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1.1 Aims

MATHEMATICS:

(DIVISION ALGEBRAS)2 = MAGIC SQUARE OF LIE ALGEBRAS

PHYSICS:

(YANG −MILLS)2 = MAGIC SQUARE OF SUPERGRAVITIES

RESULT :

MATHEMATICS MAGIC SQUARE = PHYSICS MAGIC SQUARE



1.2 Division algebras

Mathematicians deal with four kinds of numbers, called Divison
Algebras.
The Octonions occupy a privileged position :

Name Symbol Imaginary parts

Reals R 0
Complexes C 1
Quaternions H 3
Octonions O 7

Table : Division Algebras



1.3 Lie algebras

They provide an intuitive basis for the exceptional Lie algebras:

Classical algebras Rank Dimension

An SU(n + 1) n (n + 1)2 − 1
Bn SO(2n + 1) n n(2n + 1)
Cn Sp(2n) n n(2n + 1)
Dn SO(2n) n n(2n − 1)

Exceptional algebras

E6 6 78
E7 7 133
E8 8 248
F4 4 52
G2 2 14

Table : Classical and exceptional Lie alebras



1.4 Magic square

Freudenthal-Rozenfeld-Tits magic square

AL/AR R C H O

R A1 A2 C3 F4
C A2 A2 + A2 A5 E6
H C3 A5 D6 E7
O F4 E6 E7 E8

Table : Magic square

Despite much effort, however, it is fair to say that the ultimate
physical significance of octonions and the magic square remains an
enigma.



1.5 Comment

There are different magic squares depending on the choice of real
forms. Ours should not to be confused with other versions that have
appeared in the so-called ”magic” supergravities in D = 4, 5, 6
[Gunaydin, Sierra and Townsend 1983]
The specific square of real forms we derive from the triality
construction was first obtained in [Cacciatori-Cerchiai-Marrani:2012]
using a “Lorentizian Jordan algebra” adaptation of the Tits formula
[Tits:1962]



1.6 Earlier work involving octonions

For earlier work on octonions in high-energy physics, see, for
example,
[ Kugo and Townsend: 1983
Gunaydin, Sierra and Townsend: 1983
MJD: 1986
Fairlie and Manogue 1987
Berkovits: 1993
Evans: 1994
Baez: 2001
Barton and Sudbery: 2003
Baez: 2009
MJD et al: 2013]
Despite much effort, however, it is fair to say that the ultimate
physical significance of octonions and the magic square remains an
enigma.



1.7 Squaring Yang-Mills

In apparently different developments, a recurring theme in attempts
to understand the quantum theory of gravity is the idea of “Gravity
as the square of Yang-Mills”.
This idea of tensoring left (L) and right (R) multiplets appears in
many different (but sometimes overlapping) guises. For example:
KLT relations in string theory [Kawai et al:1985]
D = 10 dimensional Type IIA and IIB supergravity (SG) multiplets
from D = 10 super Yang-Mills (SYM) multiplets [Green et al:1987]
Asymmetric orbifold contructions [Sen and Vafa:1995]
Gravity anomalies from gauge anomalies [Antoniadis et al:1992]
(Super) gravity scattering amplitudes from those of (super)
Yang-Mills [Bern et al:2008; Bianchi, Elvang, Freedman:2008] in
various dimensions
[Thanks to Zvi for his encouragement.]



1.8 Squaring D=10 Yang Mills to get TypeIIA supergravity

In D=10 Type IIA comes from the product of two Yang-Mills multiplets
of opposite chirality with SO(8) reps.

8v 8s

8v 1 + 28 + 35v 8c + 56c
8c 8s + 56s 8v + 56v

Table : SO(8) reps of D=10 Type IIA supergravity

AM χs

AN φ+ BMN + gMN ψc
N + χc

χc ψs
M + χs AP + APQR

Table : Fields of D=10 Type IIA supergravity



1.9 Squaring D=10 Yang Mills to get TypeIIB supergravity

In D=10 Type IIB comes from the product of two Yang-Mills multiplets
of same chirality with SO(8) reps.

8v 8c

8v 1 + 28 + 35v 8s + 56s
8c 8s + 56s 1 + 28 + 35c

Table : SO(8) reps of D=10 Type IIB supergravity

AM χc

AN φ+ BMN + gMN ψs
N + χs

χc ψs
M + χs A + APQ + A+

PQRS

Table : Fields of D=10 Type IIB sugravity



1.10 Summary Yang-Mills

We give a unified description of
D = 3 Yang-Mills with N = 1, 2, 4, 8
D = 4 Yang-Mills with N = 1, 2, 4
D = 6 Yang-Mills with N = 1, 2
D = 10 Yang-Mills with N = 1
in terms of a pair of division algebras (An,AnN ), n = D − 2
We present a master Lagrangian, defined over AnN -valued fields,
which encapsulates all cases.
The overall (spacetime plus internal) on-shell symmetries are given
by the corresponding triality algebras.
We use imaginary AnN -valued auxiliary fields to close the
non-maximal supersymmetry algebra off-shell. The failure to close
off-shell for maximally supersymmetric theories is attributed directly
to the non-associativity of the octonions.



1.11 Summary Gravity Magic Square in D = 3

Tensoring left and right multiplets yields
D = 3 A magic 4× 4 square RR, CR, CC, HR, HC, HH, OR,
OC, OH, OO description of supergravities with
N = 2, 3, 4, 5, 6, 8, 9, 10, 12, 16.

The U-duality groups are precisely those of the Freudenthal Magic
Square!



1.12 Summary Gravity Magic Pyramid

BUT there is also a more familiar R,C,H,O description of spacetime in
D = 3, 4, 6, 10. Tensoring left and right yields:

D = 3 A magic 4× 4 square RR, CR, CC, HR, HC, HH, OR,
OC, OH, OO description of supergravities with
N = 2, 3, 4, 5, 6, 8, 9, 10, 12, 16.
D = 4 A 3× 3 square RR, CR, CC, HR, HC, HH description of
supergravities with N = 2, 3, 4, 5, 6, 8.
D = 6 A 2× 2 square RR, CR, CC description of supergravities
with N = 2, 3, 4.
D = 10 A 1× 1 square RR description of supergravities with N = 2.
Together these form The Magic Pyramid.
The corresponding U-duality groups are given by a new algebraic
structure, the magic pyramid formula, which may be regarded as
being defined over three division algebras, one for spacetime and
each of the left/right Yang-Mills multiplets.



1.13 Summary Gravity: Conformal Magic Pyramid

We also construct a conformal magic pyramid by tensoring
conformal supermultiplets in D = 3, 4, 6.
The missing entry in D = 10 is suggestive of an exotic theory with
G/H duality structure F4(4)/Sp(3)× Sp(1).



2.1 Octonions

An element x ∈ O may be written x = xaea, where a = 0, . . . , 7,
xa ∈ R and {ea} is a basis with one real e0 = 1 and seven
ei , i = 1, . . . , 7 imaginary elements. The octonionic conjugation is
denoted by e∗a , where e∗0 = e0 and e∗i = −ei .
The octonionic multiplication rule is,

eaeb = (δa0δbc + δ0bδac − δabδ0c + Cabc) ec ,

where Cabc is totally antisymmetric such that C0bc = 0. The
non-zero Cijk are the octonionic structure constants:

Cijk = εijk if ijk ∈ L

with L the set of oriented lines of the Fano plane. See [Baez:2001].

L = {124, 235, 346, 457, 561, 672, 713}.



2.2 Fano plane

The Fano plane has seven points and seven lines (the circle counts as a
line) with three points on every line and three lines through every point.

Fano plane

A

B C

D E

F

G



2.3 Gino Fano

Gino Fano (5 January 1871 to 8 November 1952) was an Italian
mathematician. He was born in Mantua and died in Verona.
Fano worked on projective and algebraic geometry; the Fano plane, Fano
fibration, Fano surface, and Fano varieties are named for him.
Ugo Fano and Robert Fano were his sons.



2.4 Cayley-Dickson

O = O0e0 + O1e1 + O2e2 + O3e3 + O4e4 + O5e5 + O6e6 + O7e7

= H(0) + e3H(1)

H(0) = O0e0+O1e1+O2e2+O4e4 H(1) = O3e0−O7e1−O5e2+O6e4

H(0) = C (00) + e2C (10) H(1) = C (01) + e2C (11)

C (00) = O0e0 + O1e1 C (01) = O3e0 − O7e1
C (10) = O2e0 − O4e1 C (11) = −O5e0 − O6e1

C (00) = R(000) + e1R(100) C (01) = R(001) + e1R(101)

C (10) = R(010) + e1(110) C (11) = R(011) + e1R(111)

R(000) = O0 R(100) = O1 R(001) = O3 R(101) = −O7

R(010) = O2 R(110) = −O4 R(011) = −O5 R(111) = −O6



2.5 Division algebras

Division: ax+b=0 has a unique solution
Associative: a(bc)=(ab)c
Commutative: ab=ba

A construction division? associative? commutative? ordered?

R R yes yes yes yes
C R + e1R yes yes yes no
H C + e2C yes yes no no
O H + e3H yes no no no

S O + e4O no no no no



2.6 Fano quadrangles

It will also be useful to define Qijkl , which is equal to 1 (−1) when
ijkl is an even (odd) permutation of an element of Q, the set of
oriented quadrangles in the Fano plane:

Q = {3567, 4671, 5712, 6123, 7234, 1345, 2456},

and equal to zero otherwise. Equivalently, we can define Qijkl by

Qijkl = − 1
3!
Cmnpεmnpijkl .



2.7 The Associator

The octonions have a trilinear map called the associator given by :

[x , y , z ] = (xy)z − x(yz)

which measures the failure of associativity.
In the same way that the multiplication of the octonionic bases was
realised using the lines of the Fano plane, the associator of three
octonionic bases can be realised using its quadrangles Q :

[ea, eb, ec ] = 2Qabcded

The object Qabcd is totally antisymmetric with Q0ijk = Cijk .

Qabcd =
1
4!
εabcdefghQefgh



2.8 Norm-preserving algebras

To understand the symmetries of the magic square and its relation
to YM we shall need in particular two algebras defined on A.
First, the algebra norm(A) that preserves the norm

〈x |y〉 :=
1
2

(xy + yx) = xaybδab

norm(R) = 0
norm(C) = so(2)

norm(H) = so(4)

norm(O) = so(8)



2.9 Triality Algebra

Second, the triality algebra tri(A)

tri(A) ≡ {(A,B,C )|A(xy) = B(x)y+xC (y)}, A,B,C ∈ so(n), x , y ∈ A.

tri(R) = 0
tri(C) = so(2) + so(2)

tri(H) = so(3) + so(3) + so(3)

tri(O) = so(8)

[Barton and Sudbery:2003]:



2.10 Pauli matrices

In D = 4 the Pauli matrices {σ̄µ} are used as a basis for Hermitian
matrices, so that we can write X = Xµσ̄µ. This suggests a generalised
set of Pauli matrices for µ = 0, 1, . . . , (n + 1).

σ̄µ = σµ = (+1, σa+1, σn+1),

σµ = σ̄µ = (−1, σa+1, σn+1),

where

σa+1 =

(
0 e∗a
ea 0

)
, σn+1 =

(
1 0
0 −1

)
.

The notation is chosen so that in D = 4 (where n = 2 and A = C) the
matrices reduce to the usual Pauli set:

σ1 =

(
0 e∗0
e0 0

)
=

(
0 1
1 0

)
, σ2 =

(
0 e∗1
e1 0

)
≡
(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.



2.11 More Pauli matrices

It is easy to see that the generalised Pauli matrices satisfy the required
algebra:

σµσ̄ν + σν σ̄µ = 2ηµν1,
σ̄µσν + σ̄νσµ = 2ηµν1.

As a result, they can be used to construct Lorentz generators of the
spinor and conjugate spinor representations, which we will see explicitly in
the following subsection. Note that in D = 3, the matrices

γµ ≡ σµε

with

ε ≡
(
0 − 1
1 0

)
satisfy the Clifford algebra

γµγν + γνγµ = 2ηµν1,



2.12 Spinors

When A = R , S+ ∼ S− , Ψ is the Majorana spinor in D = 3
When A = C , S+ and S− , Ψ and χ are the Weyl spinors in D = 4
When A = H , S+ and S− , Ψ and χ are the Symplectic-Weyl
spinors in D = 6
When A = O , S+ and S− , Ψ and χ are the Majorana-Weyl spinors
in D = 10.
We seek a generalisation of the equations:

δΨ =
1
4
λµνσµνΨ =

1
4
λµνσµσ̄νΨ,

δχ =
1
4
λµν σ̄µνχ =

1
4
λµν σ̄µσνχ.

(1)

Note that for A = O, the choice of association (σ[µσν])Ψ is wrong,
this gives only 31 independent generators when we expect
45 = dim[SO(1, 9)].
The 14 generators we are missing are the generators of G2, the
automorphism group of the octonions. It is fairly straightforward to
check that the correct answer is given by σ[µ(σν]Ψ).



3.1 D = 3,N = 8 Yang-Mills

The D = 3, N = 8 super YM action is given by

S =

∫
d3x

(
−1
4
FA
µνF

Aµν − 1
2
DµφA

i D
µφA

i + i λ̄A
a γ

µDµλA
a

−1
4
g2fBC

AfDE
AφB

i φ
D
i φ

C
j φ

E
j − gfBC

AφB
i λ̄

AaΓi
abλ

Cb
)
,

where the Dirac matrices Γi
ab, i = 1, . . . , 7, a, b = 0, . . . , 7, belong

to the SO(7) Clifford algebra.
The key observation is that Γi

ab can be represented by the octonionic
structure constants,

Γi
ab = i(δbiδa0 − δb0δai + Ciab),

which allows us to rewrite the action over octonionic fields



3.2 A = R,C,H,O→ N = 1, 2, 4, 8 supersymmetries

If we replace O with a general division algebra A, the result is
N = 1, 2, 4, 8 over R,C,H,O:

S =

∫
d3x

(
−1
4
FA
µνF

Aµν − 1
2
Dµφ∗ADµφA + i λ̄AγµDµλA

−1
4
g2fBC

AfDE
A〈φB |φD〉〈φC |φE 〉

+
i
2
gfBC

A ((λ̄AφB)λC − λ̄A(φ∗BλC )
))

,

where φ = φiei is an ImA-valued scalar field, λ = λaea is an
A-valued two-component spinor and λ̄ = λ̄ae∗a .
Note, since λa is anti-commuting we are dealing with the algebra of
octonions defined over the Grassmanns.



3.3 Transformation rules

The supersymmetry transformations in this language are given by

δλA =
1
2

(FAµν + εµνρDρφA)σµνε+
1
2
gfBC

AφB
i φ

C
j σijε,

δAA
µ =

i
2

(ε̄γµλ
A − λ̄Aγµε), (2)

δφA =
i
2
ei [(ε̄ei )λA − λ̄A(eiε)],

where σµν are the generators of SL(2,R) ∼= SO(1, 2). The σij
generate SO(ImA) and are proportional to the identity as 2× 2
matrices, but act as operators on A itself.



4.1 Magic square of non-compact groups G

For the purposes of squaring YM a manifestly AL ↔ AR symmetric
formulation of the square is required. This is achieved by adapting
the triality algebra construction introduced by Barton and Sudbery
[Barton and Sudbery:2003, MJD et al:2013].
Our definition is given by

g3(AL,AR) := tri(AL) + tri(AR) + 3(AL ×AR).

AL/AR R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)
H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)
O F4(−20) E6(−14) E7(−5) E8(8)

Table : Magic square

eg
E8(8) = SO(8) + SO(8) + 3(O×O)

248 = 28 + 28 + (8v , 8v ) + (8s , 8s) + (8c , 8c)



4.2 Comment

There are different magic squares depending on the choice of real
forms. Ours should not to be confused with other versions that have
appeared in the so-called ”magic” supergravities in D = 4, 5, 6
[Gunaydin, Sierra and Townsend 1983]
The specific square of real forms we derive from the triality
construction was first obtained in [Cacciatori-Cerchiai-Marrani:2012]
using a “Lorentizian Jordan algebra” adaptation of the Tits formula
[Tits:1962]



4.3 Magic square of maximal compact subalgebras H

We shall also need a magic square of the maximal compact
subalgebras. This is given by the reduced triality construction,

g1(AL,AR) := tri(AL) + tri(AR) + (AL ×AR),

AL/AR R C H O

R SO(2) SO(3)× SO(2) SO(5)× SO(3) SO(9)
C SO(3)× SO(2) [SO(3)× SO(2)]2 SO(6)× SO(3) SO(10)× SO(2)
H SO(5)× SO(3) SO(6)× SO(3) SO(8)× SO(4) SO(12)× SO(3)
O SO(9) SO(10)× SO(2) SO(12)× SO(3) SO(16)

Table : Magic square of maximal compact subalgebras.



5.1 Squaring R,C,H,O Yang-Mills

Having cast the magic square in terms of a manifestly AL ↔ AR
symmetric triality algebra construction, and having written
N = 1, 2, 4, 8 YM in terms of fields valued in R,C,H,O we shall
now obtain the magic square of supergravities by “squaring”
N = 1, 2, 4, 8 YM.
In the supersymmetric context it is not difficult to see that the
amount of supersymmetry is given by

[NL SYM]× [NR SYM]→ [N = NL +NR SG],

It is harder to see how the other gravitational symmetries arise from
those of Yang-Mills. For example D = 4,N = 8 supergravity has a
global non-compact symmetry (U-duality) E7(7) and a local compact
symmetry SU(8), whereas D = 4,N = 4 super Yang-Mills has global
SU(4) R-symmetry.



5.2 U-dualities of supergravity

N D scalars vectors G H

2 10A 1 1 SO(1, 1,R) −
2 10B 2 0 SL(2,R) SO(2,R)
4 6 25 16 SO(5, 5,R) SO(5,R)× SO(5,R)
8 4 70 28 E7(7)(R) SU(8)
16 3 128 - E8(8)(R) SO(16,R)

Table : The symmetry groups (G) of the low energy supergravity theories with
32 supercharges in different dimensions (D) and their maximal compact
subgroups (H). In each D one may truncate to lower N to get smaller G and H

The scalars belong to the space G/H



5.3 Squaring R,C,H,O Yang-Mills in D = 3

Taking a left SYM multiplet

{Aµ(L) ∈ ReAL, φ(L) ∈ ImAL, λ(L) ∈ AL}

and tensoring with a right multiplet

{Aµ(R) ∈ ReAR , φ(R) ∈ ImAR , λ(R) ∈ AR}

we obtain the field content of a supergravity theory valued in both AL
and AR :

Grouping spacetime fields of the same type we find,

gµν ∈ R, Ψµ ∈
(
AL
AR

)
, ϕ ∈

(
AL ⊗AR
AL ⊗AR

)
, χ ∈

(
AL ⊗AR
AL ⊗AR

)



5.4 Grouping together

Grouping spacetime fields of the same type we find,

gµν ∈ R, Ψµ ∈
(
AL
AR

)
, ϕ, χ ∈

(
AL ⊗AR
AL ⊗AR

)
. (3)

Note we have dualised all resulting p-forms, in particular vectors to
scalars. The R-valued graviton and AL ⊕AR -valued gravitino carry
no degrees of freedom. The (AL ⊗AR)2-valued scalar and Majorana
spinor each have 2(dimAL × dimAR) degrees of freedom.
Fortunately, AL ⊕AR and (AL ⊗AR)2 are precisely the
representation spaces of the vector and (conjugate) spinor. For
example, in the maximal case of AL,AR = O, we have the 16, 128
and 128′ of SO(16).



5.5 U-dualities from division algebras

U-dualities G are realised non-linearly on the scalars, which
parametrise the symmetric spaces G/H.
This can be understood using the remarkable identity relating the
projective planes over (AL ⊗AR)2 to G/H,

(AL ⊗AR)P2 ∼= G/H.

The scalar fields may be regarded as points in division-algebraic
projective planes [Baez:2001, Freudenthal:1964, Landsberg2001].
The tangent space at any point of (AL ⊗AR)P2 is just
(AL ⊗AR)2, the required representation space of H

Example: recall the Cayley plane OP2, with isometry group F4(−52),
is a classic example:

F4(−52)/Spin(9) ∼= (R⊗O)P2 = OP2

The tangent space at any point of OP2 is O2, the spinor of Spin(9)
as required



5.6 Final result

The N > 8 supergravities in D = 3 are unique, all fields belonging
to the gravity multiplet, while those with N ≤ 8 may be coupled to
k additional matter multiplets [Marcus:1983, deWit:1992]. The real
miracle is that tensoring left and right YM multiplets yields the field
content of N = 2, 3, 4, 5, 6, 8 supergravity with k = 1, 1, 2, 1, 2, 4:
just the right matter content to produce the U-duality groups
appearing in the magic square.



5.7 Conclusion

In both cases the field content is such that the U-dualities exactly
match the groups of of the magic square:

AL/AR R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)
H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)
O F4(−20) E6(−14) E7(−5) E8(8)

Table : Magic square

This D = 3 square is the base of a Magic Pyramid



6.1 Spacetime Fields in D = n + 2

The division algebras can be used to describe field theory in Minkowski
space using the Lie algebra isomorphism

so(1, 1 + n) ∼ sl(2,A). (4)

Field Symbol Representation Rep. Symbol Group
ΨA Spinor S+ SO(1, n + 1)
XA Conjugate Spinor S− SO(1, n + 1)
AA Vector V SO(1, n + 1)
ψA Spinor s SO(n)
χA Conjugate Spinor c SO(n)
aA Vector v SO(n)

Table : A summary of the fields and notation used in D = n + 2



6.3 Trialities

D \ N 1 2 4 8

10 SO(8)ST

6 Sp(1)2
ST × Sp(1)I Sp(1)2

ST × Sp(1)2
I

4 U(1)ST × U(1)I U(1)ST × U(2)I U(1)ST × SU(4)I

3 1 SO(2)I SO(4)I SO(7)I

Table : Spacetime little groups and internal symmetry groups



6.4 Super Yang-Mills in D = 3, 4, 6, 10

D/N 1 2 4 8

10 SO(8)ST

6 SO(4)ST SO(4)ST
× Sp(1)R ×

(
Sp(1)× Sp(1)

)
R

4 SO(2)ST SO(2)ST SO(2)ST
×U(1)R ×

(
SU(2)× U(1)2

)
R × SU(4)R

3 1 SO(2)R SO(4)R SO(8)R

Table : Space-time Little groups and R-symmetry groups

SL(2,A) = SO(2, 1), SO(3, 1), SO(5, 1),SO(9, 1) for
A = R,C,H,O



6.5 Components in D = 3, 4, 6, 10

Dim. Field No. of comps. Little field No. of comps.
10 = 8 + 2 ΨO 16 = 2× 8 ψO 8

XO 16 = 2× 8 χO 8
AO 10 aO 8

6 = 4 + 2 ΨH 8 = 2× 4 ψH 4
XH 8 = 2× 4 χH 4
AH 6 aH 4

4 = 2 + 2 ΨC 4 = 2× 2 ψC 2
XC 4 = 2× 2 χC 2
AC 4 aC 2

3 = 2 + 1 ΨR 2 = 2× 1 ψR 1
AR 3 aR 1

Table : Space-time fields



6.7 Magic Pyramid: G symmetries



6.8 Magic Pyramid: H symmetries



6.9 Conformal Magic Pyramid: G symmetries


