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QFT: the underlying theory of  modern physics

How to solve QFT:

• Nonperturbatively (e.g. lattice field theory): 

discretize spacetime, numerical simulation 

complicated, application limited

• Perturbatively (small coupling constant): 

generate and calculate Feynman amplitudes, 

relatively simpler, the primary method
Super computer

• Solving QFT is important for testing  the SM and discovering NP

Quantum field theory
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Perturbative QFT

1. Generate Feynman amplitudes
• Feynman diagrams and Feynman rules

• New developments: unitarity, recurrence relation 

2. Calculate Feynman loop integrals

3. Calculate phase-space integrals
• Monte Carlo simulation with IR subtractions

• Relating to loop integrals

见张扬、黄日俊、靳庆军报告

见刘晓辉报告
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Theorem:

The key to apply pQFT

• 𝑞𝛼: linear combination of  loop momenta and external momenta

• Taking 𝜂 → 0+ before taking 𝐷 → 4

Feynman loop integrals

Smirnov, Petukhov, 1004.4199

For a given set of  propagators, Feynman integrals form a 

finite-dimensional linear space
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One-loop calculation: (up to 4 legs) satisfactory 

approaches existed as early as 1970s

About 40 years later, a satisfactory method 

for multi-loop calculation is still missing

’t Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)

Multi-loop: a challenge for intelligence

Developments of  unitarity-based method in the past decade made the 

calculation efficient for multi-leg problems 

Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237
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Main strategy

• Differential equations (depends on reduction and BCs)

• Difference equations (depends on reduction and BCs)

• Sector decomposition (extremely time-consuming)

• Mellin-Barnes representation (nonplanar, time)

1) Reduce loop integrals to basis (Master Integrals )                          

• Integration-by-parts (IBP) reduction: 

the only way (before our method), main bottleneck

extremely time consuming for multi-scale problems

unitarity-based reduction is efficient but cannot give complete reduction

Binoth, Heinrich, 0004013

Usyukina (1975)

Smirnov, 9905323

Kotikov, PLB (1991)

Chetyrkin, Tkachov, NPB (1981)

Laporta, 0102033

2) Calculate MIs/original integrals

Laporta, 0102033
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IBP redution

A result of  dimensional regularization

• Linear equations:

Smirnov, Petukhov, 1004.4199

For each problem, the number of  MIs is FINITE

• Feynman integrals form a finite dimensional linear space

• Reduce thousands of  loop integrals to much less MIs

• 𝑀𝑖 scalar integrals, 𝑄𝑖 polynomials in 𝐷,  𝑠, 𝜂

Chetyrkin, Tkachov, NPB (1981)
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Difficulty of IBP reduction

Solve IBP equations

• Very large scale of  linear equations (can be billions of)

• Coupled, it is hard to solve

• Hard to do analytic Gaussian elimination for many variables 𝐷,  𝑠, 𝜂

• Too slow if  solving it numerically for each phase space point

Cutting-edge problems

• Hundreds GB RAM

• Months of  runtime using super computer  

Laporta’s algorithm (2000)
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Unitarity Cuts

 Integrand-level reduction

Physical singularities Coefficients

Needs further IBP reduction at multi-loop level!
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Unitarity Cuts

History
• 1994 Z. Bern, L. Dixon, D. Dunbar, D. Kosower

“One-loop n-point gauge theory amplitudes, unitarity and collinear limits”

• 2005 R. Britto, F. Cachazo, B. Feng

“Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills”

• 2007 G. Ossola, C. Papadopoulos, R. Pittan

“Reducing full one-loop amplitudes to scalar integrals at the integrand level”

• 2008 G. Ossola, C. Papadopoulos, R. Pittan -> CutTools

“CutTools: a program implementing the OPP reduction method to compute one-loop 

amplitudes”

• 2011 P. Mastrolia, G. Ossola

“On the integrand-reduction method for two-loop scattering amplitudes”

• 2012 Y. Zhang

“Integrand-level reduction of loop amplitudes by computational algebraic geometry 

methods”

• 2017 J. Bosma, M. Sogaard, Y. Zhang

“Maximal cuts in arbitrary dimension”
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Sector Decomposition

Feynman parametric representation

Spanning 1-tree, sub UV 

divergences

Spanning 2-tree, IR 

divergences

See e.g. Heinrich (2008) 

where
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Sector Decomposition

Sector decomposition: basic example
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Sector Decomposition

Apply to Calculation of  Feynman Integrals

• Generate primary sectors

• Generate subsectors iteratively

• Take epsilon expansion

• Evaluate the finite integrals numerically

Binoth, Heinrich (2000), …
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Sector Decomposition

History

• 1966 K. Hepp (BPHZ)

“Proof of the Bogoliubov-Parasiuk Theorem on Renormalization”

• 2000 T. Binoth, G. Heinrich

“An automatized algorithm to compute infrared divergent multi-loop integrals”

• 2008 A. Smirnov, M.N. Tentyukov, et.al -> FIESTA

“Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA)”

• 2010 J. Carter, G. Heinrich, et.al -> SecDec

“SecDec: A general program for sector decomposition”

• 2017 S. Borowka, G. Heinrich, et.al -> pySecDec

“pySecDec: a toolbox for the numerical evaluation of multi-scale integrals”
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Mellin-Barnes Representation

Basic Relation

Rules:

Poles of  Γ(⋯+ 𝑧) are to the left 

of  the contour.

Poles of  Γ(⋯− 𝑧) are to the right 

of  the contour.
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Mellin-Barnes Representation

Apply to massive propagator

There is a UV divergence. We need to resolve the singularity.

The contour is pinched.
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Mellin-Barnes Representation

Practical procedure

• Obtain MB representation

• Resolve epsilon singularities

• Perform epsilon expansion

• Evaluate the finite integrals numerically

Strategy A: MBresolve.m

Strategy B: MB.m

Deform the integration contours.

Fix the integration contours and tends 𝜖 to 0.

M. Czakon (2005)

A. Smirnov, V. Smirnov (2009)
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Mellin-Barnes Representation

History
• 1975 N. Usyukina

“On a representation for the three-point function”

• 1999 V. Smirnov

“Analytical result for dimensionally regularized massless on-shell double box”

• 2005 M. Czakon-> MB.m

“Automatized analytic continuation of Mellin-Barnes integrals”

• 2007 J. Gluza, K. Kajda, T. Riemann -> AMBRE.m

“AMBRE – a Mathematica package for the construction of Mellin-Barnes 

representations for Feynman integals”

• 2009 A. Smirnov, V. Smirnov, et.al -> MBresolve.m

“On the resolution of singularities of multiple Mellin-Barnes integrals”

• 2014 J. Blumlein, I. Dubovyk, et.al

“Non-planar Feynman integals, Mellin-Barnes representations, multiple sums”

• 2015 M. Ochman, T. Riemann -> MBsums.m

“Mbsums – a Mathematica package for the representation of Mellin-Barnes 

integrals by multiple sums”
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Differential Equation Method

Differential Equation + Boundary Condition
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Differential Equation Method

Step1: Set up the differential equation

Step3: Solve the differential equation

Step2: Calculate boundary condition

• Differentiate w.r.t. invariants, such as 𝑚2, 𝑝2

• IBP relations 

• Calculate integrals at special value of 𝑚2, 𝑝2

• General method?

• Canonical form (special cases)

• Numerical

Henn 2013

Kotikov, 1991
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Differential Equation Method

History
• 1991 A. Kotikov

“Differential equations method: the calculation of N point Feynman diagrams”

• 1991 A. Kotikov

“Differential equations method: new technique for massive Feynman diagrams 

calculation”

• 1997 E. Remiddi

“Differential equations for Feynman graph ampltides”

• 2000 T. Gehrmann, E. Remiddi

“Differential equations for two-loop four-point functions”

• 2013 J. Henn -> Canonical form

“Multiloop integrals in dimensional regularization made simple”

• 2014 R. Lee

“Reducing differential equations for multiloop master integrals”

• 2017 L. Adams, E. Chaubey, S. Weinzierl

“Simplifying differential equations for multiscale Feynman integrals beyond multiple 

polylogarithms”
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Difficulty of MIs calculation

Analytical: Higgs → 3 partons (Euclidean Region)
R. Bonciani, et.al 2016 

200MB, 10 min

 Numerical: Quarkonium decay at NNLO

105 CPU core-hour

Feng, Jia, Sang, 1707.05758 
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Recent developments

 Improvements for IBP reduction

 Improvements for evaluating scalar integrals

• Finite field method

• Direct solution

• Syzygies method

• Obtain one coefficient at each step

• Expansion of  small parameters 

• Intersection Numbers

• Quasi-Monte Carlo method

• Finite basis

• Uniform-transcendental basis

• Loop-tree duality

Boels, Huber, Yang, 1705.03444

Manteuffel, Schabinger, 1406.4513 

Böhm, Georgoudis, Larsen, Schönemann, Zhang, 1805.01873

Kosower, 1804.00131

Chawdhry, Lim, Mitov, 1805.09182

Manteuffel, Panzer, Schabinger, 1510.06758

Li, Wang, Yan, Zhao, 1508.02512 

Xu, Yang, 1810.12002; Mishima, 1812.04373

Frellesvig, et. al., 1901.11510

Capatti, Hirschi, Kermanschah, Ruijl, 1906.06138
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State-of-the-art computation

2→2 process with massive particles at two-

loop order: almost done

Very time-consuming

𝑔 + 𝑔 → 𝑡 +  𝑡, 𝑔 + 𝑔 → 𝐻 + 𝐻(𝑔)

• Two-loop 𝑔 + 𝑔 → 𝐻 + 𝐻 (𝑔): complete IBP reduction cannot be achieved  

within tolerable time 

• Two-loop decay 𝑄 +  𝑄 → 𝑔 + 𝑔, MIs cost 𝑂(105) CPU core-hour

New ideas are badly needed

Feng, Jia, Sang, 1707.05758 

Borowka et. al., 1604.06447

Jones, Kerner, Luisoni, 1802.00349

Current frontier: 2→3 processes at two loop

5-gluon scattering may be feasible; hard for massive particles
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Reducing/evaluating FIs analytically may not be 

possible for sufficiently complicated problems

MY philosophy

A general solution for FIs calculation, if  exists, 

should be a numerical method

Only numerical numbers are needed to compare with experimental data



27/47

1. Systematic: can be applied to any problem 

2. Efficient: the amount of  computation is linearly dependent on the 

number of  FIs and the number of  effective digits, and it is insensitive

to the number of  mass scales involved

3. “Analytical”: knows all singularities, and can calculate coefficients of  

asymptotic expansion at any given singular point

Evaluation of FIs

Sufficient conditions for a good solution:

This talk:  A method may satisfy these conditions
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Modify Feynman loop integral by keeping 

finite 𝜂

• Take it as an analytical function of  𝜂

• Physical result is defined by

Modified FIs
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Expansion of  propagators around 𝜂 = ∞

• Analytical results are known up to 3-loop

• Numerical results are known up to 5-loop 

Vacuum MIs with equal internal masses

Expansion at infinity

• Only one region in the method of  region: 𝑙𝜇 ∼ 𝜂 1/2

• No external momenta in denominator, vacuum integrals

• Simple enough to deal with 

Schroder, Vuorinen, 0503209

Luthe, PhD thesis (2015)

Luthe, Maier, Marquard, Ychroder, 1701.07068

Davydychev,Tausk, NPB(1993) 

Broadhurst, 9803091

Kniehl, Pikelner, Veretin, 1705.05136
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Example

Sunrise integral
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Asymptotic expansion

A new representation

• 𝐼𝐿,𝑘
bub(𝐷): 𝑘-th master vacuum integral at 𝐿-loop order

• 𝐶𝑘
𝜇0…𝜇𝑟 𝐷 : rational functions of  𝐷

• Uniqueness theorem of  analytical functions: physical FI is uniquely 

determined by this asymptotic series via analytical continuation

• A new series representation of  FIs

• All FIs (therefore scattering amplitudes) are determined by equal-mass 

vacuum integrals

A new representation
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• Asymptotic expansion of  FIs at 𝐷 → ∞

• According our test: calculation of  the series is expensive

• Try hard to see if  it is possible to improve the speed

Quantities present in all Feynman integrals:

Remarks: series representations

• Space-time dimension 𝐷 → 4 and Feynman prescription 𝜂 → 0+

Baikov’s series representation:

• Asymptotic expansion of  FIs at 𝜂 → ∞

• Calculation is cheaper, due to all coefficients are polynomials 

Our series representation:

Baikov 0507053
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What is reduction

Relations among 𝐺 ≡ {𝑀1, 𝑀2, … ,𝑀𝑛}

Reduction

• 𝑄𝑖(𝐷,  𝑠, 𝜂): homogeneous polynomials of   𝑠, 𝜂 of  degree 𝑑𝑖

• Find relations between loop integrals

• Use them to express all loop integrals as linear combinations of  MIs

Constraints from mass dimension

• Only 1 degree of  freedom in {𝑑𝑖}, chosen as 𝑑max ≡ Max {𝑑𝑖}
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Find relations

Decomposition of  𝑄𝑖(𝐷,  𝑠, 𝜂)

Linear equations: 

Relations among 𝐺 ≡ {𝑀1, 𝑀2, … ,𝑀𝑛} with fixed 𝑑max

are fully determined

• With enough constraints ⇒ 𝑄𝑖
𝜆0…𝜆𝑟(𝐷)

• With finite field technique, only integers in a finite field are involved, 

equations can be efficiently solved

⇒
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Reduction

With 𝐺 = 𝐺1 ∪ 𝐺2, satisfy

• 𝐺1 is more complicated than 𝐺2

• 𝐺1can be reduced to 𝐺2

Algorithm

1. Set 𝑑max = 0

2. Find out all reduction relations among 𝐺 with fixed 𝑑max

3. If  obtained relations are enough to determine 𝐺1 by 𝐺2, stop; 

else, 𝑑max = 𝑑max + 1 and go to step 2

Search for simplest relations

Conditions for 𝐺1 and 𝐺2

1. Relations among 𝐺1and 𝐺2 are not too complicated: easy to find

2. #𝐺1 is not too large: numerically diagonalize relations easily



38/47

Reduction scheme with only dots

FIs:  𝜈 = 𝜈1, … , 𝜈𝑁 , 𝜈𝑖 ≥ 0

• 𝟎± ≡ 𝐈𝐝𝐞𝐧𝐭𝐢𝐭𝐲, 𝐦± ≡ 𝐦− 𝟏 ±𝟏±

• 𝟏+ 5,1,0,3 = { 6,1,0,3 , 5,2,0,3 , (5,1,0,4)}

• 𝟏− 5,1,0,3 = { 4,1,0,3 , 5,0,0,3 , (5,1,0,2)}

1-loop: 𝐺1 = 𝟏+  𝜈, 𝐺2 = 𝟏−𝟏+  𝜈 Duplancic and Nizic, 0303184

Multi-loop:

𝐺1 = 𝐦+  𝜈, 𝐺2 = {𝟏−𝐦+, 𝟏−(𝐦 − 𝟏)+, … , 𝟏−𝟏+}  𝜈

• 𝑚 = 2,3 in examples, #𝐺1 is not too large, include dozens of  integrals

• Relations among 𝐺1and 𝐺2 are not too complicated, see examples

A step-by-step reduction is realized!
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2-loop 𝑔 + 𝑔 → 𝐻 +𝐻 and 𝑔 + 𝑔 → 𝑔 + 𝑔 + 𝑔

Examples

• Relations can be obtained by a single-core laptop in a few hours

• Diagonalizing at each phase space point (floating number): 0.01 second

• Results checked numerically by FIRE 

Difficulty:

• More legs > less legs

• Nonplanar > Planar 

• 𝐦+  𝑒 > 𝐦+  𝜈
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Reduction of numerators

Method similar to the reduction of  

denominators, work in progress   

Use 𝜂 expansion to directly reduce amplitudes
Wang, Li, Basat, 1901.09390
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Set up and solve DEs of  MIs

Singularity structure

Solve it numerically: a well-studied 

mathematic problem

Step1: Asymptotic expansion at 𝜂 = ∞
Step2: Taylor expansion at analytical points

Step3: Asymptotic expansion at 𝜂 = 0

with known  𝐼(𝐷;∞)

Analytical continuation
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• 168 master integrals

• Traditional method sector decomposition: 𝑂(104) CPU core-hour

• Our method: a few minutes

2-loop non-planar sector for Q +  Q → 𝑔 + 𝑔

Example

Feng, Jia, Sang, 1707.05758 

MIs can be thought as special functions, and DEs 

tell us  how to evaluate these special functions
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Practical use

Use 𝜂 expansion to determine MIs
Zhang, Wang, Liu, Ma, Meng, Chao, 1810.07656

• Use 𝜂 expansion at 𝑧 =
1

4
,
3

4
to obtain 200-digit precision

• Combine 𝜂 expansion and numerical Des w.r.t. kinematic variables
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 A new (series) representation: Feynman integrals are 

fully determined by vacuum integrals

 Two–loop examples: our method is correct and 

efficient 

 Application to fragmentation function: correct and 

helpful

Summary

 A general strategy to do reduction

 A general strategy to evaluate MIs
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 A package to do systematic reduction

Future plan: practical application

 A package to calculate MIs

• Can be thought as a multi-loop version of  “looptools”

• Express all FIs as linear combinations of  MIs
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 Introduce auxiliary masses to Lagrangian

Future plan: formal development

Thank you!

• Construct “heavy particle effective theory” at 𝜆 → ∞ (similar to but 

not the same as HQET)

• Evaluate scattering amplitudes as power expansion in 
1

𝜆2

• Each term should be very compact, including only vacuum integrals

 Recover physical results at 𝜆 → 0 by analytical 

continuation
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Remarks: generality

We can find out any existing relation 

between FIs

As 𝜂 presents in all FIs, our method 

can be used for any problem

• Relations due to IBP, LI, symmetries, accidental relations, non-linear 

relations …
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Remarks: efficiency of reduction 

Cost of  setting up analytical reduction relations: 

linear in the number of  target FIs

• Set up one reduction relation for each FI

• Each reduction relation can be obtained in a short time

• The cost for each relation is insensitive to the number of  scales: 

two-loop 𝑔𝑔 → 𝑡  𝑡𝐻 is similar to 5𝑔

Cost of  numerically diagonalizing reduction 

relations: linear in the number of  target FIs

• Reduction relations are block-diagonalized

• # of  equations equals to # of  target FIs

• Do it at each phase space point (floating numbers)
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Remarks: efficiency of evaluating MIs

Our strategy is to numerically solve DEs 

w.r.t. 𝜂 and kinematic variables

• Increase the efficiency

• Determine analytical structure

• Cost is linearly dependent on the required number of  effective digits
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Remarks: infrared divergences

 IR divergences come out as 𝜂 → 0+

No IR divergence when 𝜂 is finite

• 𝜂 plays the role as an IR regulator

• 𝜖 becomes the IR regulator after taking this limit
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Remarks: number of MIs

DEs w.r.t. 𝜂 provide constraints as 𝜂 → 0+

Number of  MIs at finite 𝜂 is larger than the 

number of  MIs at 𝜂 → 0+

• Number of  MIs at 𝜂 → 0+ can be minimized 

• It is not a problem become the number is still small, 

and much smaller than the number of  target Fis

• Also these MIs can be calculated within our method
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Remarks: effect of 𝜼

Do reduction relations become more 

complicated with 𝜂?

• No! Just the opposite!

• The mass dimension of  reductions relations becomes smaller 


