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Why is our world so boring?

+ gravity

At the fundamental scale simply replicas of the same thing we only have spin 0, 1
2 , 1,

and 2
∼∼ why does nature appears to lack imagination ?



The conventional answer: It is hard to construct a Lagrangian

L =
1
2
∂µφ∂µφ+ Polynomials(φ, ∂φ)

such that

• It is Lorentz invariant
• It is Local (all interactions happen at a point)
• It is Unitary, introduction of gauge invariance, the absence of ghosts, the definite

positivity of the Hilbert space, e.t.c

So it is natural that we only have limited cases.
But

• hard is an adjective, we should be able to say no
• L is not physical !

← what are we suppose to say??



Can we discuss the constraint of Lorentz invariance and Unitary on physical
observables? Like the S-matrix

Completely on-shell, “language” independent statements!



Why S-matrix?

〈φ(x1) , φ(x1), · · · φ(x1)〉+ ← Not gauge invariant!!

Instead, we can consider the scattering of “quantized ripple of space-time” gµν
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We can impose constraints directly on the S-matrix as analytic requirements

k1

k2
k3

k4

∼ M4

• Lorentz invariance:
M4(pi · pj , εi · pj )

• Locality+Unitarity:
Branch cuts and singularities in (ka + kb + · · ·+ kc)2 (Locality)
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Branch cuts

Factorization

Discontinuities and residues are products Mn ×Mp (Unitarity i(T † − T ) = TT †)



Exercise:

By staring at the S-matrix, can we show that it is impossible to have fundamental
particles with spins>2?



Fundamental particles means that it has a massless limit

k2 = 0 → kαα̇ =

(
k0 − k3 k1 + ik2

k1 − ik2 k0 + k3

)
= λαλ̃α̇

α, α̇ ∈ SL(2,C)∼SO(1,3). The momenta is invariant under

λ→ tλ, λ̃→ t−1λ̃

This is the SO(2)∼U(1) little group that characterize the particle

hi = 0,±
1
2
,±1, · · ·

We have the Lorentz invariance building blocks [12] ∼ √p1 · p2

• Lorentz invariance

M(1h1 , 2h2 , 3h3 ) = [12]d1 [23]d2 [31]d3 , [12] ≡ λα1 λ
β
2 εαβ εαβ =

(
0 −1
1 0

)
• Little group fixes the amplitude!

spin 1 M3(2−1, 3−1, 1+1) =
[23]3

[31][12]

spin 2 M3(2−2, 3−2, 1+2) =
[23]6

[31]2[12]2





Unitarity is a statement of factorisation: The residues of the pole in the four-point
S-matrix must be given by the three-point interaction

s

t= (p+p )^2
1 4

s= (p+p )^2
1 2

s + t + u = 0

If the product of three-point amplitudes contains poles, consistency with other channels
imposes stringent constraint!



Consider the four point amplitude A(1−`2−`3+`4+`), constructed from the s-channel
gluing:

1 3

42

pp ∼
(
〈12〉3

〈1p〉〈p2〉
[34]3

[3p][p4]

)`
=

(
〈12〉2[34]2

t

)`
(1)

Note the present of t-poles in the denominator.

• For ` = 1, this implies that the amplitude must be written as

〈12〉2[34]2

st

• For ` = 2, although there is a double pole in t2, it can be viewed as the
degenerate limit for tu since u + s + t = 0 in the limit s = 0.

〈12〉4[34]4

stu

• For ` > 2, one simply have too high a power of poles and one does not have a self
interacting theory in four-dimensions.

Rules out weakly coupled massless higher spin theories



Are free-theories safe?
no
In the presence of gravity one must have minimal coupling→ A(1−`2−23+24+`).
Again from the s-channel we have:

3
−2

4

pp
2

+2

1

∼
[12]2+2`

[p1]2[2p]2`−2

〈34〉2+2`

〈p4〉2〈3p〉2`−2
=

[12]2`〈34〉4

〈24〉2[24]2`−2
(2)

The factor 〈24〉2 in the denominator implies a 1/u2 pole, reflecting the exchange in u
channel as well as the graviton exchange in the t-channel. However, beyond spin-2
one has extra factors of [24] in the denominator beyond necessary for the 1/u2 pole.
Thus one concludes that free massless higher-spin theory is inconsistent in the
presence of gravity.
Similarly charged ` > 1 massless particles cannot exist.



The fact that all particles couple to gravity, we can only have:

0,
1
2
, 1,

3
2
, 2

Nature does not lack imagination, it has its hands tied!



The important lessons:

• Consequence of physical principles can be most straight forwardly extracted by
imposing or framing it on physical observables

• The space of possible theories = The space of possible physical observables←
constrained by the desired principles (unitarity, locality... e.t.c)



We are then forced to ask:

• What is this space?

• How does symmetry, locality, and unitarity manifest itself in this space?

• Is it possible that these properties are unified?

• Is there new structure that was hidden before? Ample of examples: from the
Runge-Lentz vector, to the recent dual conformal symmetry of maximal super
Yang-Mills

→



What is this space?

UV CFT

IR CFT

EFT

i
i i Irrelevant

• EFT: S-matrix, coefficient of higher-dimensional (irrelevant) operators
• CFT: Four point correlation function, conformal dimension and three-point

coupling of primary operators.



EFT

In the IR the UV degrees of freedom are encoded in the higher dimensional operators.
These information are encoded in the four-point function as

a a

b b
1 4

2 3

M(s, t) =
∑
i,j

gi,j si t j

where s = (p1 + p2)2 t = (p1 + p4)2. For example:

L =
1
2
φ�φ+ a(∂φ · ∂φ)2 → M(s, t) = a(s2 + st + t2)

The space of possible theories = The space of possible gi,j



A simple model

Lets consider the scattering amplitude of four-particles in 1 + 1-dimensions

1 2

34

Irrespective of the degrees of freedom of the ultimate fundamental theory, the
scattering process at low energy can be approximated as:

M(E) = g0 + g1E + g2E2 + · · · =
∞∑
i=0

gi E i

Question: given a set of {gi}s, is there a way to see the underlying theory is unitary ?



A simple model

Lets consider the scattering amplitude of four-particles in 1 + 1-dimensions

1 2

34

Irrespective of the degrees of freedom of the ultimate fundamental theory, the
scattering process at low energy can be approximated as:

M IR(E) = g0 + g1E + g2E2 + · · · =
∞∑
i=0

gi E i

In the UV, from unitarity, the function should take the form:

M(E) =
∑

a
−

ca

E −m2
a

unitarity :ca > 0

From this we see that the low energy amplitude must be expressible as

M IR(E) =
∑

a

ca

m2
a

(
1 +

E
m2

a
+

(
E

m2
a

)2
+ · · ·

)



A simple model
We must have

M IR(E) = g0 + g1E + g2E2 + · · · =
∑

a

ca

m2
a

(
1 +

E
m2

a
+

(
E

m2
a

)2
+ · · ·

)

In other words the point ~g = {g0, g1, g2, · · · }

~g =
∑

a
ca

(
1

m2
a
,

1
m4

a
,

1
m6

a
, · · ·

)
≡
∑

a
ca~va

The space of allowed ~g is inside a polytope with the vertices given by ~vas!



A simple model

Is this polytope special ? Yes! the vertices are given by points on a moment curve

~va =

(
1

m2
a
,

1
m4

a
,

1
m6

a
, · · ·

)
∼ (1, t , t2, t3, · · · )



A simple model

This geometry is also useful !

Let’s say given n vectors ~va, to compute the region of the polytope we need to

• Determine which one of these ~vas are vertices
• Amongst the vertices, determine all the set that constitute boundary facets

The complexity is nd



A simple model

This geometry is also useful !

However, since our vectors ~va are points on a moment curve,

{0.2, (0.2)2, (0.2)3, · · · }, {14.6, (14.6)2, (14.6)3, · · · }

We know that

• All ~vas are vertices
• The boundaries are all known.



A simple model

The constraint on the couplings becomes simple. Organizing the couplings into the
Hankel matrix

Then we simply have



A simple model

Summary:
The statement of unitarity for 1 + 1-dimensional scattering is translated into the
geometric property that the coefficients of the expansion in s (center of mass energy)
lies within the convex hull of points on moment curves.

What about higher D and Lorentz symmetry?



General dimensions

What about higher D and Lorentz symmetry?

1 2

3

4

The scattering amplitude is now a function of two variables: M(s, t)

s = (p1 + p2)2, t = (p1 + p4)2 = −
s
2

(1− cos θ)



General dimensions

For fixed t the analytic structure of M(s,t) is

From basic unitarity constraint, we know the residue and discontinuity



General dimensions

• Lorentz invariance + Unitarity dictates

→

The residue must take the form (X ≡ p1 − p2, Y ≡ p3 − p4):

Xµ1 Xµ2 · · ·Xµ`Pµ1···µ`ν1···ν`Yν1 Yν2 · · ·Yν`

where Pµ1···µ`ν1···ν` is symmetric traceless. This implies

�X f (X ,Y ) = δD−1(X−Y )→
1

|1− cos θt + t2|D−3/2
=
∑
`

t`G
D−3

2
` (cos θ)

set α ≡ D−3
2



General dimensions

For fixed t the analytic structure of M(s,t) is

From unitarity constraint, we know the residue and discontinuity



General dimensions

This implies that N. Arkani-Hamed Y-t Huang, T-z Huang

B is the boundary term, which is bounded by causality to be < s2

Now M IR(s, t) has a polynomial representation,

M IR(s, t) =
∑
i,j

gi,j si t j

where gi,j encodes the information of the coefficients of higher dimension operators:

L =
1
2
φ�φ+ a(∂φ · ∂φ)2 → M IR(s, t) = a(s2 + st + t2)



General dimensions
This implies that N. Arkani-Hamed Y-t Huang, T-z Huang

B is the boundary term, which is bounded by causality to be < s2

We have an identity relating the coefficients of the EFT to the polynomial expansion of
the RHS with

where the vector ~vα` = (vα`,0, vα`,1, , vα`,2, · · · ) take the form

All v is positive !



General dimensions

This implies that N. Arkani-Hamed Y-t Huang, T-z Huang

B is the boundary term, which is bounded by causality to be < s2

We have an identity relating the coefficients of the EFT to the polynomial expansion of
the RHS with

We have

both c2 and v is positive



General dimensions

both c2 and v is positive.
Let’s consider the following two scenarios:

• Fixed q: higher dimension operators of generated by a lower bound in spin

g0,4 t4 + g1,4 st4 + g2,4 s2t4 + g3,4 st4 → ~g = {g0,4, g1,4, g2,4, g3,4}

~g must lie in the polytope built from points on a moment curve, just as the
1 + 1-dimension toy model!

• Fixed p + q = k : higher dimension operators of fixed mass-dimension

g4,0 s4+g3,1 s3t+g2,2 s2t2+g1,3 st3+g0,4 t4 → ~α = {g4,0, g3,1, g2,2, g1,3, g0,4}



General dimensions
• Fixed p + q = k : higher dimension operators of fixed mass-dimension

The constraint is more practically given by



General dimensions

Naively, this is complicated, since there is in principle an infinite number of vertices.
However, we show that the polytope is in fact again a cyclic polytope !

det[~vα`1
~vα`2
· · · ] > 0, for`1 > `2 > · · ·



General dimensions

Since it is a cyclic polytope, we know all facets:

For example



General dimensions

A simple example, consider string theory in flat space:



Most importantly, we’ve seen that

• Lorentz-symmetry: In the form of fixing the residue basis to be

GD
` (cos θ)

• Unitarity: In the form of residue having positive coefficients
• Locality: In the form of

1
s −ma

, or
∫

ds′
1

s − s′

Is unified to a simple geometric statement:

In the space of all possible couplings for higher-dimensional (irrelevant) operators, a
consistent theory is bounded by cyclic polytopes.



Generalizations
Spinning polytopes:

The same structure is found for when the external states are massless with spins:
photons, gauge bosons, and gravitons.

• Lorentz-symmetry: In the form of fixing the residue basis to be Wigner
d j

m′,m(θ) = 〈j,m′|e−iθJy |j,m〉, or equivalently

d j
m′,m(θ) = J (`+ 4h, 0,−4h, cos θ)

• Unitarity: In the form of residue having positive coefficients
• Locality: In the form of

1
s −ma

, or
∫

ds′
1

s − s′
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Generalizations
Remarkably, the same polytope is present for CFT four-point function! w Nima,
Shu-Heng Shao

Consider the a 1D four-point function:

〈φ(1)φ(2)φ(3)φ(4)〉 ≡ F (z)

F (z) =
∑

∆

p2
∆C∆(z), C∆(z) = z∆

2F1(∆,∆, 2∆, z)

We can again expand the four-point function, say around z = 1
2

F
(

1
2

+ y
)

=
∞∑

q=0

Fqyq

The 1-D blocks also yield an infinite set of vectors

C∆

(
1
2

+ y
)

=
∞∑

q=0

c∆,qyq

Unitarity then requires that

F =


F0
F1
...

FL−1

 ⊂∑
∆

p2
∆


c∆,0
c∆,1

...
c∆,L−1





Generalizations

Now crossing is just

z−2∆φF (z) = (1− z)−2∆φF (1−z)→ F (z) =

(
z

1− z

)2∆φ

F (1−z)

Again expanded around z = 1
2 we find

∑
q

Fqyq =

(
1 + 2y
1− 2y

)2∆φ∑
q

(−)qFqyq

This tells us that F must lie within the crossing plane X

We have the polytope P(∆i ) =
∑

i p2
∆i

c∆i and a crossing plane X(∆φ), and they must
intersect. P(∆i ) is a cylic polytope! See Nima’s talk



Generalizations

For example:



Generalizations

The allows us to “carve” out the space of consistent CFTs.

Exp, given ∆φ = 0.3, in the space of possible lowest first two operators (∆1,∆2) are
given by:



Conclusions

• It pays to (speak) and (think) in terms of physical observables !
• Unitarity ⊕ Locality ⊕ Symmetries unifies into a geometric property
• The low energy expansion of the four-point function must live in an infinite

dimension space whose boundaries are those of cyclic polytopes.
• The expansion of the four-point correlation function for CFTs, must live in an

infinite dimension space whose boundaries are those of cyclic polytopes.
• Similar structure must exists in other observables, exp: cosmological correlators?
• Utilize these constraints to bound possible BSM physics, and test various

conjecture with respect to quantum gravity (weak gravity)


