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PROBLEMS IN USING MHYV VERTICES

» 3-point Pure Y-M MHV amplitude(+ + —):
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> One-loop amplitudes (4---++) and (— +--- 4+ +) are not
zero. They have only rational part.
» How to construct this amplitude from CSW rule? The MHV
vertices have at least two “-" helicity.
» Solution: In MHV lagrangian, the fields are B but in
amplitudes the external legs are A fields. There are canonical
transformations between them.



LSZ FORMALISM

» LSZ formalism, from correlation function to amplitude: For
outgoing momenta {p;} and helicities {h;},
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EQUIVALENCE THEOREM OF S-MATRIX

Scalar fields as an example:

» Change ¢(z) — é(z) ~ ¢ + > Ry (x)d™(x)
» LSZ:
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If R is local, i.e. no poles to cancel p?, the second term is
canceled in the limit p> — 0. No difference using ¢ or ¢’ in
calculating the S-matrix.



TREE LEVEL EVASION OF EQUIVALENCE THEOREM:
3-POINT (— + +) AMPLITUDE
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CONSIDERATIONS IN ONE-LOOP LEVEL

To study this evasion of the Equivalence theorem in one-loop, we
need to consider

» Dimensional regularization, FDH: external polarizations — Four
dimensinoal, internal momentum D-dimensional Au still
(A, A, A, A). All the 9, contracted with A,, are still
four-component vector. But the contraction 90, are
D-dimensional.

» All the canonical transformation should be rederived in
D-dimensional and may not have closed form.



INTEGRAL EQUATIONS AND RECURSION RELATIONS
WITH DIMENSIONAL REGULARIZATION
» Fixing the gauge and obtaining the light-cone YM

Lieym = Lyy+ L, + Ly + Lyt
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» Canonical transformation (A, A) — (B,dB) , s.t
Lyt A Al + LY [A, A = Ly, [B, B
we arrive at the same integral equation:
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INTEGRAL EQUATIONS AND RECURSION RELATIONS
WITH DIMENSIONAL REGULARIZATION: A

» Canonical transformation in momentum space:

Ap = Z/T(p,pl,---,pn)5(p+2pi)l31'--Bndel---den,
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INTEGRAL EQUATIONS AND RECURSION RELATIONS

WITH DIMENSIONAL REGULARIZATION: A

1)The integral equation gives a recursion relation for the
coefficients:
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Va(p1,p2,p3) = i(1/1 — 2/2)3 is the factor from the three-point

(+ 4 —) vertex of the Light-cone lagrangian
2)Relation: for Y p; =0
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IN DIAGRAM

= Va(pj, P, 0i) /Pi »
k
Vo(p1, p2, p3) is the (+ + —) vertice of the LCYM.
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IN DIAGRAM

We use the dashed line to denote the —% factor. The momenta
summed over are denoted by the lines cut by the dashed line.

where




ITERATE

This can be easily iterated, starting with the leading termB.A =B:

The dashline cut all the external lines of a subtree diagram.



CONSTRUCT THE TRANSFORMATION COEFFICIENTS
FROM LIGHT-CONE FEYNMANN DIAGRAM

1)The light-cone Feynman rule for vertex (4 + —) is

4 _ = 4 _
V(1,2,3) =i—5Va(1,2,3) = —i—V>(1,2,3)
9 g
and the light-cone propagator is

g
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2)make the replacement —2/p3 — 1/(p3(Q3 + Q1 + Q2))
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is consistent with the coefficient of each term in the recursion
relation.



CONSTRUCT THE TRANSFORMATION COEFFICIENTS
FROM LIGHT-CONE FEYNMANN DIAGRAM

3)As a result, we can reconstruct the terms of A from light-cone
tree-level calculations by
a) drawing the tree level diagram using only (4 4 —) vertices
b) replacing the light-cone propagators using
1 1
S ]
Py 2Pj1,i-1(Q41,i-1 + Qi+ Qi + - + Qy)

Cut one propagator whose outgoing momentum is Pj1;_1. Sum
over () of all legs of the subtree diagram.



EXAMPLE

By B
A14<53 A1<83
For terms with BaB3By: B, By

A~ T(1231)B,BsBs
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Light-cone calculation:
221(172(2,34,1)172(3,47 12) N V2(23,4, 1)1‘@(2,3,41))
p% P122 P421
Replacements:
1/pf — —1/Q21(Q + -+ ),
/P — —1/(2P1a(Q2 + Q3+ Q) ,
1/PY  —  —1/(2Py(Qu1 + Qo + Q3)).




EXPANSION OF 0.A

Expansion of 6.4
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EXPANSION OF OA IN DIAGRAMS

. — B
and in momentum space we use = to denote the expansion
coefficients
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RECURSION RELATION FOR O.A
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At least two left legs on the white blob.



ITERATION : OA




ITERATION : OA

The last two terms can be combined to




NEW RECURSION RELATION : @A

In fact, by induction, one can prove another recursion relation of
—=Ss.
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DIAGRAM REPRESENTATION

Using this we can represent each order of the expansion of DA by
diagrams:




CONSTRUCT THE TRANSFORMATION COEFFICIENTS

FROM LIGHT-CONE FEYNMANN DIAGRAMS FOR 0.4

The same rule as in A can be applied here: B
1) One needs to first draw the tree-level diagrams with one A as
an external propagator, all the B, B as amputated legs, using only
(+ + —) vertices.
2)Then calculate the diagram using the light-cone Feynman rules
with the replacement:

L _ 1

P} 2P 1,1 (11 + Qi+ Qigr + -+ Q)

Cut one propagator whose outgoing momentum is Pj1;_1. Sum
over €} of all legs of the subtree diagram.
3) Relation: for > p; =0
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EVASION OF EQUIVALENCE THEOREM IN TREE LEVEL
REVISIT

1) 3-point (+ 4+ —): No tree-level MHV vertices. Only from the
translation kernels. Equals the (+ + —) vertex from LC-YM
b2

L lim o pps pf (Alp) Ap2) A(ps) ) = <p1 )ﬁl.
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EVASION OF EQUIVALENCE THEOREM IN TREE LEVEL
REVISIT

(A(p1) A(p2) A(ps) )




EVASION OF EQUIVALENCE THEOREM IN TREE LEVEL
REVISIT

(A(p1) A(p2) A(ps) )
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The dashed circle cancels with the last factor the denominator
cancels with the LSZ factor.



CHANGING THE LIMITING ORDER

Since the whole limit p?,p3, p3 — 0 exist we can do the limit in
any order: p%,pg — 0 first and then p? — 0

lim lim  (p3 +ie) (p3 +ie) (A(p1) A(p2) Alps)) =

p% +ie—0 p% +ie—0
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From this we learn how the equivalence theorem is violated:

1 1
L

Jj=1p;

>ioy (P} +i€)/pj — 0 limit first and then p* — 0 in the LSZ
procedure.



TREE LEVEL EVASION OF EQUIVALENCE THEORY:
(GENERAL

1) All the external on-shell legs are cut by a dashline:
(—++---+4). For example (— + ++),




TREE LEVEL EVASION OF EQUIVALENCE THEORY:
(GENERAL

LCYM calulations can be reproduced using translation kernel:




REPRODUCING LCYM FEYNMANN DIAGRAM

Numerators are the same. We only examine the denominators
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TREE LEVEL EVASION OF EQUIVALENCE THEORY:
(GENERAL

1) We could change the limit order, put p; — 0, i = 2,...n first
and then p? — 0 last. The outermost dashed circle b cancels with
the inverse propagator. We recover light-cone calculation.

2) Since all the (— + +---+) amplitudes are zero except
three-point (— 4 +), the translation kernel contributions should be
cancelled. So there is no tree level evasion except the 3-point case.



ONE-LOOP EVASION OF EQUIVALENCE THEOREM:
DRESSING PROPAGATORS

1) Dressing propagators : Connecting MHV vertices and
translation kernel, like

This will contribute to the Green function { A(p1) A(p2) A(ps) ), In
fact, there is no a%ove diagram. _

> p?/pi can not be zero. No contribution.



ONE-LOOP EVASION OF EQUIVALENCE THEOREM:
DRESSING PROPAGATORS

Other cases:a

B B
vanishes.
b)From £~ *+:
B B
—
B B B B

This is nonzero. In this case, only when tree-level evasion of
Equivalence theorem happens, the same thing in one-loop happens.
So nothing new.



ONE-LOOP EVASION OF EQUIVALENCE THEOREM:
TADPOLES

2) Tadpoles constructed from translation kernel. These provide

(+ + ---+) amplitudes:
B

b

The outmost dashline: ﬁ = Zr%f/ﬂ p3,p3 — 0, p%/f—plg/iz 0,

ﬁ — l/p%.



INFRA-RED DIVERGENT LOOP INTEGRATION

3)Infra-red divergent loop integration:
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INFRA-RED DIVERGENT LOOP INTEGRATION

Integrate ¢ first:

A D/Q*l " R ~ R R .
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This could be a source for evasion of equivalence theorem. We

can prove the integral vanishes in the on-shell limit. So in this case

there is no contribution.



ONE-LOOP (— + ++) FROM TADPOLE OF MHV
VERTICES

We have understood that (+ + - - - +) is from the tadpole of the
translation kernel. The only possibility to obtain (— + ---+)
amplitude is the tadpole of I\gHV vertices.

B

2+ 3+ 2+ 3+

Nt Ny
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We can explicitly calculate the diagram from both sides giving the
same result.

Pas —




CONCLUSION AND DISCUSSION

» We considered the canonical transformation under the FDH
dimensional regularization. We have understood how the
transformation coefficient generated from light-cone
Feynmann rules.

» We discussed the cases when equivalence theorem is evaded in
tree level and one-loop.
Tree-level: only in the (— + +) amplitude.
One-loop: only in (4 ---+) amplitude—tadpole of the
translation kernel.

» The (— + ---+) amplitude comes from the tadpole of the
MHYV vertices.

» To extend the MHV method to one-loop is still difficult: the
vertices themselves need regularization, not in 4-dimension ,
may not have simple closed forms.
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