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Why is our world so boring?
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~~ why does nature appears to lack imagination ?

+ gravity

At the fundamental scale simply replicas of the same thing we only have spin 0
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The conventional answer: It is hard to construct a Lagrangian
1
L= 58“(]58“(1) + Polynomials(¢, d¢)

such that

e ltis Lorentz invariant
e [tis Local (all interactions happen at a point)
e [tis Unitary, introduction of gauge invariance, the absence of ghosts, the definite
positivity of the Hilbert space, e.t.c
So it is natural that we only have limited cases.
But

e hard is an adjective, we should be able to say no
e L is not physical !

« what are we suppose to say??



Can we discuss the constraint of Lorentz invariance and Unitary on physical
observables? Like the S-matrix
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Completely on-shell, “language” independent statements!



Why S-matrix?

-

(d(x1),d(xq), - P(xq)) + fz ; + Not gauge invariant!!

Instead, we can consider the scattering of “quantized ripple of space-time” g/”




We can impose constraints directly on the S-matrix as analytic requirements
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e Lorentz invariance:
Mu(p; - pj; €i - )
o Locality+Unitarity:

Branch cuts and singularities in (ka + kp + - - - + kc)? (Locality)
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Discontinuities and residues are products M, x Mp (Unitarity i(TT — T) =

TTh)



Exercise:

By staring at the S-matrix, can we show that it is impossible to have fundamental
particles with spins>27?



Fundamental particles means that it has a massless limit
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a, & € SL(2,C)~S0O(1,3). The momenta is invariant under
A — A, X=X
This is the SO(2)~U(1) little group that characterize the particle
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We have the Lorentz invariance building blocks [12] ~ \/p1 - p2

e Lorentz invariance

M(1™ 2% 3Ms) = [12]%[23]%[31]%, [12] = A{\jeas  €ap = ( ?

o Little group fixes the amplitude!

3
spin 1 M3(2*1,3*1,1+1) = [3[‘12]3[]12]
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Unitarity is a statement of factorisation: The residues of the pole in the four-point
S-matrix must be given by the three-point interaction

= (prp,)2
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s= (pl+g "2

e

s+t+u=0

If the product of three-point amplitudes contains poles, consistency with other channels
imposes stringent constraint!



Consider the four point amplitude A(1—¢2—¢3+£4+£), constructed from the s-channel
gluing:
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Note the present of t-poles in the denominator.
e For ¢ = 1, this implies that the amplitude must be written as

(12)2[34]?
st

e For ¢ = 2, although there is a double pole in {2, it can be viewed as the
degenerate limit for tu since u + s 4+ t = 0 in the limit s = 0.

(12)*[34]*
stu

e For ¢ > 2, one simply have too high a power of poles and one does not have a self
interacting theory in four-dimensions.

Rules out weakly coupled massless higher spin theories



Are free-theories safe?
no

In the presence of gravity one must have minimal coupling — A(1-¢2-23+24+¢),
Again from the s-channel we have:
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The factor (24)2 in the denominator implies a 1/u? pole, reflecting the exchange in u
channel as well as the graviton exchange in the t-channel. However, beyond spin-2
one has extra factors of [24] in the denominator beyond necessary for the 1/u? pole.
Thus one concludes that free massless higher-spin theory is inconsistent in the
presence of gravity.

Similarly charged ¢ > 1 massless particles cannot exist.



The fact that all particles couple to gravity, we can only have:
1
Lol
2 2
Nature does not lack imagination, it has its hands tied!
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The important lessons:

o Consequence of physical principles can be most straight forwardly extracted by
imposing or framing it on physical observables

o The space of possible theories = The space of possible physical observables «
constrained by the desired principles (unitarity, locality... e.t.c)



We are then forced to ask:

o What is this space?

e How does symmetry, locality, and unitarity manifest itself in this space?

o |s it possible that these properties are unified?

o |s there new structure that was hidden before? Ample of examples: from the
Runge-Lentz vector, to the recent dual conformal symmetry of maximal super
Yang-Mills



What is this space?

UV CFT

EFT L + 2 CiOiIrrclcvanl
i

IR CFT
<@(x) Px) Px) P(x)>

o EFT: S-matrix, coefficient of higher-dimensional (irrelevant) operators

o CFT: Four point correlation function, conformal dimension and three-point
coupling of primary operators.



EFT

In the IR the UV degrees of freedom are encoded in the higher dimensional operators.
These information are encoded in the four-point function as

a2 a3
b b i

1 4
where s = (py + p2)? t = (py + p4)?. For example:
L= %qﬁDqﬁ + a(d¢ - 8p)2 — M(s, t) = a(s? + st + 12)

The space of possible theories = The space of possible g;



A simple model

Lets consider the scattering amplitude of four-particles in 1 4+ 1-dimensions

4 <€ ° » — 3
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Irrespective of the degrees of freedom of the ultimate fundamental theory, the
scattering process at low energy can be approximated as:

oo
M(E) =go+ 1E + G2E? +--- = giE'

Question: given a set of {g;}s, is there a way to see the underlying theory is unitary ?



A simple model
Lets consider the scattering amplitude of four-particles in 1 + 1-dimensions
4 —( (o} )— 3
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Irrespective of the degrees of freedom of the ultimate fundamental theory, the
scattering process at low energy can be approximated as

MP(E) = go + g1E + g2 E% +

=> gF
i=0

In the UV, from unitarity, the function should take the form

PR

unitarity :Cz > 0
—~ E-m}

M(E) =

From this we see that the low energy amplitude must be expressible as
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A simple model
We must have

E E \?2
M’R(E):g +gE+ng2+...: La 1+7+(7) +>
R §m§ m3 m3

In other words the point G = {go, g1, 92, - }
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The space of allowed g is inside a polytope with the vertices given by Vas!



A simple model

Is this polytope special ? Yes! the vertices are given by points on a moment curve
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Cyclic polytope

From Wikipedia, the free encyclopedia

In mathematics, a cyelic polytope, denoted C(n,d), is a convex polytope formed as a convex hull of n distinct points on a rational normal curve in
R, where nis greater than d. These polytopes were studied by Constantin Carathéodory, David Gale, Theodore Motzkin, Victor Kiee, and others.
They play an important role in polyhedral combinatorics: according to the upper bound theorem, proved by Peter McMullen and Richard Stanley,
the boundary A(n.d) of the cyciic polytope C(n,d) maximizes the number f; of -dimensional faces among all simplicial spheres of dimension d— 1
with n vertices.
Contents [hide]
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Definition [edit)
The moment curve in R? is defined by

xR - RYx(t) = [4,2,..., 4470



A simple model
This geometry is also useful !

Let’s say given n vectors v, to compute the region of the polytope we need to

o Determine which one of these Vs are vertices
o Amongst the vertices, determine all the set that constitute boundary facets

The complexity is n?



A simple model

This geometry is also useful !

However, since our vectors Va are pOintS on a moment curve,
{027 (02)27 (02)37 o }7 {1467 (146)27 (146)37 o }

We know that

o All Vzs are vertices
e The boundaries are all known.



The constraint on the couplings becomes simple. Organizing the couplings into the

Hankel matrix

Then we simply have
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A simple model
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A simple model

Summary:

The statement of unitarity for 1 4+ 1-dimensional scattering is translated into the
geometric property that the coefficients of the expansion in s (center of mass energy)
lies within the convex hull of points on moment curves.

What about higher D and Lorentz symmetry?



General dimensions

What about higher D and Lorentz symmetry?

1 > 2

4

The scattering amplitude is now a function of two variables: M(s, t)

S
s=(p1+p2)°, t=(p1+ps)®=—7(1-cos0)



General dimensions

For fixed t the analytic structure of M(s,t) is

m? 2m’

Analytic + K 1
Massless poles Poles  Branch cuts

-t-2m° -t-m’ -
Ne .
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From basic unitarity constraint, we know the residue and discontinuity



General dimensions

e Lorentz invariance + Unitarity dictates

) < = As(h1, 92, hY) ~ice(pr — pa)* (1 — pa)™
) )

The residue must take the form (X = py — po, Y = p3s — ps):
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where P, ... 040, IS Symmetric traceless. This implies

1
|1 — cos 0t + t2|D—3/2

Oxf(X,Y) =61 (X=Y) >

seta = 233

v (pl - p?)wfuwzwue

b-3
= Z teGZ 2 (cos®)
¢



General dimensions

For fixed t the analytic structure of M(s,t) is

s
-t:2m” -t-m? ofeom? 2m 2
NP / —e— ALY
Analytic + K K
Massless poles Poles  Branch cuts

From unitarity constraint, we know the residue and discontinuity

t
Res,_,2M(s,t) = Z£: 2 2gGe(cosf =1+ Zm)

. t
Dis, o2 M(s,t) = Zf: CEHQEG?(CDSS =1+ 2‘”‘?) N



General dimensions

This implies that N. Arkani-Hamed Y-t Huang, T-z Huang
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B is the boundary term, which is bounded by causality to be < s2
Now M/A(s, t) has a polynomial representation,

MB(s, 1) =>"g;;s't
ij

where g; ; encodes the information of the coefficients of higher dimension operators:

£= %¢D¢ +a(0¢-99)* — MA(s,1) = a(s® + st + )



General dimensions
This implies that N. Arkani-Hamed Y-t Huang, T-z Huang
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B is the boundary term, which is bounded by causality to be < s?

We have an identity relating the coefficients of the EFT to the polynomial expansion of
the RHS with

£
T(l+c) = Zuﬁlzl
=0

o — el o1 el
where the vector V¥ = (VLO, Vit veyz,m)take the form

111111 1 1
01361015 21 28
003%%%105189
000 5 % 70 210 525
0000 0 § A
0000 0 0 2t 300

000 0 %

000

All v is positive !



General dimensions

This implies that N. Arkani-Hamed Y-t Huang, T-z Huang
2 (o t
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B is the boundary term, which is bounded by causality to be < s2

We have an identity relating the coefficients of the EFT to the polynomial expansion of
the RHS with

£
Gi1+2) =Y vfiat
i=0

We have
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both ¢? and v is positive



General dimensions

2
a My

1 o sP 2t \¢
-¥ (5 E mg) G5 (1+2/m2) = T e LZ; s (7) ]
both ¢? and v is positive.
Let’s consider the following two scenarios:
o Fixed g: higher dimension operators of generated by a lower bound in spin
Goat' + 9148t + 04 Pt +gsast’ — G={004,91.4,924,054}

g must lie in the polytope built from points on a moment curve, just as the
1 4+ 1-dimension toy model!

e Fixed p + g = k: higher dimension operators of fixed mass-dimension

0405 +031 S t+Go 2 PP +g1 3P +goatt — & =1{040,031,022,013, 9o}



General dimensions
e Fixed p + g = k: higher dimension operators of fixed mass-dimension

_— 2
o= E culz,
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The constraint is more practically given by

a@-W;>0,Vi




General dimensions

a-W;>0,Vi

Naively, this is complicated, since there is in principle an infinite number of vertices.
However, we show that the polytope is in fact again a cyclic polytope !

111111 1 1
01361015 21 28

00§18 45 105 105 189
000 § % 70 210 525
0000 'iBS 1é7 15875 5775
0000 0 § &3 200
231 3003

0000 0 0 2 %0
000 0 ¥

000

det[VZVZ’;---] >0, forlqy >/l >---



General dimensions

@ W;>0,Vi

Since it is a cyclic polytope, we know all facets:
keeven, (@, itl---4,j4+1)>0, kecodd, {(d,0,4i+1---)>0,

For example

3 3 27
(@01) > 0~ ap > 0, (512)>0—>§—%+2a2>0, (a28) >0 7" — 621 + 303> 0

375
(@34) > 0~ 60 — 15 + doy > 0, (45 > 0 — "~ — 30 + 5y > 0. (4.21)



General dimensions

A simple example, consider string theory in flat space:

—_ — 4
%:---+%(52+%+x2)+0(03)




Most importantly, we've seen that

e Lorentz-symmetry: In the form of fixing the residue basis to be
GP(cos 0)

o Unitarity: In the form of residue having positive coefficients
e Locality: In the form of
1 1
—, or / ds’
S—my s—¢g

Is unified to a simple geometric statement:

In the space of all possible couplings for higher-dimensional (irrelevant) operators, a
consistent theory is bounded by cyclic polytopes.



Generalizations
Spinning polytopes:

The same structure is found for when the external states are massless with spins:
photons, gauge bosons, and gravitons.
e Lorentz-symmetry: In the form of fixing the residue basis to be Wigner
/‘ T —ie . .
dy m(0) = (G, m'|e”! Jy|j, m), or equivalently
g —
dm,’m(ﬁ) = J(£+4h,0,—4h, cos0)

o Unitarity: In the form of residue having positive coefficients
o Locality: In the form of

1
, or/ds' !
S—may s—g




Generalizations
Remarkably, the same polytope is present for CFT four-point function! w Nima,
Shu-Heng Shao

Consider the a 1D four-point function:
((1)9(2)¢(3)6(4)) = F(2)
F(z) =) PACa(2), Ca(2)=2"2Fi(A,A,24,2)
A

We can again expand the four-point function, say around z = %
1 o0
Fl= = Fqy?
(2 + }’) Z qy
q=0
The 1-D blocks also yield an infinite set of vectors

CA( ) ZCAqu

Unitarity then requires that
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Generalizations

Now crossing is just

27 2oF(z2) = (1—2) 224 F(1—z) - F(z) = (1 iz>2A¢ F(1-2)

Again expanded around z = % we find

142y 280
F,yd = _)aF, 9
Eq ay (1_2y) > (—)Fay

q

This tells us that F must lie within the crossing plane X

We have the polytope P(A;) = Z,pZAicA,. and a crossing plane X(Ay), and they must
intersect. P(A;) is a cylic polytope! See Nima’s talk



For example:

£y=0,
8,225,

Generalizations

By=0, Ag=2,
8,225, Ay=3.1
Ag=05
E
Ca,
B6=0, A=2,
8225, Ay=3A
£4=0.34
s, /F
D



Generalizations

The allows us to “carve” out the space of consistent CFTs.

Exp, given A4 = 0.3, in the space of possible lowest first two operators (A1, Ap) are
given by:

12F
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Conclusions

It pays to (speak) and (think) in terms of physical observables !
Unitarity @ Locality & Symmetries unifies into a geometric property

The low energy expansion of the four-point function must live in an infinite
dimension space whose boundaries are those of cyclic polytopes.

The expansion of the four-point correlation function for CFTs, must live in an
infinite dimension space whose boundaries are those of cyclic polytopes.

Similar structure must exists in other observables, exp: cosmological correlators?

Utilize these constraints to bound possible BSM physics, and test various
conjecture with respect to quantum gravity (weak gravity)



