

Chiral transport phenomena: From QCD to Quantum Simulators

Niklas Mueller Brookhaven National Laboratory

with J. Berges, P. Hauke, F. Jendrzejewski, J. Schneider, R. Ott, R. Venugopalan, T. Zache

PRD 99, 056003 (arXiv:1901.10492); PRD 97, 051901 (arXiv:1701.03331) PRD 96, 016023 (arXiv:1702.01233) <u>PRL 122 (2019) 050403 (arXiv:1808.07885)</u> arXiv:1903.11109

USTC Hefei - April 2019

particle tracks at STAR detector at Relativistic Heavy Ion Collider, Brookhaven National Lab

strong CP problem

$$\frac{g^2\theta}{16\pi^2}\,\tilde{F}^{\mu\nu}F_{\mu\nu}$$

θ < 10-9

Topological structure of QCD

$$n_{CS}(t, \mathbf{x}) \equiv \frac{g^2}{32\pi^2} F^a_{\mu\nu} \tilde{F}^{a,\mu\nu}(t, \mathbf{x})$$
$$N_{CS}(t) \equiv \int d^3x \, n_{CS}(t, \mathbf{x})$$

Fukushima, Kharzeev, McLerran, Warringa ~ 2008 sources: (top) wikipedia O. Alexndrov; (bottom) Kharzeev, Warringa, Fukushima

• More Chiral Effects: novel electronic properties

- Manipulating nature on the quantum level
- Can high energy / nuclear physics benefit from quantum simulation / computation?

Outline

- **1.** Chiral Fluids in QCD
- 2. World-line approach
- 3. Quantum Phase space with internal symmetries
- 4. Quantum Simulation Overview
- 5. Quantum simulating CP violation

1. Chiral Fluids: Theory

Chiral fluids in QCD: difficult because non-equilibrium

NM, Schlichting, Sharma PRL 117 (2016) 142301

1. Chiral Fluids: Theory

Anomalous Hydrodynamics

- Son & Surowka (2009)
- entropy conserving contributions (from symmetries)
- Landau and Lifshitz would have allowed one to write this down

Some challenges:

$$\begin{split} \nu^{\mu} &= -\sigma T P^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T}\right) + \sigma E^{\mu} + \xi \omega^{\mu} + \xi_{B} B^{\mu} \\ s^{\mu} &= s u^{\mu} - \frac{\mu}{T} \nu^{\mu} + D \omega^{\mu} + D_{B} B^{\mu}, \\ \partial_{\mu} T^{\mu\nu} &= F^{\nu\lambda} j_{\lambda}, \quad \partial_{\mu} j^{\mu} = C E^{\mu} B_{\mu} \end{split}$$

- <u>QCD is CP even</u> "No mean Chiral Effects"
- Fluctuations in Hydrodynamics?

Crossley, Glorioso, Liu JHEP 1709 (2017) 095; Glorioso, Son (2018), arXiv:1811.04879

Dissipative corrections and anomalies

1. Chiral Fluids: Theory

Chiral Kinetic Theory

Phase space and internal symmetries?

 $f(x,p) \rightarrow ???$

- Berry CKT: Son, Yamamoto;
 Stephanov, Yi (2012)
- Xiao, Shi, Niu (2005)

$$\begin{split} \dot{\mathbf{x}} &= \frac{1}{\hbar} \frac{\epsilon_n(\mathbf{p})}{\partial \mathbf{p}} - \dot{\mathbf{k}} \times \mathbf{\Omega}_n(\mathbf{p}) \,, \\ \hbar \dot{\mathbf{p}} &= e \mathbf{E}(\mathbf{x}) - e \dot{\mathbf{r}} \times \mathbf{B}(\mathbf{x}) \,, \\ \mathbf{\Omega}_n(\mathbf{k}) &= i \langle \nabla_{\mathbf{k}} u_n(\mathbf{k}) | \times |\nabla_{\mathbf{k}} u_n(\mathbf{k}) \rangle \end{split}$$

Berry origin of the anomaly?

Fujikawa & Deguchi 2005, arXiv:1709.08181, NM & R. Venugopalan, arXiv:1701.03331, arXiv:1702.01233

Microscopic to macroscopic:
 – fluctuations and collision terms

2. Worldline approach

• Strassler 1992: worldline representation of QFT

$$\Gamma[A] = -\mathrm{Tr}\,\log(-iD^2[A]) = \int_0^\infty \frac{dT}{T} \mathcal{N}\,Dx\,\mathrm{tr}\,\mathcal{P}\exp\left[i\int_0^T d\tau\left(\frac{\dot{x}^2}{2\epsilon} + gA_\mu[x]\dot{x}^\mu\right)\right]$$

• internal symmetries: Grassmann variables

$$\operatorname{tr} \mathcal{P} \exp\left[i\int_{0}^{T} d\tau M(\tau)\right] = \int \mathcal{D}\phi \int \mathcal{D}\lambda^{\dagger} \mathcal{D}\lambda \, e^{i\phi(\lambda^{\dagger}\lambda + \frac{n}{2} - 1)} \exp\left[i\int_{0}^{T} d\tau (i\lambda^{\dagger} \frac{d\lambda}{d\tau} + \lambda^{\dagger} M\lambda)\right]$$

D'Hoker & Gagner

Non-equilibrium generalization: Schwinger-Keldysh

$$\Gamma_{\mathcal{C}}[A;\chi] = \int d^{4}x_{i}^{+}d^{4}x_{i}^{-} \int d\lambda_{i}^{+}d\lambda_{i}^{-} \int d\lambda_{i}^{\dagger}^{+}d\lambda_{i}^{\dagger}^{-} \\ \times \chi_{A}(x_{i}^{+},x_{i}^{-},\lambda_{i}^{+},\lambda_{i}^{-},\lambda_{i}^{+},\lambda_{i}^{-},\lambda_{i}^{\dagger}^{+},\lambda_{i}^{\dagger}^{-}) \\ \times \int_{\mathcal{C}} \mathcal{D}\epsilon \mathcal{D}\phi \int_{\mathcal{C}} \mathcal{D}x \int_{\mathcal{C}} \mathcal{D}\lambda^{\dagger} \mathcal{D}\lambda \ e^{iS_{\mathcal{C}}[A]} . \\ \equiv \int \frac{d^{4}\bar{p}_{i}}{(2\pi)^{4}} W_{A}^{\chi}(\bar{x}_{i},\bar{p}_{i},\bar{\lambda}_{i},\bar{\lambda}_{i}^{\dagger}) \ e^{i(\bar{p}_{i}\cdot\tilde{x}_{i}+\frac{1}{2}\bar{\lambda}_{i}^{\dagger}\cdot\tilde{\lambda}_{i}+\frac{1}{2}\bar{\lambda}_{i}\cdot\tilde{\lambda}_{i}^{\dagger})}$$

2. Worldline approach

semi-classical phase space: <u>Truncated Wigner Approximation</u>

review: Polkovnikov 2009

yields (quantum-) Liouville equation

$$\frac{d}{d\tau}W^{\chi}_{A} = \left(\dot{\bar{x}}_{\mu}\frac{\partial}{\partial\bar{x}_{\mu}} + \dot{\bar{P}}_{\mu}\frac{\partial}{\partial\bar{\bar{P}}_{\mu}} + \dot{\bar{\lambda}}_{a}\frac{\partial}{\partial\bar{\bar{\lambda}}_{a}} + \dot{\bar{\lambda}}_{a}^{\dagger}\frac{\partial}{\partial\bar{\bar{\lambda}}_{a}^{\dagger}}\right)W^{\chi}_{A}(x, P, \lambda, \lambda^{\dagger})$$

Grassmann coordinates for color

2. Worldline approach

Spin ?

Spin via anti-commuting

variables (Berezin and Marinov 1976)

$$W^{\chi}_{A}(x, P, \lambda, \lambda^{\dagger}) \longrightarrow W^{\chi}_{A}(x, P, \lambda, \lambda^{\dagger}, \psi)$$

• bilinear form

$$S_{\mu\nu} = -i\psi_{\mu}\psi_{\nu}$$

$$Q^a \equiv \lambda_c^{\dagger} t^a_{cd} \lambda_d$$

Not a classical representation! Valid for any (!) representation

$$\begin{aligned} \dot{x}^{\mu} &= \epsilon P^{\mu} , \\ \dot{P}^{\mu} &= \epsilon g F^{a,\mu\nu} Q^{a} P_{\nu} - \frac{i\epsilon g}{2} \psi^{\alpha} (D^{\mu} F_{\alpha\beta})^{a} Q^{a} \psi^{\beta} , \\ \dot{\psi}^{\mu} &= \epsilon g F^{a,\mu\nu} Q^{a} \psi_{\nu} , \\ \dot{\lambda}^{\dagger}_{a} &= -ig v^{\mu} t^{c}_{ab} A^{c}_{\mu} \lambda^{\dagger}_{b} - \frac{\epsilon g}{2} \psi^{\mu} F^{b}_{\mu\nu} t^{b}_{ac} \lambda^{\dagger}_{c} \psi^{\nu} , \\ \dot{\lambda}_{a} &= ig v^{\mu} t^{c}_{ab} A^{c}_{\mu} \lambda^{\dagger}_{b} + \frac{\epsilon g}{2} \psi^{\mu} F^{b}_{\mu\nu} t^{b}_{ac} \lambda_{c} \psi^{\nu} , \end{aligned}$$

$$\dot{Q}^a = -igv^\mu f^{abc} A^b_\mu Q^c - \frac{g\epsilon}{2} f^{abc} \psi^\mu F^b_{\mu\nu} \psi^\nu Q^c$$

= Wong's equation (1970)

SK derivation in worldline formalism, see *PRD 99, 056003 (arXiv:1901.10492)*

3. Quantum Phase Space

<u>Closer look:</u> phase space for spin and chirality

 Worldline path integral defines phase space measure in semi-classical limit

 $\int dS \equiv -i \int d\psi_0 d\psi_1 d\psi_2 d\psi_3$

Grassmann algebra fixes the form of the distribution function <u>uniquely!</u> polarized part W^χ_A(x, P, λ, λ[†], ψ) = W^χ_A(x, P, λ, λ[†]) [Σ_μ(x, P, λ, λ[†]) × v_λ ψ^μψ^λ - ⁱ/₆ ε_{μναβ}v^μv_λψ^νψ^αψ^βψ^λ] ← unpolarized part

3. Quantum Phase Space

 practical approach: color and spin, via moments

 $f(x, P), f^a(x, P) \Sigma_\mu(x, P), \tilde{\Sigma}_\mu(x, P), \text{ and } \tilde{\Sigma}^a_\mu(x, P)$

exact spin structure	exact color structure
$f_A(x, P, Q, S)$	f(x, P, Q)
$= f_A(x, P, Q) \left[i\Sigma_{\mu}(x, P, Q) S^{\mu\nu} v_{\nu} - \frac{i}{6} \epsilon_{\mu\nu\alpha\beta} v^{\mu} S^{\nu\alpha} S^{\beta\lambda} v_{\lambda} \right]$ polarized	$= f(x,P) \Big[1 + \frac{2}{A_R d^2} d^{abc} Q^a Q^b Q^c \Big] + 2 f^a(x,P) Q^a$ singlet octet

 e.g. Pauli-Lubanski vector (BMT equation)

$$\begin{split} \dot{\Sigma}_{\mu}(x,P,Q) = & \frac{g}{P^0} F^a_{\mu\nu} Q^a \, \Sigma^{\nu}(x,P,Q) \\ &+ \frac{2g}{P^0} \Sigma_{\alpha}(x,P,Q) F^{a,\alpha\beta} Q^a v_{\beta} \, v_{\mu} \end{split}$$

 currents etc generalized phase space averages

$$\langle J^{\mu}_{L/R}(x)\rangle \equiv e \int d^4 P \, dS \, \epsilon \left[P^{\mu} + S^{\mu\nu} \partial_{\nu}\right] f(x, P, S)$$

 anomaly: axial current requires 'proper derivation' from worldlines in TWA

3. Quantum Phase Space

Closer look: chiral anomaly

- Anomaly from phase of fermion determinant Alvarez-Gaume & Witten, Nucl. Phys B234 (1984) 269
- Can be explicitly computed in worldline formulation

$$\Gamma[A,B] = \Gamma[A] + \int d^4y \, \frac{\delta\Gamma[A,B]}{\delta B_{\mu}(y)} \Big|_{B=0} B_{\mu}(y) \qquad \qquad \delta\Gamma/i\delta B_{\mu}(y) \equiv \langle J_{5,\mu}(y) \rangle$$

 spectrum contains fermionic zero modes (contribution to initial density matrix)

$$\langle \partial_{\mu} J_5^{\mu}(y) \rangle = -\frac{e^2}{8\pi^2} F_{\mu\nu} \tilde{F}^{\mu\nu}(y)$$

detailed derivation: arxiv:1702.01233 or arxiv:1901.10492 in real-time formulation

Summary Part 1

- Worldline approach ab-initio: Compute (!) kinetic theory from QFT
- Closed Grassmann for internal symmetries
- Generalized Quantum Phase Space, measure, Wigner distribution, Liouville equation
- Chiral anomaly manifest
- May be useful to constrain anomalous hydrodynamics

Quantum Simulating CP odd phenomena in QCD

Heidelberg

Ott

Philipp Hauke

Jürgen Fred Berges Jendrzejewski

Torsten

Jan

Robert Zache Schneider

PRL 122 (2019) 050403 (arXiv:1808.07885) arXiv:1903.11109

Why Quantum Simulation / Computation?

degrees of freedom

4. Quantum Simulation

Analog

e.g. ultra-cold atoms

- bottom up engineering of specific model
- magnetic hyperfine states

Digital e.g. SC qubits

- universal
- qubits
- few gates
- trotterized time evolution

4. Quantum Simulation

trapped ions

ultra-cold atoms

quantum dots superconducting qubits Array of qubits |**↓**⟩, | **Photons** time $e^{-i H t} = U = U_M \dots U_2 U_1$ Lu et al., arXiv:1810.03959

slide from P. Hauke, talk @ Lausanne Nov 23, 2018

see reviews: Hauke, Cucchietti, Tagliacozzo, Deutsch, Lewenstein, Rep. Prog. Phys. 2012 Cirac, Zoller, Nat. Phys. 2012, ...

4. Quantum Simulation

• First ever quantum simulation of a lattice gauge theory on trapped ion computer Schwinger effect in 1+1D Schwinger model

Physics world breakthrough of the year

Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, Hauke, Dalmonte, Monz, Zoller, Blatt, *Nature* 2016

• Schwinger model on IBM-Q (2018)

Klco, Dumutrescu, McCaskey, Morris, Pooser, Sanz, Solano, Lougovski, Savage

PRL 122 (2019) 050403 (arXiv:1808.07885)

Topological structure of QCD

$$n_{CS}(t, \mathbf{x}) \equiv \frac{g^2}{32\pi^2} F^a_{\mu\nu} \tilde{F}^{a,\mu\nu}(t, \mathbf{x})$$
$$N_{CS}(t) \equiv \int d^3x \, n_{CS}(t, \mathbf{x})$$

• strong CP problem

why zero? Could θ be dynamical (axion) ?

$$\frac{g^2(\theta+c\,\hat{a})}{16\pi^2}\,\tilde{F}^{\mu\nu}F_{\mu\nu}$$

23

• Toy model for QCD: 1+1D QED

- Theta vacua
- **Chiral Anomaly**
- **G** "Chiral Symmetry Breaking"

,...................

"Confinement"

$$H_{\text{QED}} = \int dx \left[(\bar{\psi}(x) i\gamma_1 D_x \psi(x) + \text{h.c.}) + m\bar{\psi}(x)\psi(x) + \frac{1}{2}E(x)^2 + \frac{e}{2\pi}\frac{\theta}{2\pi}E(x) \right]$$
$$\psi \rightarrow e^{-i\theta\gamma^5/2}\psi$$
$$H_{\text{QED}} = \int dx \left[(\bar{\psi}(x) i\gamma_1 D_x \psi(x) + \text{h.c.}) + m\bar{\psi}(x)e^{i\gamma_5\theta}\psi(x) + \frac{1}{2}E(x)^2 \right]$$

 θ has physical consequences: dispersion relation independent of θ, but not the Hilbert state vectors!

• Our study:

What are the consequences of a change in $\boldsymbol{\theta}$?

single-particle propagator

$$g(k,t) = \int \mathrm{d}x e^{-i\,k\,x} \left\langle \psi^{\dagger}(x,t) \, e^{-ie\int_{0}^{x} \mathrm{d}x' A(x',t)} \, \psi(0,0) \right\rangle$$

• first: zero coupling

For $|\Delta \theta| > \frac{\pi}{2}$ vortices appear!

dynamical(a) a^{0} topological invariant $a^{0}_{\underline{a}-1}$

$$\nu \equiv n_{+} - n_{-}$$
$$n_{\pm}(t) \equiv \frac{1}{2\pi} \oint_{\mathcal{C}_{\pm}(t)} d\mathbf{z} \left\{ \tilde{g}^{\dagger}(\mathbf{z}) \nabla_{\mathbf{z}} \tilde{g}(\mathbf{z}) \right\}$$

This transition is topological!

Lochschmidt echo

$$\mathcal{L}(t) = \langle \operatorname{vac}(\theta) | e^{-i H_{\theta'} t} | \operatorname{vac}(\theta) \rangle$$
$$|L_{\theta \to \theta'}(t)| = |\langle \psi(0) | \psi(t) \rangle|$$
$$= e^{-V \Gamma_{\theta \to \theta'}(t)}$$

Heyl, Polkovnikov, Kehrein, PRL 2013 Recent review: Heyl, arXiv:1811.02575

5. Q-simulating CP violation

- Numerical lattice computation at arbitrary coupling
- "Classically simulating ideal quantum simulator"
- 8 (!) lattice sites

accessible with present day QC (coherence times and # sites)

Summary Part 2

- Quantum Simulation of gauge
 theories advances fast
- Interesting High Energy applications
- Dynamical Quantum Phase Transitions
 observable for 8 sites, short times

• Similar mechanisms in QCD?

Extra: QED in 2+1 D

arXiv:1903.11109

 \mathbf{E}_0

x

• no chiral, but <u>parity anomaly</u>

$$j^{\mu}_{\rm an}(t) = \frac{e}{8\pi} \epsilon^{\mu\nu\rho} F_{\nu\rho}(t)$$

mass term violates parity

$$j_{\rm m}^{\mu}(t) \stackrel{\rm weak field}{=} -\frac{m}{|m|} \frac{e}{8\pi} \epsilon^{\mu\nu\rho} F_{\nu\rho}(t)$$

see also Copinger, Fukushima, Pu PRL 121 (2018) no.26, 261602

• This is not true in strong fields! in-in vs. in-out

$$j_{\rm m}^y = -\frac{m}{|m|} \frac{eE_x}{4\pi} \operatorname{Erf}\left(\sqrt{\frac{\pi m^2}{eE_x}}\right)$$

see e.g. Redlich 1984

 j_{an}

Ĵm

Extra: QED in 2+1 D

arXiv:1903.11109

Backup: worldline Hamiltonian

$$S[A \pm B] = \int d\tau_{\mathcal{C}} \left[p_{\mu} \dot{x}^{\mu} + \frac{i}{2} \psi_{\mu} \dot{\psi}^{\mu} - H[A \pm B] \right]$$
$$H[A \pm B] \equiv \frac{\epsilon}{2} \left(P^{2} + ie\psi^{\mu}F_{\mu\nu}[A \pm B]\psi^{\nu} \right)$$
$$+ \frac{i}{4} \left(P_{\mu}\psi^{\mu} \pm \frac{i}{3}\epsilon_{\mu\nu\alpha\beta}P^{\mu}\psi^{\nu}\psi^{\alpha}\psi^{\beta} \right) \chi$$

Backup: structure of phase space: color

Color bilinears

$$\begin{array}{c} Q^{a} \equiv \lambda_{c}^{\dagger} t_{cd}^{a} \lambda_{d} \\ \\ \{Q^{a}, Q^{b}\} = \lambda^{\dagger} [t^{a}, t^{b}] \lambda = i f^{abc} Q^{c} \end{array}$$

Color measure

$$\int dQ = 0, \qquad f(x, P) \equiv \int dQ f(x, P, Q),$$

$$\int dQ Q^a = 0, \qquad f^a(x, P) \equiv \int dQ Q^a f(x, P, Q),$$

$$\int dQ Q^a Q^b = \frac{1}{2} \delta^{ab}, \qquad f^{ab}(x, P) \equiv \int dQ Q^a Q^b f(x, P, Q),$$

$$\int dQ Q^a Q^b Q^c = \frac{A_R}{2} d^{abc} \qquad f^{abc}(x, P) \equiv \int dQ Q^a Q^b Q^c f(x, P, Q).$$

One unique form of phase space distribution

$$f(x, P, Q) = f(x, P) \left[1 + \frac{2}{A_R d^2} d^{abc} Q^a Q^b Q^c \right] + 2f^a(x, P) Q^a$$

$$d^2 \equiv d^{abc} d^{abc} = N_c^2 - 4$$

Backup: anomaly

• chiral current ...

$$\langle J_5^{\mu}(x) \rangle = \langle J_R^{\mu}(x) \rangle - \langle J_L^{\mu}(x) \rangle = e \int d^4 P \,\epsilon \,\epsilon^{\mu\nu\alpha\beta} P_{\beta} \partial_{\nu} [\Sigma_{\alpha}(x,P) f(x,P)]$$

... is classically conserved. What is missing?

Backup: anomaly

derivation from worldline SK path integral

$$\Gamma[A,B] \equiv \operatorname{tr} \int d^4 x_i^+ d^4 x_i^- d^4 \psi_i^+ d^4 \psi_i^- \zeta^{A,B}(x_i^+, x_i^-, \psi_i^+, \psi_i^-) \int_{x_i^+}^{x_i^-} \mathcal{D}x \mathcal{D}p \int_{\psi_i^+}^{\psi_i^-} \mathcal{D}\psi \int \mathcal{D}\epsilon \mathcal{D}\chi e^{iS_{\mathcal{C}}[A,B]}$$

variational axial-vector gauge field

linear order in axial-vector field B

$$\Gamma[A,B] = \Gamma[A] + \int d^4y \, \frac{\delta\Gamma[A,B]}{\delta B_{\mu}(y)} \Big|_{B=0} B_{\mu}(y)$$

Linear term: chiral current

$$\frac{\delta\Gamma[A,B]}{\delta B_{\mu}(y)}\Big|_{B=0} = \operatorname{tr} \int d^{4}x_{i}^{+}d^{4}x_{i}^{-}d^{4}\psi_{i}^{+}d^{4}\psi_{i}^{-} \left[\zeta^{A,B}(x_{i}^{+},x_{i}^{-},\psi_{i}^{+},\psi_{i}^{-})\int_{x_{i}^{+}}^{x_{i}^{-}} \mathcal{D}x \mathcal{D}p \int_{\psi_{i}^{+}}^{\psi_{i}^{-}} \mathcal{D}\psi \int \mathcal{D}\epsilon \mathcal{D}\chi \frac{i\delta S_{\mathcal{C}}[A,B]}{\delta B_{\mu}(y)}e^{iS_{\mathcal{C}}[A]} + \frac{\delta\zeta^{A,B}(x_{i}^{+},x_{i}^{-},\psi_{i}^{+},\psi_{i}^{-})}{\delta B_{\mu}(y)}\int_{x_{i}^{+}}^{x_{i}^{-}} \mathcal{D}x \mathcal{D}p \int_{\psi_{i}^{+}}^{\psi_{i}^{-}} \mathcal{D}\psi \int \mathcal{D}\epsilon \mathcal{D}\chi e^{iS_{\mathcal{C}}[A,B]} \Big|_{B=0}$$

initial density matrix ("spectrum") 35

Backup: anomaly

• we computed second term already in arxiv:1702.01233 (*)

$$\zeta \equiv \zeta^{(0)} + \zeta^{(1)}$$

$$\zeta^{(0)} \equiv \begin{pmatrix} \zeta_R^A[x_i^+, x_i^-, \psi_i^+, \psi_i^-] & 0\\ 0 & \zeta_L^A[x_i^+, x_i^-, \psi_i^+, \psi_i^-] \end{pmatrix}$$

$$\zeta^{(1)} \equiv 2 \mathbb{I}_{2 \times 2} \left[\partial_{\mu} B_{\mu}(\bar{x}_i) - \{ \partial_{\mu}, B_{\nu}(\bar{x}_i) \} \bar{\psi}^{\nu} \bar{\psi}^{\mu} \right]$$
$$\times \delta(x_i^+ - x_i^-) \, \delta(\psi_i^+ - \psi_i^-) \,,$$

it gives the well known anomaly relation

$$\langle \partial_{\mu} J_5^{\mu}(y) \rangle = -\frac{e^2}{8\pi^2} F_{\mu\nu} \tilde{F}^{\mu\nu}(y)$$

(*) by analytic continuation. We did not realize then it coold be written in SK form / density matrix

Backup: anomaly and (in-)compressibility of semi-classical phase space

 Liouville's equation implies incompressibility of (semi-classical) phase space

$$0 = \frac{d}{d\tau}W(x, P, \psi, \lambda, \lambda^{\dagger}) = \left(\dot{x}_{\mu}\frac{\partial}{\partial\bar{x}_{\mu}} + \dot{P}_{\mu}\frac{\partial}{\partial P} + \dot{\psi}_{\mu}\frac{\partial}{\partial\psi_{\mu}} + \dot{\lambda}_{a}\frac{\partial}{\partial\lambda_{a}} + \dot{\lambda}_{a}^{\dagger}\frac{\partial}{\partial\lambda_{a}^{\dagger}}\right)W(x, P, \psi, \lambda, \lambda^{\dagger})$$

- canonical phase space variables: phase space incompressible at this order (reverse not true)
- higher orders: Moyal equation, quantum phase space compressible $\frac{dW_A^{\chi}}{d\tau} = -2H_W \sin\left[\frac{\Lambda}{2}\right] W_A^{\chi} = \{W_A^{\chi}, H_W\} + O(\hbar^2)$

Does this have to do anything with the anomaly?

Backup: anomaly and (in-)compressibility of semi-classical phase space

Does this have to do anything with the anomaly?

- Xiao, Shi, Niu make this semi-classical effective theory "many body"
- compressibility of classical phase space
- different interpretations of the same equations

$$\dot{\mathbf{x}} = rac{1}{\hbar} rac{\epsilon_n(\mathbf{p})}{\partial \mathbf{p}} - \dot{\mathbf{k}} \times \mathbf{\Omega}_n(\mathbf{p}),$$

 $\hbar \dot{\mathbf{p}} = e \mathbf{E}(\mathbf{x}) - e \dot{\mathbf{r}} \times \mathbf{B}(\mathbf{x}),$

$$\Delta V \equiv \frac{\Delta V_0}{1 + e\mathbf{B} \cdot \mathbf{\Omega}}$$

Backup: quantum simulation of LGT

see e.g. Berges, Hebenstreit, Kasper, Oberthaler 2016

$$H_{\text{QED}} = \sum_{n} \left\{ \frac{a}{2} E_{n}^{2} + M(-1)^{n} \psi_{n}^{\dagger} \psi_{n} - \frac{i}{2a} \left[\psi_{n}^{\dagger} U_{n} \psi_{n+1} - \psi_{n+1}^{\dagger} U_{n}^{\dagger} \psi_{n} \right] \right\}$$

$$H_{\text{CA}} = \sum_{n} \left\{ \frac{g^{2}a}{4} [b_{n}^{\dagger} b_{n}^{\dagger} b_{n} b_{n} + d_{n}^{\dagger} d_{n}^{\dagger} d_{n}] + M(-1)^{n} \psi_{n}^{\dagger} \psi_{n} - \frac{i}{2a\sqrt{\ell(\ell+1)}} \left[\psi_{n}^{\dagger} b_{n}^{\dagger} d_{n} \psi_{n+1} - \psi_{n+1}^{\dagger} d_{n}^{\dagger} b_{n} \psi_{n} \right] \right\}$$

$$\begin{bmatrix} U_{n} \rightarrow \left[\ell(\ell+1) \right]^{-1/2} L_{+,n} \\ E_{n} \rightarrow gL_{z} \end{bmatrix}$$

$$[E_{n}, U_{m}] = g \delta_{nm} U_{m}$$

$$\begin{bmatrix} L_{i,n}, L_{j,m} \end{bmatrix} = i \delta_{nm} \epsilon_{ijk} L_{k,n} \\ E_{n} - E_{n-1} - g \psi_{n}^{\dagger} \psi_{n}$$

$$\begin{bmatrix} L_{+,n}, L_{-,m} \end{bmatrix} = 2 \delta_{nm} L_{z,m}$$

 $L_{+,n} = b_n^{\dagger} d_n, \ L_{-,n} = d_n^{\dagger} b_n \text{ and } L_{z,n} = (b_n^{\dagger} b_n - d_n^{\dagger} d_n)/2$