEZvt
m2

Z

(8)

−
(

21− 44s2w
)

Q2

3swcw(Q2 −m2
Z)

(

ln
Q2

m2
Z

+ iπ

)

]

+O(m−2
t ) ,

Tααs

4,Z =
α

4π

αs

4π
CF

QEZ

m2
Z

(

−12v2t +
4

3
a2t

)

+O(m−2
t ) ,

(9)

where vt = (1/4− 2s2w/3)/(swcw) and at = −1/(4swcw)
come from the vector and axial-vector couplings of the
top quark with the Z boson. Note that all the above 3
coefficients vanish at the leading order. The most com-
plicated coefficient is T5,Z, which equals 1 at tree-level.
It is given by

Tααs

5,Z =
α

4π

αs

4π
CF

{

m2
t

m2
Z

a2t
(

30− 12π2 − 264Lt − 144L2
t

)

+

(

45− 84s2w + 88s4w
)

6s2wc2w(Q2 −m2
Z)

[

m2
Z +Q2

(

ln
Q2

m2
Z

+ iπ − 1

)

]

− 12(v2t + a2t )
QEZ

m2
Z

−
4

3
a2t

m2
H

m2
Z

}

+O(m−2
t ) (10)

+

[

δZe + δZZZ +
1

2
δZH +

δm2
Z

2m2
Z

+
δc2w(c

2
w − s2w)

2s2wc2w

]ααs

finite

,

where Lt = ln(µ2/m2
t ), and the subscript “finite” refers

to the finite part of the various renormalization con-
stants.
The renormalization constants appearing in Eqs. (6)

and (10) are calculated exactly with the help of differen-

√
s (GeV) σLO (fb) σNLO (fb) σNNLO (fb) σexp.

NNLO (fb)

240 256.3(9) 228.0(1) 230.9(4) 230.9(4)

250 256.3(9) 227.3(1) 230.2(4) 230.2(4)

300 193.4(7) 170.2(1) 172.4(3) 172.4(3)

350 138.2(5) 122.1(1) 123.9(2) 123.6(2)

500 61.38(22) 53.86(2) 54.24(7) 54.64(10)

TABLE I. Total cross sections at various collider energies in
the MS scheme.

√
s (GeV) σLO (fb) σNLO (fb) σNNLO (fb) σexp.

NNLO (fb)

240 252.0 228.6 231.5 231.5

250 252.0 227.9 230.8 230.8

300 190.0 170.7 172.9 172.9

350 135.6 122.5 124.2 124.0

500 60.12 54.03 54.42 54.81

TABLE II. Total cross sections at various collider energies in
the α(mZ) scheme.

tial equations. We have checked that our results agree
with those in [30, 31].1

RESULTS

In this section we present the numerical predictions
from our calculations. We choose the input parame-
ters as mt = 173.3 GeV, mH = 125.1 GeV, mZ =
91.1876 GeV, mW = 80.385 GeV, α̂(mZ) = 1/127.94,
α(mZ) = 1/128.933 and αs(mZ) = 0.118 [29]. The de-
fault renormalization scale is chosen as µ0 =

√
s/2. The

renormalization group evolutions of the coupling con-
stants are performed at 4 loops for α̂ [32] and 2 loops
for αs. We calculate the NLO weak corrections using
FeynArts [33] and FormCalc [34].
In Table I we show the NNLO predictions along with

the LO and the NLO cross sections in the MS scheme
for center-of-mass energies

√
s = 240 GeV, 250 GeV,

300 GeV, 350 GeV and 500 GeV. The results from the
1/mt expansion up to order m−4

t are also shown in the
5th column in the table. In Table II, we show the same
information, but in the α(mZ) scheme. We find that the
O(ααs) corrections increase the NLO cross section by
about 1.3% for all 3 collider energies below the tt̄ thresh-
old of about 346 GeV. This effect is significantly larger
than the expected experimental accuracies of Higgs fac-
tories. Our results are therefore crucial for extracting
theoretical parameters from precision measurements at

1 There is a typo in [30] relevant for the W± boson self-energies,
which was corrected in [35].

No difference between exact and expanded results (4 digits)
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these future facilities. We also see that the 1/mt expan-
sion approximates the exact results remarkably well for
these 3 energies. The digits in the parentheses reflect the
variations of the cross sections with respect to the renor-
malization scale µ by a factor of 2 around the default scale
µ0 =

√
s/2. We observe that the variations of the NLO

cross sections are too small to cover the higher order cor-
rections, which is common for electroweak observables.
The mixed QCD-EW corrections introduce dependence
on strong interactions for the first time in the perturba-
tive series. As a result, the NNLO cross sections exhibit
larger scale variations than the NLO ones. Comparing
Table I and II, one can see that the results in the two
schemes are quite close to each other. For the NNLO re-
sults, the difference between the two schemes are similar
in size to the effect of scale variation in the MS scheme.
We use these to give a rough estimate that the size of
even higher order corrections amounts to about 0.2%.
Once we go for higher energies above the tt̄ thresh-

old, the 1/mt expansion is expected to break down. In
this case one has to rely on the numerical methods.
Nevertheless, we observe from Table I and II that for√
s = 350 GeV, the 1/mt expansion still does a reason-

able job to describe the O(ααs) correction. We also see
that, due to the threshold enhancement, the NNLO cor-
rection can reach 1.5% of the NLO cross section. The
energy

√
s = 350 GeV is just slightly above the tt̄ thresh-

old2, and is a design energy of the ILC and the FCC-ee
to study the properties of the top quark, which makes it
particularly interesting. Our result provides the essen-
tial theoretical input to continue investigating the Higgs
boson at this collider energy.
Going further up to higher energies, the main task

of the colliders becomes producing new particles below
the TeV scale rather than precisely measuring standard
model processes, and the ZH cross section is not as im-
portant as in previous cases. Nevertheless, we give the
results for

√
s = 500 GeV in Table I and II for demonstra-

tion purposes. It is clear that the asymptotic expansion
completely fails here: the 1/mt expansion up to order
m−4

t overestimates the size of the NNLO correction by a
factor of 2.
To further assess the behavior of the 1/mt expansion,

we show in Table III the fractions of different orders of the
expansion in the full O(ααs) corrections at the default
scale µ =

√
s/2 in the MS scheme. Results in the α(mZ)

scheme are similar and we do not show them here. Again
we show the results for 5 different center-of-mass energies.

2 This fact also makes the numerical evaluation of the master in-
tegrals for

√

s = 350 GeV rather difficult. For this reason, many
optimizations over the original version of the program reported
in [27] are implemented to further improve the efficiency. We are
not able to cross-check this result using the current public ver-
sion of SecDec (3.0.9) with the computation resource attainable
to us.

√
s (GeV) O(m2

t ) O(m0
t ) O(m−2

t ) O(m−4
t )

240 81.8% 16.2% 1.4% 0.4%

250 81.7% 16.1% 1.5% 0.5%

300 80.0% 15.2% 2.1% 1.1%

350 69.7% 12.6% 2.7% 2.1%

500 137% 18.6% 17.3% 31.1%

TABLE III. Convergence of the 1/m2
t expansion for the mixed

QCD-EW corrections in the MS scheme with µ =
√
s/2.

The most important one is
√
s = 240 GeV, which exhibits

the largest production cross section and also very high lu-
minosity can be achieved experimentally, and therefore is
the design energy of Higgs factories. At this energy, we
see that the leading O(m2

t ) term accounts for about 82%
of the total corrections, while the subleading O(m0

t ) term
accounts for another 16%. The even higher power contri-
butions are negligible here. These demonstrate the good
convergence of the 1/mt expansion and the usefulness
of our approximate analytical formula, which evaluates
much faster than the sector decomposition method. It
provides an efficient and reliable way to perform high
precision physics analyses for Higgs factories.
As we increase the center-of-mass energy, it can be

seen that the size of the power corrections starts to grow
gradually. The 1/mt expansion still provides very good
approximations to the full results as long as the energies
are below or even slightly above the tt̄ threshold. For√
s = 500 GeV which is far beyond the threshold, the

power series tends to diverge as expected.

SUMMARY AND OUTLOOK

In this Letter, we calculated the mixed QCD-
electroweak corrections to the associated production of
a Higgs boson and a Z boson at future electron-positron
colliders. We found that the O(ααs) corrections increase
the cross sections by about 1.3%, which is significantly
larger than the expected experimental accuracies of the
Higgs factories. Our results should be used when ex-
tracting the properties of the Higgs boson, in particular
the HZZ coupling, from future precision measurements
of the ZH production cross section. While we only pre-
sented our predictions for the total cross sections in this
Letter, it is rather straightforward to use our formula
to study the kinematic distributions as well as polarized
scatterings with high precisions.
We have shown that for center-of-mass energies be-

low the tt̄ threshold, the approximate analytic formula
obtained in the 1/mt expansion agrees remarkably well
with the exact numeric results. This is especially im-
portant for the design energy of the Higgs factories√
s ∼ 240 GeV, as it provides a fast and reliable method

Good convergence for optimal energies of Higgs factories

m2
t c2
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first scheme involves renormalizing α in the MS scheme
for all contributions except the top quark loop, which
is subtracted on-shell. In this scheme the fine struc-
ture constant becomes scale-dependent and we denote
it by α̂(µ). An alternative scheme is to subtract the
low-energy contributions due to light fermions from the
on-shell renormalized α(0), and define an effective cou-
pling α(mZ) = α(0)/

(

1 − ∆α(mZ)
)

. For a review of
these schemes and the recent evaluations of the hadronic
contributions to ∆α(mZ), see [29].
As mentioned before, the benefit of performing the ex-

pansion in 1/mt is that we obtain an approximate ana-
lytical formula for the cross section, which allows much
faster numerical evaluations compared to the sector de-
composition method. For our numerical results in the
next section we have used the expansion up to orderm−4

t .
Due to the limited space, we give below the analytic re-
sults up to order m0

t , which will prove to be a sufficiently
accurate approximation for

√
s ∼ 250 GeV. We begin

with the simpler ones:

Tααs

4,γ =
α

4π

αs

4π
CF

8QEZvt
m2

Z

+O(m−2
t ) , (7)

Tααs

5,γ =
α

4π

αs

4π
CF

[

8QEZvt
m2

Z

(8)

−
(

21− 44s2w
)

Q2

3swcw(Q2 −m2
Z)

(

ln
Q2

m2
Z

+ iπ

)

]

+O(m−2
t ) ,

Tααs

4,Z =
α

4π

αs

4π
CF

QEZ

m2
Z

(

−12v2t +
4

3
a2t

)

+O(m−2
t ) ,

(9)

where vt = (1/4− 2s2w/3)/(swcw) and at = −1/(4swcw)
come from the vector and axial-vector couplings of the
top quark with the Z boson. Note that all the above 3
coefficients vanish at the leading order. The most com-
plicated coefficient is T5,Z, which equals 1 at tree-level.
It is given by

Tααs

5,Z =
α

4π

αs

4π
CF

{

m2
t

m2
Z

a2t
(

30− 12π2 − 264Lt − 144L2
t

)

+

(

45− 84s2w + 88s4w
)

6s2wc2w(Q2 −m2
Z)

[

m2
Z +Q2

(

ln
Q2

m2
Z

+ iπ − 1

)

]

− 12(v2t + a2t )
QEZ

m2
Z

−
4

3
a2t

m2
H

m2
Z

}

+O(m−2
t ) (10)

+

[

δZe + δZZZ +
1

2
δZH +

δm2
Z

2m2
Z

+
δc2w(c

2
w − s2w)

2s2wc2w

]ααs

finite

,

where Lt = ln(µ2/m2
t ), and the subscript “finite” refers

to the finite part of the various renormalization con-
stants.
The renormalization constants appearing in Eqs. (6)

and (10) are calculated exactly with the help of differen-

√
s (GeV) σLO (fb) σNLO (fb) σNNLO (fb) σexp.

NNLO (fb)

240 256.3(9) 228.0(1) 230.9(4) 230.9(4)

250 256.3(9) 227.3(1) 230.2(4) 230.2(4)

300 193.4(7) 170.2(1) 172.4(3) 172.4(3)

350 138.2(5) 122.1(1) 123.9(2) 123.6(2)

500 61.38(22) 53.86(2) 54.24(7) 54.64(10)

TABLE I. Total cross sections at various collider energies in
the MS scheme.

√
s (GeV) σLO (fb) σNLO (fb) σNNLO (fb) σexp.

NNLO (fb)

240 252.0 228.6 231.5 231.5

250 252.0 227.9 230.8 230.8

300 190.0 170.7 172.9 172.9

350 135.6 122.5 124.2 124.0

500 60.12 54.03 54.42 54.81

TABLE II. Total cross sections at various collider energies in
the α(mZ) scheme.

tial equations. We have checked that our results agree
with those in [30, 31].1

RESULTS

In this section we present the numerical predictions
from our calculations. We choose the input parame-
ters as mt = 173.3 GeV, mH = 125.1 GeV, mZ =
91.1876 GeV, mW = 80.385 GeV, α̂(mZ) = 1/127.94,
α(mZ) = 1/128.933 and αs(mZ) = 0.118 [29]. The de-
fault renormalization scale is chosen as µ0 =

√
s/2. The

renormalization group evolutions of the coupling con-
stants are performed at 4 loops for α̂ [32] and 2 loops
for αs. We calculate the NLO weak corrections using
FeynArts [33] and FormCalc [34].
In Table I we show the NNLO predictions along with

the LO and the NLO cross sections in the MS scheme
for center-of-mass energies

√
s = 240 GeV, 250 GeV,

300 GeV, 350 GeV and 500 GeV. The results from the
1/mt expansion up to order m−4

t are also shown in the
5th column in the table. In Table II, we show the same
information, but in the α(mZ) scheme. We find that the
O(ααs) corrections increase the NLO cross section by
about 1.3% for all 3 collider energies below the tt̄ thresh-
old of about 346 GeV. This effect is significantly larger
than the expected experimental accuracies of Higgs fac-
tories. Our results are therefore crucial for extracting
theoretical parameters from precision measurements at

1 There is a typo in [30] relevant for the W± boson self-energies,
which was corrected in [35].

No difference between exact and expanded results (4 digits)

But note: expansion not working at high energies 
(neither for bottom quark loops)
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To deal with the difficulties, exact analytic result necessary!
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+
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FIG. 2. Master integrals.

Given the disadvantage of the purely numeric method and the limited applicability of various approximations, the

goal of this Letter is to provide an exact analytic solution to the master integrals appearing in the O(↵↵s) corrections

to the HZZ vertex. The analytic expressions are valid for arbitrary values of the internal mass and the external

momenta. This will allow fast numeric evaluations at any phase-space point, and will also serve as a prototype for

analyzing the structure of loop integrals with many scales.

II. MASTER INTEGRALS AND DIFFERENTIAL EQUATIONS

To obtain the analytic solution for the master integrals, we employ the method of di↵erential equations []. We

define the dimensionless variables

x = �
q
2

4m
2

Q

, y = �
p
2

Z

4m
2

Q

, z = �
p
2

H

4m
2

Q

. (2)

f1 = G2,2,0,0,0,0,0 ,

f2 = m
2

Q
R1(x)G2,0,0,0,0,1,2 ,

f3 = m
2

Q
R1(y)G1,2,0,2,0,0,0 ,

f4 = m
2

Q
R1(z)G1,2,0,0,2,0,0 ,

f5 = m
2

Q
xG0,0,1,0,2,2,0 ,

f6 =
R1(x)

2x
f5 +m

2

Q
R1(x)G0,0,2,0,2,1,0 ,

f7 = m
2

Q
y G2,0,1,0,0,2,0 ,

f8 =
R1(y)

2y
f7 +m

2

Q
R1(y)G1,0,2,0,0,2,0 ,

f9 = m
2

Q
z G2,0,1,0,0,0,2 ,

f10 =
R1(z)

2z
f9 +m

2

Q
R1(z)G1,0,2,0,0,0,2 ,

f11 = m
4

Q
R

2

1
(x)G0,0,0,2,1,2,1 ,

f12 = m
4

Q
R

2

1
(y)G2,2,0,1,0,1,0 ,

f13 = m
4

Q
R

2

1
(z)G2,2,0,0,1,0,1 ,

f14 = m
4

Q
R1(y)R1(z)G2,2,0,0,1,1,0 ,

f15 = m
4

Q
R1(x)R1(z)G1,0,0,0,2,2,1 ,

f16 = m
4

Q
R1(x)R1(y)G1,0,0,2,0,2,1 ,

f17 = ✏m
2

Q
R2(x, y, z)G1,2,0,1,1,0,0 ,

f18 = ✏m
2

Q
R2(x, y, z)G2,0,1,0,0,1,1 ,

3

41 master integrals
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4 kinds of square roots appear in the differential equations

R1(x) =
p

x(x+ 1) , R1(y) =
p

y(y + 1) , R1(z) =
p
z(z + 1)

R2(x, y, z) =
p

x2 + y2 + z2 � 2xy � 2yz � 2zx
<latexit sha1_base64="q/d5KG3y7EJOj6L2fYiTJ7zx54w="></latexit>

x = � Q2

4m2
t

, y = � m2
Z

4m2
t

, z = �m2
H

4m2
t
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To deal with the difficulties, exact analytic result necessary!
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+
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FIG. 2. Master integrals.

Given the disadvantage of the purely numeric method and the limited applicability of various approximations, the

goal of this Letter is to provide an exact analytic solution to the master integrals appearing in the O(↵↵s) corrections

to the HZZ vertex. The analytic expressions are valid for arbitrary values of the internal mass and the external

momenta. This will allow fast numeric evaluations at any phase-space point, and will also serve as a prototype for

analyzing the structure of loop integrals with many scales.

II. MASTER INTEGRALS AND DIFFERENTIAL EQUATIONS

To obtain the analytic solution for the master integrals, we employ the method of di↵erential equations []. We

define the dimensionless variables

x = �
q
2

4m
2

Q

, y = �
p
2

Z

4m
2

Q

, z = �
p
2

H

4m
2

Q

. (2)

f1 = G2,2,0,0,0,0,0 ,

f2 = m
2

Q
R1(x)G2,0,0,0,0,1,2 ,

f3 = m
2

Q
R1(y)G1,2,0,2,0,0,0 ,

f4 = m
2

Q
R1(z)G1,2,0,0,2,0,0 ,

f5 = m
2

Q
xG0,0,1,0,2,2,0 ,

f6 =
R1(x)

2x
f5 +m

2

Q
R1(x)G0,0,2,0,2,1,0 ,

f7 = m
2

Q
y G2,0,1,0,0,2,0 ,

f8 =
R1(y)

2y
f7 +m

2

Q
R1(y)G1,0,2,0,0,2,0 ,

f9 = m
2

Q
z G2,0,1,0,0,0,2 ,

f10 =
R1(z)

2z
f9 +m

2

Q
R1(z)G1,0,2,0,0,0,2 ,

f11 = m
4

Q
R

2

1
(x)G0,0,0,2,1,2,1 ,

f12 = m
4

Q
R

2

1
(y)G2,2,0,1,0,1,0 ,

f13 = m
4

Q
R

2

1
(z)G2,2,0,0,1,0,1 ,

f14 = m
4

Q
R1(y)R1(z)G2,2,0,0,1,1,0 ,

f15 = m
4

Q
R1(x)R1(z)G1,0,0,0,2,2,1 ,

f16 = m
4

Q
R1(x)R1(y)G1,0,0,2,0,2,1 ,

f17 = ✏m
2

Q
R2(x, y, z)G1,2,0,1,1,0,0 ,

f18 = ✏m
2

Q
R2(x, y, z)G2,0,1,0,0,1,1 ,

3

41 master integrals
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Explicit analytic expressions can be reconstructed 
from the symbol representation (up to weight 3)

�(x)⌦
x(x� y � z)�R1(x)R2

x(x� y � z) +R1(x)R2

+ (x $ y) + (x $ z) , (17)

where i, j and k take distinct values from 1, 2 and 3. Except for the last one, the above

symbols can be converted to MPLs with the help of the known symbol maps:

S
�
G(0, 0; u)

�
= S

✓
1

2
log2(u)

◆
= u⌦ u ,

S
�
G(0; u)G(0; v)

�
= S

�
log(u) log(v)

�
= u⌦ v + v ⌦ u ,

S
�
G(0, 1; u)

�
= �S

�
Li2(u)

�
= (1� u)⌦ u . (18)

To simplify the last symbol in Eq. (17), we turn back to its iterated integral representation.

Being an integrable symbol, the corresponding combination of integrals is path-independent.

We can therefore choose a particular path from ~r0 = (0, 0, 0) to ~r to evaluate the 3 terms

separately, while keeping in mind that only the sum of them is meaningful. We parametrize

the path as t~r, with t going from 0 to 1. As an example, the first term then becomes
Z

t=1

t=0

log(�(tx)) d log
tx(x� y � z)�R1(tx)R2

tx(x� y � z) +R1(tx)R2

=

Z
t=1

t=0

log(�(tx)) d log
(1� �(tx))(x� y � z +R2)� 2R2

(1� �(tx))(x� y � z �R2) + 2R2

=

Z
u=1��(x)

u=0

G(1; u) d log
u(x� y � z +R2)� 2R2

u(x� y � z �R2) + 2R2

, (19)

where x, y and z should be treated as constants when taking the di↵erential (i.e., only t

or u is the active variable). In deriving the above formula, we have exploited the fact that

�(x, y, z) is a homogeneous quadratic polynomial of x, y and z, so that

R2(tx, ty, tz) = tR2(x, y, z) . (20)

The integration over u can be performed using the definition of MPLs
Z

w

0

du

u� a1
G(a2; u) = G(a1, a2;w) . (21)

Combining the 3 terms, we find

�(x)⌦
x(x� y � z)�R1(x)R2

x(x� y � z) +R1(x)R2

+ (x $ y) + (x $ z)

! G

✓
2R2

R2 + x� y � z
, 1; 1� �(x)

◆
�G

✓
2R2

R2 � x+ y + z
, 1; 1� �(x)

◆

+G

✓
2R2

R2 + y � x� z
, 1; 1� �(y)

◆
�G

✓
2R2

R2 � y + x+ z
, 1; 1� �(y)

◆

+G

✓
2R2

R2 + z � y � x
, 1; 1� �(z)

◆
�G

✓
2R2

R2 � z + y + x
, 1; 1� �(z)

◆
.
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Allows fast numerics for all phase-space points!

Wang, Xu, LLY: 1905.11463

Tricky: rationalization of square roots via change of variables
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Top quark pair 
threshold
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e
+
e
� ! ZH
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Applied to
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FIG. 2. NNLO O(↵↵s) corrections from top quark loops to
the e

+
e
�
! ZH production cross sections.

FIG. 3. Relative corrections from bottom quark loops to the
e
+
e
�
! ZH production cross section.

O(1/m4
t
). As expected, the expansion behaves well for

low energies, but ceases to be valid near or above the tt̄

threshold.

In Fig. 3, we show the impact of adding the contri-
butions from bottom quark loops to the ZH cross sec-
tion. Again, computing this contribution is rather time-
consuming with sector decomposition, but is much faster
with the analytic results at hand. Phenomenologically
this contribution only amounts to a few percent of the
O(↵↵s) corrections (which is below 1 per mille of the
total cross section), and is therefore not important.

We now turn to the leptonic decay H ! 4l. The lead-
ing m

2
t
enhanced contributions at O(↵↵s) have been con-

sidered in [21]. Here we give the result for the exact
O(↵↵s) corrections including bottom quark loops. For
simplicity, we consider the process H ! Zl

+
l
� and treat

the leptons as massless. A more dedicated study, in-
cluding the decay of both Z bosons and the lepton mass
e↵ects, will be presented in [19]. In Fig. 4 we show the
O(↵↵s) corrections to the di↵erential decay rate d�/dM ,
where M is the invariant mass of the lepton pair. We

FIG. 4. NNLO O(↵↵s) corrections to the H ! Zl
+
l
� dif-

ferential decay rate as a function of the lepton pair invariant
mass M , including both top and bottom quark contributions.

incorporate both top quark and bottom quark loop con-
tributions. Note in particular the kink at M ⇡ 2mb,
which is due to the Coulomb singularity at the bb̄ thresh-
old. A proper treatment of this region would require re-
summing the Coulomb exchanges as well as dealing with
non-perturbative e↵ects, which is beyond the scope of
this work.

SUMMARY AND OUTLOOK

In this paper, we calculate analytically the two-loop
triangle integrals entering the O(↵↵s) corrections to the
HZV vertex. We derive the canonical-form di↵erential
equations for the 41 master integrals appearing in the
calculation. For integrals with 4 mass scales, these dif-
ferential equations are not easy to solve due to the pres-
ence of many non-rational functions. We are able to find
fully analytic solutions up to weight 3 in terms of multiple
polylogarithms. We apply our results to the e+e� ! ZH

production cross section and the H ! ZZ
⇤
! 4l decay

width, including both top quark loops and bottom quark
loops. For the bottom quark loop contributions, and for
cases when the collider energy is near the tt̄ threshold,
the integrals are rather time-consuming using purely nu-
meric methods such as sector decomposition. This poses
no di�culty for our analytic results, whose numeric eval-
uation is e�cient for all phase-space points.
Loop integrals with many mass scales are very com-

mon in electroweak physics, Higgs physics and top quark
physics. However, it is not easy to evaluate them in closed
form, especially at high orders in ✏. Our result serves as
a prototype to study the analytic structure of multi-loop
multi-scale Feynman integrals. For the HZV vertex, it is
interesting to study its behaviors in various asymptotic
limits. For example, near the tt̄ threshold

p
s ⇠ 2mt, it

is expected that the amplitude can be factorized in the
framework of non-relativistic e↵ective field theory [22–

Bottom quark 
pair threshold

Can also be applied to H ! ZZ
⇤
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Higgs hadronic decay

1
1

1 1

Figure 3: Representative Feynman diagrams for the Hgg channel (upper) and the Hqq̄

channel (lower) at NLO.

where �0 and �y
0
are given in Appendix A; ✏ = (4 � d)/2 is the dimensional regulator;

and �E is the Euler constant. After renormalization, both real and virtual corrections

are separately infrared (IR) divergent, while their sum is finite. In order to implement the

cancellation in a Monte-Carlo generator, we adopt the dipole-subtraction method [54]. This

amounts to introducing an auxiliary function d�A which has the same singular behaviors

in the soft and/or collinear limits. The sum of the virtual and real corrections then be

written in the form

�i

V+R =

Z

n+1

d�i

real +

Z

n

d�i

virt =

Z

n+1

�
d�i

real � d�i

A

�
+

Z

n

✓
d�i

virt +

Z

1

d�i

A

◆
, (3.4)

where the integral symbol with subscript n denotes an n-body phase-space integration,

and i = q, g represent the Hqq̄ and Hgg channels, respectively. The two terms in the

above formula are both finite, and the integration can be performed numerically. For the

Hgg channel, there is an extra contribution from the Ct coe�cient at NLO. Combining

everything, we have the NLO decay rates as

�q

NLO
= �q

LO
+ �q

V+R
,

�g

NLO
=

⇣
1 +

↵s

2⇡
C(1)

t
(mt, µ)

⌘
�g

LO
+ �g

V+R
. (3.5)

Based on the above formulas, we construct an in-house Fortran program to compute

the di↵erential decay rates. We use the real-emission matrix elements from OpenLoops [55]

and the one-loop matrix elements from Refs. [42, 56]. The Monte-Carlo integrations are

performed with the Cuba library [57]. For the input parameters, we use ↵s(mZ) = 0.1181,

mH = 125.09 GeV and mt = 173.5 GeV.

In figure 4, we show the LO and NLO thrust distributions in theHgg andHqq̄ channels,

respectively. The error bands reflect the variations of the results when the renormalization

– 7 –

T ⌘ 1� ⌧ ⌘ max
~n

P
i |~n · ~pi|P
i |~pi|

<latexit sha1_base64="LmOUUSQdR8yviswiSD9ycWNR6rg="></latexit>

Probing Hgg coupling…

and anomalous Yukawa couplings

An important observable: thrust
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Figure 4: Thrust distributions at LO and NLO in the Hgg (left plot) and Hqq̄ (right

plot) channels.

Figure 5: The ratios of the LO and NLO di↵erential cross sections to their central values.

scale µ is varied up and down by a factor of 2 from the nominal choice of mH . Note

that the LO distributions approach zero when ⌧ ! 1/3, due to phase space constraints.

At NLO, with an additional parton emitted, the region 1/3 < ⌧ < (1 � 1/
p
3) opens

up. From this figure, one can see that the NLO corrections are rather large for both

channels, indicating the bad convergence of the perturbative series. Especially for the

Hgg channel, the NLO di↵erential cross section is twice the LO one at ⌧ ⇠ 0.05. The

correction is even more pronounced for larger ⌧ . We also find that the scale uncertainties

of the LO results do not overlap with the NLO ones. This indicates that the scale variation

of the LO di↵erential cross sections underestimate the theoretical uncertainties. We also

show in figure 5 di↵erential cross sections normalized to their central values. At LO the

scale variations arise entirely from running of the couplings and show no dependence on

kinematics. The scale variations are reduced at NLO for ⌧ below the kinematic endpoint

at LO.

To summarize, our NLO calculation reveals a few unsatisfactory features which make us

believe that even higher order corrections are phenomenologically important. To obtain the

full NNLO thrust distribution for, e.g., the Hqq̄ channel, one needs to calculate, among

– 8 –
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scale µ is varied up and down by a factor of 2 from the nominal choice of mH . Note

that the LO distributions approach zero when ⌧ ! 1/3, due to phase space constraints.

At NLO, with an additional parton emitted, the region 1/3 < ⌧ < (1 � 1/
p
3) opens

up. From this figure, one can see that the NLO corrections are rather large for both

channels, indicating the bad convergence of the perturbative series. Especially for the

Hgg channel, the NLO di↵erential cross section is twice the LO one at ⌧ ⇠ 0.05. The

correction is even more pronounced for larger ⌧ . We also find that the scale uncertainties

of the LO results do not overlap with the NLO ones. This indicates that the scale variation

of the LO di↵erential cross sections underestimate the theoretical uncertainties. We also

show in figure 5 di↵erential cross sections normalized to their central values. At LO the

scale variations arise entirely from running of the couplings and show no dependence on

kinematics. The scale variations are reduced at NLO for ⌧ below the kinematic endpoint

at LO.

To summarize, our NLO calculation reveals a few unsatisfactory features which make us

believe that even higher order corrections are phenomenologically important. To obtain the

full NNLO thrust distribution for, e.g., the Hqq̄ channel, one needs to calculate, among
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Large NLO corrections!
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scale µ is varied up and down by a factor of 2 from the nominal choice of mH . Note

that the LO distributions approach zero when ⌧ ! 1/3, due to phase space constraints.

At NLO, with an additional parton emitted, the region 1/3 < ⌧ < (1 � 1/
p
3) opens

up. From this figure, one can see that the NLO corrections are rather large for both

channels, indicating the bad convergence of the perturbative series. Especially for the

Hgg channel, the NLO di↵erential cross section is twice the LO one at ⌧ ⇠ 0.05. The

correction is even more pronounced for larger ⌧ . We also find that the scale uncertainties

of the LO results do not overlap with the NLO ones. This indicates that the scale variation

of the LO di↵erential cross sections underestimate the theoretical uncertainties. We also

show in figure 5 di↵erential cross sections normalized to their central values. At LO the

scale variations arise entirely from running of the couplings and show no dependence on

kinematics. The scale variations are reduced at NLO for ⌧ below the kinematic endpoint

at LO.

To summarize, our NLO calculation reveals a few unsatisfactory features which make us

believe that even higher order corrections are phenomenologically important. To obtain the

full NNLO thrust distribution for, e.g., the Hqq̄ channel, one needs to calculate, among
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Figure 4: Thrust distributions at LO and NLO in the Hgg (left plot) and Hqq̄ (right

plot) channels.

Figure 5: The ratios of the LO and NLO di↵erential cross sections to their central values.

scale µ is varied up and down by a factor of 2 from the nominal choice of mH . Note

that the LO distributions approach zero when ⌧ ! 1/3, due to phase space constraints.

At NLO, with an additional parton emitted, the region 1/3 < ⌧ < (1 � 1/
p
3) opens

up. From this figure, one can see that the NLO corrections are rather large for both

channels, indicating the bad convergence of the perturbative series. Especially for the

Hgg channel, the NLO di↵erential cross section is twice the LO one at ⌧ ⇠ 0.05. The

correction is even more pronounced for larger ⌧ . We also find that the scale uncertainties

of the LO results do not overlap with the NLO ones. This indicates that the scale variation

of the LO di↵erential cross sections underestimate the theoretical uncertainties. We also

show in figure 5 di↵erential cross sections normalized to their central values. At LO the

scale variations arise entirely from running of the couplings and show no dependence on

kinematics. The scale variations are reduced at NLO for ⌧ below the kinematic endpoint

at LO.

To summarize, our NLO calculation reveals a few unsatisfactory features which make us

believe that even higher order corrections are phenomenologically important. To obtain the

full NNLO thrust distribution for, e.g., the Hqq̄ channel, one needs to calculate, among
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Approximate NNLO
It is possible to reconstruct the logarithmically 
enhanced terms at NNLO and beyond

Gao, Gong, Ju, LLY: 1901.02253

+ cS3q , (B.12)

where again the constant term cS
3q

is not relevant for this work. The expression for the

gluon soft function can be obtained from the quark one by a Casimir scaling.

C Leading singular terms up to NNLO

In Eq. (4.2), the singular parts of thrust distributions are expressed in terms of the coe�-

cients �(n)

i
(⌧, µ). Here we give their explicit expressions, where we set the number of colors

Nc = 3 for simplicity. We also set µ = mH to get rid of the scale-dependent logarithms, and

one can easily recover them through the RG equation. For the Hgg channel, the results

are given by
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where LHT = ln(mH/mt). For the Hqq̄ process, we have
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The theoretical tool is factorization

then labeled by pn and pn̄. The factorization formula can be obtained using the language of

soft-collinear e↵ective theory (SCET) [58–63], following the derivations for the e+e� ! qq̄

process [64–66]. The factorized form is given by

d�i

d⌧
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0(µ) |C
i
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2
|Ci
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2

n̄, µ)S
i(k, µ) , (4.1)

where i = q, g denote theHqq̄ andHgg channels, respectively. We have defined Cg

t
(mt, µ) ⌘

Ct(mt, µ) and Cq

t
(mt, µ) ⌘ 1, corresponding to the matching coe�cients discussed in sec-

tion 2.

The formula eq. (4.1) involves several ingredients, which we introduce in the following.

The hard Wilson coe�cients Ci

S
(mH , µ) comes from integrating out the hard fluctuations

at the scale µ ⇠ mH . They are defined as the matching coe�cient from the full theory

eq. (2.2) to SCET. They can be obtained from the Hqq̄ and Hgg form factors, which

are know up to the 3-loop order [67–71]. From these results, the Wilson coe�cients Cq

S

and Cg

S
can be extracted up to the next-to-next-to-next-to-leading order (N3LO). The jet

functions J i
n(p

2
n, µ) and J i

n̄(p
2
n̄, µ) describe collinear emissions along the directions of the

two jets. The typical jet masses are given by p2n ⇠ p2n̄ ⇠ ⌧m2

H
. Both the quark jet function

and the gluon jet function have been calculated to the N3LO [72–75]. The soft functions

Si(k, µ), on the other hand, describe soft emissions with typical momenta k ⇠ ⌧mH . The

quark soft function has been known analytically up to the NNLO [64, 76–78]. For our

purpose, we also need the scale-dependent part of the N3LO soft function, which can be

obtained through its RG equation. Note that the scale-independent part of the N3LO

soft function was also extracted numerically, albeit with large uncertainty [74]. Up to the

N3LO, the gluon soft function can be obtained from the quark one by a Casimir scaling

CA/CF . The explicit expressions for the above ingredients are collected in Appendix B.

Given the factorization formula eq. (4.1), it is straightforward to obtain the leading

singular terms for the thrust distribution by expanding the formula in terms of ↵s(µ). Up

to the NNLO, the singular part of the thrust distribution can be formally written as

d�i
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with i = q, g. The explicit expressions of the coe�cients �(n)

i
(⌧, µ) can be found in Ap-

pendix C.

With the above formula, we can now perform a comparison similar to fig. 6 for the

NLO corrections. This is shown in fig. 7. Again we see that the �(2)

i
term serves as a very

good approximation of the exact NLO correction up to ⌧ ⇠ 0.2. This leads us to believe

that the �(3)

i
term should also provide a good description of the NNLO correction in this

region. Therefore, we define our Approximate-NNLO (NNLOA) thrust distribution as

d�i
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d⌧
+ �i
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valid in the limit T→1



Approximate NNLO

Figure 7: Comparison between the exact results and the singular terms at NLO.

�→�� ��

���

�����

���� ���� ���� ���� �����

�

��

��

��

τ

�/
Γ �

�Γ
/�
τ

�→�� ��

���

�����

���� ���� ���� ���� �����

�

�

�

�

τ

�/
Γ �

�Γ
/�
τ

Figure 8: Thrust distributions at LO, NLO and approximate NNLO.

Namely, we add the NNLO singular contribution from �(3)

i
to the exact NLO result cal-

culated in the previous section.

In fig. 8, we show the approximate NNLO results for the Hgg and Hqq̄ channels in

the region 0.05  ⌧  0.25. In the upper plots we show the absolute distributions, while

in the lower plots we show the ratios of the di↵erential cross sections to the LO central

values. We see that the NNLO corrections are still quite large. Especially for the Hgg

– 11 –
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NNLO corrections still large, but overlap 
with the NLO bands (finally)
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to the exact NLO result cal-

culated in the previous section.

In fig. 8, we show the approximate NNLO results for the Hgg and Hqq̄ channels in

the region 0.05  ⌧  0.25. In the upper plots we show the absolute distributions, while

in the lower plots we show the ratios of the di↵erential cross sections to the LO central

values. We see that the NNLO corrections are still quite large. Especially for the Hgg
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NNLO corrections still large, but overlap 
with the NLO bands (finally)

Back-to-back region, requires resummation (to appear)
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Beyond NLO

In this region, the unobserved final state can contain only soft radiation.

The factorization formula for the QCD cross section in the partonic threshold limit

was derived in [16] and reads

� (s,mt,mH) =
1
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In (2.4), s indicates the square of the hadronic center-of-mass energy and

⌧min =
(2mt +mH)

2

s
, ⌧ =

M2

s
. (2.5)

We use the symbol {p} to indicate the set of external momenta p1, · · · , p5. The trace

Tr [HijSij] is proportional to the spin and color averaged squared matrix element for

tt̄H + Xs production in the process initiated by the two partons i and j, where Xs

indicates the unobserved soft gluons in the final state. The hard functions Hij, which

are matrices in color space, are obtained from the color decomposed virtual corrections

to the 2 ! 3 tree-level process. The soft functions Sij (which are also matrices in color

space) are related to color-decomposed real emission corrections in the soft limit; they

depend on plus distributions of the form

P 0
n
(z) ⌘


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(1� z)
lnn

✓
M2(1� z)2

µ2z

◆�

+

, (2.6)

as well as on the Dirac delta function of argument (1 � z). The parton luminosity

functions ffij are defined as the convolutions of the parton distribution functions (PDFs)

for the partons i and j in the protons N1 and N2:

ffij (y, µ) =

Z
1

y

dx

x
fi/N1 (x, µ) fj/N2

⇣y
x
, µ

⌘
. (2.7)

In the soft limit the indices ij 2 {qq̄, q̄q, gg}, as at LO. The hard and soft functions are

two-by-two matrices for qq̄-initiated (quark annihilation) processes, and three-by-three

matrices for gg-initiated (gluon fusion) processes. Contributions from other production

channels such as q̄g and qg are subleading in the soft limit. We shall refer to such

processes collectively as the “quark-gluon” or the “qg” channel in what follows.

The hard functions satisfy renormalization group equations governed by the soft

anomalous dimension matrices �ij

H
, which depend on the partonic channel considered.

These anomalous dimension matrices, which are needed to carry out the resummation
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Construct logarithmically enhanced terms beyond NLO for 
the differential cross section

Using factorization

valid in the limit z ⌘
M2

tt̄h

ŝ
! 1
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Figure 5. Di↵erential distributions with µf,0 = M/2 at NLO+NNLL (blue band) compared

to the NLO calculation (red band). The uncertainty bands are generated through scale

variations of µf , µs and µh as explained in the text.

NLO+NLL, NLO+NNLL and nNLO predictions discussed below through the matching

procedure.

The comparison between the NLO and the NLO+NNLL calculations of the di↵er-

ential distributions can be found in Figure 5. We see that the NLO+NNLL uncertainty

band is included in the NLO scale uncertainty band in almost all bins of the distri-

butions considered here. The exception is the bins in the far tail of the M and Mtt̄

distributions, where the NLO+NNLL band is not completely included in the NLO one,
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Higher order effect important at high energies

State-of-the-art QCD predictions for this process
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Consider the threshold region

Sudakov and Sommerfeld corrections



Threshold for the total cross section
Ju, LLY: 1904.08744

p
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3 Factorization and resummation in the threshold limit

3.1 Higher order QCD corrections in the threshold limit

Beyond the Born level, the cross sections receive contributions from exchange of virtual

gluons and emission of real gluons. We will investigate these contributions as a power

expansion in β in the threshold limit β → 0. In this limit, there will be ln β-enhanced

terms and 1/β-enhanced terms at higher orders in αs. Schematically, we are going to

consider corrections of the form

σ̂NLL′

ij ∼ α0
s

{

1,β
}

+ αs

{

ln2 β, ln β, 1,
1

β
,β ln2 β,β ln β

}

+ α2
s

{

ln4 β, ln3 β, ln2 β,
1

β2
,
1

β
,
ln2 β

β
,
ln β

β
,β ln4 β,β ln3 β

}

+ · · · . (3.1)

The collection of these terms are referred to as the improved next-to-leading logarithmic

(NLL′) corrections. Note that due to the presence of two kinds of terms, one needs to insist

on a consistent logarithmic counting for both of them, which we take as λ ∼ αs ∼ β ∼
1/ ln β. Using this counting, it can be seen that the NLL′ corrections include terms up to

order λ1. It is also clear from this counting that one needs to include formally O(β1) next-

to-leading power (NLP) terms besides the O(β0) leading power (LP) ones in the power

expansion. This greatly complicates the analysis of factorization, as will be clear below.

The behavior of higher order corrections in the threshold limit can be studied using

the method of regions [43, 44]. We work in the partonic center-of-mass frame where the

momenta of the two incoming partons are given by

pµ1 =

√
ŝ

2
nµ , pµ2 =

√
ŝ

2
n̄µ , (3.2)

where n and n̄ are two light-like vectors satisfying n2 = n̄2 = 0 and n · n̄ = 2. For a given

momentum k, we perform the light-cone decomposition as

kµ =
k+
2

nµ +
k−
2

n̄µ + kµ⊥ , (3.3)

with k+ = n̄ · k and k− = n · k. We identify the following momentum regions relevant to

our problem:
hard : kµ ∼

√
ŝ ,

soft : kµ ∼
√
ŝ β ,

potential : k0 ∼
√
ŝ β2 , k⃗ ∼

√
ŝ β ,

ultrasoft : kµ ∼
√
ŝ β2 ,

collinear : (k+, k−, k⊥) ∼
√
ŝ (1,β2,β) ,

anticollinear : (k+, k−, k⊥) ∼
√
ŝ (β2, 1,β) .

(3.4)

These serve as the basis for constructing the effective field theoretic description of the

process, and for deriving the factorization formula for the cross sections. At this point,

it should be noted that there is a subtle difference between tt̄h production here and tt̄

production discussed in [26–28, 41, 45]. In tt̄ production, the 3-momentum of the tt̄ pair
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=
1

2ŝ

∫

dΦhdωdz
0 dk

0

2π
e−ik0z0Hij(µ) j⃗1a

(

EJ −
ω

2
, p⃗J , k

0

)

· S⃗1a
ij (ω, z

0, µ) + h.c. ,

(3.35)

where we have suppressed all color indices for simplicity, while EJ and p⃗J are given in

Eq. (3.16). The subleading potential function and soft function are defined as

J1a(Eq, q⃗, k) = −
∫

dΦt dΦt̄ (2π)
4δ(4)(q − pt − pt̄)

×
∫

d4x eik ·x ⟨0|χ†
s2ψs1(0)|tt̄⟩ ⟨tt̄|T

[(

ψ†(x)ψ(x) + χ†(x)χ(x)
)

ψ†
s1χs2(0)

]

|0⟩ ,

S⃗1a
ij (ω, z

0, µ) = gs
∑

X

δ(ω − 2EX)

× ⟨0|S†
vSvS

j
n̄S

i†
n (0)|X⟩ ⟨X|T

[

SvE⃗usS
†
v(z

0, 0⃗)Si
nS

j†
n̄ S†

vSv(0)
]

|0⟩ , (3.36)

with Eq = q0 − 2mt, and

j⃗1a(Eq, q⃗, k
0) = −

∫

d3k⃗ δ(3)(k⃗)
∂

∂k⃗
J1a(Eq, q⃗, k) , (3.37)

where again we have ignored all color structures which are not important for the arguments

here. Note that j⃗1a(Eq, q⃗, k0) must be proportional to q⃗ since this is the only 3-vector it

can depend on.

For tt̄ production, there is no recoil momentum and p⃗J = 0⃗. Therefore in the integrand

for the cross section one has j⃗1a(E, 0⃗, k0) = 0, and one can conclude that the contribution

from L1a
pNRQCD to the cross section vanishes. This is essentially the argument in [27]. For

tt̄h production, due to the presence of a recoil momentum, j⃗1a can depend on p⃗J = −p⃗h,

and is not zero in general. However, note that the whole integrand in Eq. (3.35) is an

odd function of p⃗h. Consequently, after integrating over the phase space dΦh of the Higgs

boson, the contribution still vanishes. Therefore, we arrive at the same conclusion as in the

tt̄ case that the only NLP contribution to the total cross section comes from L1b
pNRQCD. We

emphasize that this fact only holds at the level of total cross section, and extra corrections

may be present if one does not integrate over the momentum of the Higgs boson.

In summary, up to the next-to-leading power, the cross section can be factorized as

σ̂ij =
∑

α

1

2ŝ

∫

dΦhdωHα
ij(µ)J

α

(

EJ −
ω

2
, p⃗J

)

Sα
ij(ω, µ) , (3.38)

where the hard function H and soft function S only receive leading power contributions.

The potential function Jα(q) contains both LP and NLP contributions, which we present in

the next subsection. Note that this simple form of the factorization formula is not expected

to hold at higher powers in β, as we’ll discuss in Appendix B.

3.4 The potential function with a recoil momentum

As introduced in the last subsection, a non-trivial difference between tt̄h production and tt̄

production is the dependence of the potential function Jα(Eq, q⃗) on the recoil momentum
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3 Factorization and resummation in the threshold limit

3.1 Higher order QCD corrections in the threshold limit

Beyond the Born level, the cross sections receive contributions from exchange of virtual

gluons and emission of real gluons. We will investigate these contributions as a power

expansion in β in the threshold limit β → 0. In this limit, there will be ln β-enhanced

terms and 1/β-enhanced terms at higher orders in αs. Schematically, we are going to

consider corrections of the form

σ̂NLL′

ij ∼ α0
s

{

1,β
}

+ αs
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ln2 β, ln β, 1,
1

β
,β ln2 β,β ln β
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,
ln2 β
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,β ln4 β,β ln3 β

}

+ · · · . (3.1)

The collection of these terms are referred to as the improved next-to-leading logarithmic

(NLL′) corrections. Note that due to the presence of two kinds of terms, one needs to insist

on a consistent logarithmic counting for both of them, which we take as λ ∼ αs ∼ β ∼
1/ ln β. Using this counting, it can be seen that the NLL′ corrections include terms up to

order λ1. It is also clear from this counting that one needs to include formally O(β1) next-

to-leading power (NLP) terms besides the O(β0) leading power (LP) ones in the power

expansion. This greatly complicates the analysis of factorization, as will be clear below.

The behavior of higher order corrections in the threshold limit can be studied using

the method of regions [43, 44]. We work in the partonic center-of-mass frame where the

momenta of the two incoming partons are given by

pµ1 =

√
ŝ

2
nµ , pµ2 =

√
ŝ

2
n̄µ , (3.2)

where n and n̄ are two light-like vectors satisfying n2 = n̄2 = 0 and n · n̄ = 2. For a given

momentum k, we perform the light-cone decomposition as

kµ =
k+
2

nµ +
k−
2

n̄µ + kµ⊥ , (3.3)

with k+ = n̄ · k and k− = n · k. We identify the following momentum regions relevant to

our problem:
hard : kµ ∼

√
ŝ ,

soft : kµ ∼
√
ŝ β ,

potential : k0 ∼
√
ŝ β2 , k⃗ ∼

√
ŝ β ,

ultrasoft : kµ ∼
√
ŝ β2 ,

collinear : (k+, k−, k⊥) ∼
√
ŝ (1,β2,β) ,

anticollinear : (k+, k−, k⊥) ∼
√
ŝ (β2, 1,β) .

(3.4)

These serve as the basis for constructing the effective field theoretic description of the

process, and for deriving the factorization formula for the cross sections. At this point,

it should be noted that there is a subtle difference between tt̄h production here and tt̄

production discussed in [26–28, 41, 45]. In tt̄ production, the 3-momentum of the tt̄ pair
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Figure 8. The scale dependence of the total cross section at 13 TeV LHC. The left plot shows
the dependence of the NLL′+NLO result on the scales µh, µs and µJ entering the resummation
formula. The right plot shows the dependence of the LO, NLO and NLL′+NLO results on the
factorization scale µf .

13 TeV LHC (pb) 14 TeV LHC (pb)

NLO 0.493+5.8%
−9.2% 0.597+6.1%

−9.2%

NLL′+NLO 0.521+1.9%
−2.6% 0.630+2.3%

−2.6%

K-factor 1.06 1.06

Table 1. Results for the total cross section at NLO and NLL′+NLO accuracies. The uncertainties
reflect scale variations only.

4.3 Results and discussions

In this subsection, we present the numeric results for the total cross section at 13 TeV and

14 TeV LHC. For readers’ convenience, we list here again the parameters we use: mt =

173.5 GeV, mh = 125.09 GeV and v = 246.22 GeV. We have employed the MMHT2014

(N)LO PDFs [39] with the corresponding αs(mZ).

We begin with the scale dependence of the total cross section at 13 TeV LHC. The

result at 14 TeV LHC is similar and we do not show it here. The LO and NLO cross

sections depend on the factorization scale µf , where the strong coupling αs and the PDFs

are evaluated. The matched NLL′+NLO cross section depends in addition the hard scale

µh, the soft scale µs and the potential scale µJ . In the left plot of Fig. 8, we show

the dependence of the NLL′+NLO cross section on µh, µs and µJ . We observe that the

dependence is rather mild. This can actually be expected since these scales only affects

the region β < βcut, which does not make dominant contributions. In the right plot of

Fig. 8, we show the dependence of the LO, NLO and NLL′+NLO cross sections on the

factorization scale µf . It can be seen that the µf dependence is significantly reduced when

going to higher orders in perturbation theory. At NLL′+NLO, the residue µf dependence is

merely about 2%. To estimate the theoretical uncertainties of the NLL′+NLO predictions,

we vary the 4 scales up and down by a factor of 2, and add the resulting variations of the

cross sections in quadrature.

The predictions for the total cross sections are summarized in Table 1. The K-factor
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