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Scattering amplitude is one of most important concepts in QFT.
It is the bridge connecting experiment data and theoretical
prediction
Its various properties contain also many important
information about the theory, such as Lorentz symmetry,
local interaction, unitarity etc.
Recent study shows that scattering amplitude contains
many interesting mathematical structures. In other words,
scattering amplitudes provides another field where physics
and mathematics are tightly connected.
In this talk, we will use one of frameworks for on-shell
amplitudes, i.e., the CHY-frame to discuss a relation
between physics and mathematics structure
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In 2013, new formula for tree amplitudes of massless theories
has been proposed by Cachazo, He and Yuan:

An =

∫ (∏n
i=1 dzi

)
dω

Ω(E) I,

[ Freddy Cachazo, Song He, Ellis Ye Yuan , 2013, 2014]
In this frame:

Each particle is represented by a puncture in Riemann
sphere
The expression holds for general D-dimension
The box part is universal for all theories
The CHY-integrand I determines the particular theory
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For the universal part,

Ω(E) ≡
′∏
a

δ (Ea) = zijzjkzki
∏

a 6=i,j,k

δ (Ea)

provides the constraints:

Scattering equations are defined

Ea ≡
∑
b 6=a

2ka · kb

za − zb
= 0, a = 1,2, ...,n

Only (n − 3) of them are independent by SL(2,C)
symmetry∑

a

Ea = 0,
∑

a

Eaza = 0,
∑

a

Eaz2
a = 0,
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Universal part: (n − 3) integrations with (n − 3) delta-functions,
so the integration becomes the sum over all solutions of
scattering equations ∑

z∈Sol

1
det′(Φ)

I(z)

where det′(Φ) is the Jacobi coming from solving Ea

Φab =
∂Ea

∂zb
=

{ sab
z2

ab
a 6= b

−
∑

c 6=a
sac
z2

ac
a = b

,
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In CHY-frame, different theories are defined by different
CHY-integrand:

For almost all theories, the integrand is given by
factorization form, i.e.,

I = IL × IR

where each one at the right hand side has weight two.
Let us define the closed cycle

(a1a2...an) = (za1 − za2)(za2 − za3)...(zan−1 − zan )(zan − za1)

then the color ordered Parker-Taylor factor is defined as

C(α) = PT(α) =
1

(α(1)...α(n))

which has the weight two.
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The Bi-Adjoint scalar theory is defined as

I = PT(α)PT(β)

It is the simplest theory in CHY frame.
It is also the basis for all other theories, since it provides
the skeleton of Feynman diagrams. Any other theories, can
be written as the linear combination of bi-adjoint scalars.
For this simple case, there are two ways to read out
analytic expression straightforward. So this theory is well
understood.
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First Method: Effective Feynman diagram
[Cachazo, He, Yuan , 2013 ]
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Second Method: Integration rule
[Baadsgaard, Bjerrum-Bohr, Bourjaily and Damgaard, 2015 ]

First there is a criteria for the appearance of pole
sA = (

∑
i∈A ki)

2 for a subset A ⊂ {1,2, ...,n}, i.e., the index

χ(A) := L[A]− 2(|A| − 1)

L[A] be the number ( more accurately it is the difference of
number between solid and dashed lines) of lines
connecting these nodes inside A and |A| is the number of
nodes.
It has nonzero contribution when and only when χ(A) ≥ 0
and the pole will be

1

sχ(A)+1
A
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The Reconstruction of cubic Feynman diagrams:

Find all subsets A with χ(A) ≥ 0
compatible condition for two subsets A1,A2: they are
compatible if one subset is completely contained inside
another subset or the intersection of two subsets is empty.
Find all maximum compatible combinations, i.e., the
combination of subsets with largest number such that each
pair in the combination is compatible. For each maximum
combination with m subsets, it gives nonzero contribution
when and only when m = n − 3.
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Each combination giving nonzero contribution will
correspond a (generalized) Feynman diagram with only
cubic vertexes
Now the key is how to read out expressions of Feynman
diagrams?
For simple pole, the rule is nothing, but the scalar
propagator 1

sA
!
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Example of 6-point

1

2 3

4

56

{ 1, 2} , { 2, 3} , { 4, 5} , { 1, 2, 3}

2

3

5 4

6

1

5 4

6

1 32

{ 1, 2} + { 4, 5} + { 1, 2, 3} { 2, 3} + { 4, 5} + { 1, 2, 3}

1
s12s123s45

1
s23s123s45
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Above algorithm works well for m[α|β] with two PT -factors
[ Freddy Cachazo, Song He, Ellis Ye Yuan , 2013]

Example 1
(12345)(13245) with (a1...am) = za1a2 ...zama1

1

2

3

45

1
2

34

5

12

3 4 5

1

2

3

4 51

2

3

4

5

1
s23s45

1
s23s51
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Given two PT-factors, it is very natural to related them to a
permutation. Thus we wonder if we can understand all results
in Bi-Adjoint scalar theory from this new point of view. This is
our main motivation for such investigation!
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II: The Set-up
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First by relabeling, we can always set one of PT-factors to
the standard ordering, i.e.,

PT(α) ≡ 〈12....n〉

The second PT-factor can be arbitrary list among n!.
However, since PT-factor is defined up to cyclic
permutation and order reversing, so only n!/(2n) are really
different theories.
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Thus each pair of PT(α),PT(β) has defined (2n) permutations:(
1 2 3 4
1 2 4 3

)
= (1)(2)(34),

(
1 2 3 4
2 4 3 1

)
= (124)(3)(

1 2 3 4
4 3 1 2

)
= (1423),

(
1 2 3 4
3 1 2 4

)
= (132)(4)(

1 2 3 4
3 4 2 1

)
= (1324),

(
1 2 3 4
4 2 1 3

)
= (143)(2)(

1 2 3 4
2 1 3 4

)
= (12)(3)(4),

(
1 2 3 4
1 3 4 2

)
= (1)(234)(1)
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These 2n permutations can also be generated as following:

Define the cyclic generator gc

gc = (β1β2 · · ·βn)

Define the reversing generator gr

gr =

{
(β1βn)(β2βn−1) · · · (β n

2
β n+2

2
) for even n

(β1βn)(β2βn−1) · · · (β n−1
2
β n+3

2
)(β n+1

2
) for odd n

gc ,gr generate the Dihedral group D2n.
For a permutation β, the equivalent class is thus given by,

b[β] =
{
β , β gc , . . . , β gn−1

c ,

β gr , β gr gc , . . . , β gr gn−1
c

}
.

Bo Feng Permutation in Bi-Adjoint Scalar



Next we classify the cycle representation of a permutation by
defining the good cycle representations as those satisfying the
following criteria:

the cycles in the considered cycle representation can be
separated into at least two parts, while the union of cycles
in each part is consecutive (later called planar separation).
in case that the cycle representation can only be separated
into two parts, then each part should contain at least two
elements.
Some examples:

Good : (1)(2)(38)(4)(56)(7) , (132)(4875)(6)

Good : (15274)(3)(68) , (176423)(58) , (1764235)(5) ,
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Moreover, for good cycle representation, we can further
classified to following two types:

If it contains at least three parts, we call it a vertex type
(V-type) cycle representation. For example

(12)I(34)I(56)

If it contains only two cyclic parts, we call it a pole type
(P-type) cycle representation. For example

(12)I(35)(46)

Such a separation is called planar separation
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III: First Main Result
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Our first main result is the one-to-one mapping between the
effective Feynman diagram and the cycle representation of
permutations:

At one side, each V-type cycle representation contain the
vertex structure of the corresponding effective Feynman
diagram. Thus combining them together, we can draw the
effective Feynman diagram immediately just like the first
method.
At another side, given an effective Feynman diagram, we
can construct the corresponding permutation class.
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From permutation to Feynman diagram: consider the example
PT(β) = 〈12846573〉.

Good V-type cycle representations:

(1)(2)(38)(4)(56)(7) , (12)(3)(47)(5)(6)(8)

Drawing the planar separations. For (1)(2)(38)(4)(56)(7)
allows two different planar separations,

4 parts V1 : (1)(2)(38)I(4)I(56)I(7) ,

3 parts V2 : (1)I(2)I(38)(4)(56)(7) .

Similarly, the (12)(3)(47)(5)(6)(8) gives

4 parts V3 : (12)I(3)I(47)(5)(6)I(8) ,

3 parts V4 : (8)(12)(3)(47)I(5)I(6) , .
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Combining four vertex structures, we get a single effective
Feynman diagram, with the analytic result is

1
s12s56s8123

(
1

s812
+

1
s123

)(
1

s456
+

1
s567

)
.

1

2 3 4 5

678

V1V2 V3 V4
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A trivial consequence for cases with zero contributions:

There is no good V-type cycle representation.
It has some good V-type cycle representations, but it does
not satisfy the following necessary condition for existing
the valid effective Feynman diagrams is

n∑
m=3

(m − 2)vm = n − 2 .

where we use vm to denote the number of m-point vertices
For example, 〈124635〉 has only one V-type
V3 = (1)I(2)I(3465)
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From the diagram to permutation:

There is one direct method to read out PT(β) by the
zig-zag path: The left gives PT(β) = 〈1267354〉 while the
right gives PT(β) = 〈12354〉

1

2

3 4

5

6

7
1

1

2

2

3

3

4

4

5

5

1

2

3
4

5

(a) (b)
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Cycle representation by recursive construction. Let us focus on
a given vertex in Feynman diagram, then there are two cycle
representations:

Planar ordered cycle representation: If a vertex is
connected by k legs, we have cycle structure

VP = (VO;P1)(VO;P2)...(VO;Pk )

where each part is given by order reversed cycle
representation.
Order reversed cycle representation of a given leg: Taking
a leg, for example, Pk , then the cycle representation is
given by multiplication of following two group elements

VO;Pk = [(VP1)(VP2)...(VPk−1)].[gr ]

where gr is defined as before.
Now we can see the recursive construction between these
two types of cycle representations.
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First let us construct the VO by following steps:
Start from vertexes with only one propagator. For our
example, we have V2,V4, thus we have

V2;O,P12 = [(1)(2)].[(12)] = (12),

V4;O,P56 = [(5)(6)].[(56)] = (56),

Then we consider the vertex with two propagators. Now
we have the choice to do, i.e., which propagator has been
selected to do the ordering reversing. For V3, selecting the
P8123 is simpler, and we have

V3;O,P8123 = [(8)(12)(3)].[(38)(12)] = (38)(1)(2)

Similarly,

V1;O,P4567 = [(4)(56)(7)].[(47)(56)] = (47)(5)(6)
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Having above result, we can calculate

V3;O,P12 = [(3)(47)(5)(6)(8)].[(38)(47)(56)] = (38)(4)(7)(56)

V1;O,P56 = [(7)(38)(1)(2)(4)].[(47)(38)(12)] = (47)(12)(3)(8)

Having all pieces, we can read the final cycle
representations:

V1 : (4)(7)(56)(38)(1)(2)

V2 : (1)(2)(38)(4)(7)(56)

V3 : (8)(12)(3)(47)(5)(6)

V4 : (5)(6)(47)(12)(3)(8)

We see that V3 = V4 and V1 = V2 are two V-type cycle
representations we have found.
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IV: Second Main Result
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Our second main result is the relation among different pairs of
PT-factors: contributions from one theory is contained in
another theory. This "mother-daughter" relation is studied by
two methods:

Method One: order reversing acting on sub cycle
representation
Method Two: Multiplying the cross ratio factor
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For the bi-adjoint theory, its result can be expressed by a
geometric object "associahedron" with dimension (n − 3)

[ Arkani-Hamed, Bai, He, Yan, 2017]
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Method Two: Thus we see the relation is given by fixing or
relaxing a given propagator. Now we see how to achieve this
from cycle-representation:

For good cycle-representation, we have

β = βlowerβupper

Notice that, the separation into two parts corresponding to
pick up a pole.
Taking either part, do the ordering reversing for this part,
for example

βreversed
upper = βupperβr

Combing with untouched part, we get a new theory with
the good cycle-representation.
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There are two situations:

If the pole is common for all contributions, we will get the
mother of original theory.
If the pole is not the common pole for all contributions, we
will get the daughter of original theory, i.e., picking up only
terms with this given pole.
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Further remarks:

First, not matter with good cycle-representation (having
this pole) one pick, and which part (lower or upper) you do
the order reversing, we will always get the same theory, but
possible different good cycle representations.
Secondly, the number of daughter and mothers can be
read out from how many non-common or common poles
from a given theory.
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Example:

PT(β) = 〈12846573〉

=⇒ 1
s12s56s8123

(
1

s812
+

1
s123

)(
1

s456
+

1
s567

)
.

For daughter with the pole s123:
First fine the cycle representations (12)(3)(47)(5)(6)(8)
and (132)(4875)(6) contain the pole.
Secondly we do the manipulation

(12)(3)(47)(5)(6)(8) =⇒{
[(12)(3)] · [(13)(2)](47)(5)(6)(8) = (132)(47)(5)(6)(8)

(12)(3)[(47)(5)(6)(8)] · [(48)(57)(6)] = (12)(3)(4875)(6)
,

(132)(4875)(6) =⇒{
(132)] · [(13)(2)](4875)(6) = (12)(3)(4875)(6)

(132)[(4875)(6)] · [(48)(57)(6)] = (132)(47)(5)(6)(8)
.
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Both results correspond to the PT-factor
PT(βββ) = 〈12756483〉, which is evaluated to,

1
s12s56s8123

(
1

s123

)(
1

s456
+

1
s567

)
.
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Finding the mother with pole s12:

First, there are two cycle representations
(1)(2)(38)(4)(56)(7) and (12)(3)(47)(5)(6)(8) with the
pole
Do similar thing

(1)(2)(38)(4)(56)(7) =⇒{
[(1)(2)] · [(12)](38)(4)(56)(7) = (12)(38)(4)(56)(7)
(1)(2)[(38)(4)(56)(7)] · [(38)(47)(56)] = (1)(2)(3)(47)(5)(6)(8)

,

(12)(3)(47)(5)(6)(8) =⇒{
[(12)] · [(12)](3)(47)(5)(6)(8) = (1)(2)(3)(47)(5)(6)(8)
(12)[(3)(47)(5)(6)(8)] · [(38)(47)(56)] = (12)(38)(4)(56)(7)

,

All gives PT(βββ) = 〈12375648〉
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Method Three: Using the cross ratio selecting factor

f select[a,b, c,d ] :=
[ab][cd ]

[ac][bd ]
, [ab] := σab .

To find the daughter theory:
First, both PT-factor must contain the sequence of pole, for
example, for pole s2345, following sequences are right:
(2435), (2345), (3542)....
Using f select[a,b, c,d ] multiply either PT-factor, we get the
daughter, where a,b, c,d are the letter in the sequence

...,a, {pole}, d, ..., {pole} = b, ..., c

To find the mother theory, we do similar thing.
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V: Final Remarks
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Symmetric discussion:
For bi-adjoint theory, there are two PT-factors. Thus
permutation group Sn acting on them natrually.
If Sn acts on both PT-factors same time, we will get same
theory. Using this symmetry, we can fix one PT-factor to be
the standard ordering 〈12...n〉.
For the standard ordering, there is an invariant subgroup,
dihedral D2n generated by cyclic Zn and ordering reversing
Z2. Such D2n acts on another PT-factor, will related
different theories. Such action generates various orbits.
Thus we can category different theories by these orbits.
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Bi-adjoint theories are the basis for all other theories in
CHY frame. Thus it is naturally to ask if there is similar
symmetric understanding for them?
Results given in this talk are observed from various
examples. Why it is true and what is the deep relation are
very interesting problems to investigate.
Bi-adjoint theories are related to associahedron. Thus the
symmetric action should be applicable from this point of
view.
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Thanks for your attention !!!
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