Two-loop Five-point Scattering Amplitudes

University of Science and Technology of China

Yang Zhang

EFT&Amplitude USTC Sep 8, 2019

"All master integrals for three-jet production at NNLO", Phys.Rev.Lett. 123 (2019), no. 4 041603 "Analytic result for a two-loop five-particle amplitude", Phys.Rev.Lett. 122 (2019), no. 12 121602

Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia

"Analytic form of the full two-loop five-gluon all-plus helicity amplitude", Phys.Rev.Lett. 123 (2019) no.7, 071601

Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, YZ, Zoia

Precision Physics

To interpret the high energy experimental results, to find new physics, next-to-next-to-leading-order (NNLO) cross section computation is needed.

 $\alpha_s(M_z) = 0.1148 \pm 0.0014(\exp) \pm 0.0018(\text{PDF}) \pm 0.0050(\text{theory})$

Phys. Lett. B 762 (2016) 1

Precision Physics

To interpret the high energy experimental results, to find new physics, next-to-next-to-leading-order (NNLO) cross section computation is needed.

 $\alpha_s(M_z) = 0.1148 \pm 0.0014(\exp) \pm 0.0018(\text{PDF} \pm 0.0050(\text{theory}))$

Phys. Lett. B 762 (2016) 1

Goals

One bottleneck of NNLO precision physics is the two-loop scattering amplitude.

To calculate complete two-loop five-point amplitudes in pQCD/Standard model *analytically*

2g -> 3 jets quark pair -> quark pair + jet $2g \rightarrow Higgs + 2 jets$

Status: 2-loop 5-point massless amplitudes (no SUSY)

"Gettysburg" for multi-loop scattering amplitude ...

	Numeric Integrand	Analytic integrand	Analytic amplitude
planar +++++ pure-YM	Badger, Hjalte, YZ 2013		Gehrmann, Henn, Presti 2015
planar all-helicity pure-YM	Badger, Brønnum-Hansen, Hartanto, Peraro 2017 Abreu, Cordero, Ita, Page, Zeng 2017	Boels, Jin, Luo 2018	Abreu, Cordero, Dormans, Ita, Page 2018
planar all-helicity massless quarks	Badger, Brønnum-Hansen, Hartanto, Peraro 2018 Abreu, Cordero, Ita, Page, Sotnikov 2018	Abreu, Cordero, Dormans, Ita, Page, Sotnikov 2019	
nonplanar +++++ pure-YM	Badger, Mogull, Ochirov, O'Connell 2015		Badger, Gehrmann, Peraro Wasser, Heinrich, Henn, Chicherin, YZ , Zoia 2019

2-loop 5-point planar integrals	
2-loop 5-point nonplanar integrals	Abreu, Dix Chicherin, Geł

Gehrmann, Henn, Lo Presti, 2015 (Full result)

kon, Herrmann, Page, Zeng 2018 (symbol only) hrmann, Henn, Wasser, YZ, Zoia 2018 (Full result)

Difficulty

Two-loop nonplanar

31 Symbol letters

square root of Gram determinant

5 Mandelstam variables

Weight 4 functions

Our techniques

dlog integral construction

Boundary value consistency

Petri nets

T O OTT TTO OD

Baikov representation

Darrow Tobropottorati

Finite field reconstruction

Workflow 1

Workflow 2

Workflow 3 (obvious)

Under test

only ~ secs for reducing one numeric IBP !

Feynman Integral Analytic Evaluation

Differential equation with uniform transcendental weights, Symbols Boundary value determination

Differential equation for traditional integral basis

It took 3 months on Univ. of Zurich cluster, to compute the five (108,108) matrices

 $\frac{\partial}{\partial x_i}I$ A_iI _ 5 Mandelstam variables 1.4 GB !

Uniformly transcendental (UT) basis

 $\mathcal{T}(\log) = 1, \mathcal{T}(\pi) = 1, \mathcal{T}(\zeta_n) = n, \mathcal{T}(\operatorname{Li}_n) = n, \dots, \mathcal{T}(f_1 f_2) = \mathcal{T}(f_1) + \mathcal{T}(f_2)$

 $I = (\text{overall normalization}) \times \sum \epsilon^k f_k, \quad \mathcal{T}(f_k) = k$ Henn 2013

$$(s_{12})^{-1-2\epsilon} \left(-\frac{1}{\epsilon^2} + \frac{\pi^2}{6} + \frac{32\zeta(3)\epsilon}{3} + \frac{19\pi^4\epsilon^2}{120} + O(\epsilon^3) \right)$$
 UT but not dlog

$$(s_{12})^{-1-2\epsilon} \left(-\frac{1}{4\epsilon^4} + \frac{\pi^2}{24\epsilon^2} + \frac{8\zeta(3)}{3\epsilon} + \frac{192}{48} \right)$$

UT basis is also good for numeric computations

building blocks (LEGO) for Feynman integrals

$$\frac{1}{96} \left(-256\zeta(3)+2595-26\pi^2\right)\epsilon^2+O\left(\epsilon^3\right)\right) \quad \text{not UT}$$

 $\frac{9\pi^4}{80} + O\left(\epsilon^1\right)$ UT and dlog

Uniformly transcendental (UT) basis

$$\mathcal{T}(\log) = 1, \mathcal{T}(\pi) = 1, \mathcal{T}(\zeta_n) = n, \mathcal{T}(\mathrm{Li}_n) = n, \dots, \mathcal{T}(f_1 f_2) \in \mathcal{T}(\log)$$

$$I = (\text{overall normalization}) \times \sum_{k=0}^{\infty} \epsilon^k f_k, \quad \mathcal{T}(f_k) = k$$

$$\tilde{I} = T(\epsilon)I, \quad \frac{\partial}{\partial x_i}\tilde{I} = \epsilon A_i\tilde{I}$$

Differential equation in UT basis is extremely simple Feynman integrals become an iterated integration of rational functions

$$\tilde{I}(x) = P \exp\left(\epsilon \int_{\mathcal{C}} dA\right)$$

$$f(x) = P \exp\left(\epsilon \int_{\mathcal{C}} dA + \frac{1}{2} \int_{\mathcal{C}} dA + \frac{1$$

 $= \mathcal{T}(f_1) + \mathcal{T}(f_2)$

building blocks (LEGO) for analytic amplitude

$$\Big) \widetilde{I}(x_0)$$

版国才) iterated integrals

polylogarithms

To find UT basis: "dlog" approach

Arkani-Hamed, Bourjaily, Cachazo, Trnka 2010

$$st \int d^4 l_1 \frac{1}{D_1 D_2 D_3 D_4} = \int d\log(\frac{F}{D_1}) \wedge d\log(\frac{F}{D_1}) \wedge d\log(\frac{F}{D_3}) \wedge d\log(\frac{F}{D_4})$$

"Usually", a dlog integrand is a a UT integral.

Wasser algorithm for dlog (2017)

Consider the partial fraction in x_1 ,

$$\sum_{i} \frac{dx}{x_1 - a_i} \wedge \Omega_i$$

A long ansatz is necessary; Sometimes this algorithm does not find all dlogs ...

$$=\sum_i d\log(x_1-a_i)\wedge\Omega_i$$

Algebraic geometry approach ...

dlog algorithm from algebraic geometry viewpoint

Require that

1. N has 1 or 0 4D leading singularity

2. f must be a polynomial of s_{ij}

"Lift" problem $\sum f_{\alpha} \times \text{L.S.}[(\text{Scalar Product})^{\alpha}] = (1, 0, \dots, 1, 0, \dots)$ in Module theory

(computational algebraic geometry software) easily solvable by Singular

YZ 2018

$$_{i}) \times (\text{scalar product})^{\alpha}$$

Find missing dlog integral in Pascal's algorithm

dlog's are not always UT

dlog form analysis ignore the 4D vanishing terms, which are sometimes crucial

Bern, Herrmann, Litsey, Stankowicz, Trnka 2015 <u>8 dlogs on the top</u> From IBP, there should <u>9 master integrals</u>

$$B[1] = \langle 13 \rangle \langle 24 \rangle \left([24][13] \left(-k_2 + \frac{[45]}{[24]} \lambda_5 \tilde{\lambda_2} \right)^2 \left(k_1 - p_1 - \frac{[23]}{[13]} \lambda_2 \tilde{\lambda_1} \right)^2 \right),$$

+ $[14][23] \left(-k_2 + \frac{[45]}{[14]} \lambda_5 \tilde{\lambda_1} \right)^2 \left(k_1 - p_2 - \frac{[13]}{[23]} \lambda_1 \tilde{\lambda_2} \right)^2 \right),$
$$B[2] = B[1] \Big|_{k_1 \to -k_1 + p_1 + p_2, k_2 \to -k_2 - p_4 - p_5},$$

$$B[3] = B[1] \Big|_{k_1 \to -k_1 + p_1 + p_2, k_2 \to -k_2 - p_4 - p_5},$$

$$B[4] = B[2]\Big|_{\substack{p_1 \leftrightarrow p_5, p_2 \leftrightarrow p_4 \\ k_1 \to -k_2, k_2 \to -k_1}},$$

$$B[5] = B[1]^*, \quad B[6] = B[2]^*, \quad B[7] = B[3]^*, \quad B[8] = B[4]^*$$

NOT UT for differential equation!

From 4D leading singularity to D-dim singularity

Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia, Phys.Rev.Lett. 123 (2019), no. 4 041603

$$(B[1] + B[5]) \leftarrow \frac{16s_{45}G_{12}}{\epsilon_5^2} \times (-s_{12}s_{15} + s_{12}s_{23} + 2s_{12}s_{34} + s_{23}s_{34} + s_{15}s_{45} - s_{3}$$

"Additives" terms to make a UT

$$G_{11} = G\begin{pmatrix}k_{1,p_1,p_2,p_3,p_4}\\k_{1,p_1,p_2,p_3,p_4}\end{pmatrix}$$

$$G_{12} = G\begin{pmatrix}k_{1,p_1,p_2,p_3,p_4}\\k_{2,p_1,p_2,p_3,p_4}\end{pmatrix}$$

$$G_{22} = G\begin{pmatrix}k_{2,p_1,p_2,p_3,p_4}\\k_{2,p_1,p_2,p_3,p_4}\end{pmatrix}.$$

4D vanishing terms, UT

Determined by **Baikov representation**, D-dimensional cuts

$$G(p_1 \dots p_E)^{\frac{E+1-D}{2}} \int dz_1 \dots dz_m \ G(k_1, k_2, p_1 \dots p_E)^{\frac{L+E+1-D}{2}} \frac{1}{z_1^{\alpha_1} \dots z_m^{\alpha_m}}$$

34S45)

All UT basis found

Now it is possible to solve differential equation

1.4 GB $\frac{\partial}{\partial x_i}I = A_iI$ $\tilde{I} = T(\epsilon)I, \quad \frac{\partial}{\partial x_i}\tilde{I} = \epsilon \tilde{A}_i \tilde{I}$ **5** MB

Further decomposition

 $d\tilde{I}(s_{ij};\epsilon) = \epsilon dA(s_{ij})\tilde{I}(s_{ij};\epsilon)$

$$d\tilde{I}(s_{ij};\epsilon) = \epsilon \left(\sum_{\substack{k=1\\ k\neq i}}^{31} a_k d\log W\right)$$

31 (108,108) matrices with rational number entries

 $W_1 = v_1, \quad W_6 = v_3 + v_4, \quad W_{11} = v_1 - v_4, \quad W_{16} = v_1 + v_2 - v_4,$ $W_2 = v_2, \quad W_7 = v_4 + v_5, \quad W_{12} = v_2 - v_5, \quad W_{17} = v_2 + v_3 - v_5,$ $W_3 = v_3$, $W_8 = v_5 + v_1$, $W_{13} = v_3 - v_1$, $W_{18} = v_3 + v_4 - v_1$, $W_4 = v_4$, $W_9 = v_1 + v_2$, $W_{14} = v_4 - v_2$, $W_{19} = v_4 + v_5 - v_2$, $W_5 = v_5, \quad W_{10} = v_2 + v_3, \quad W_{15} = v_5 - v_3, \quad W_{20} = v_5 + v_1 - v_3,$

 $v_1 = s_{12}, v_2 = s_{23}, v_3 = s_{34}, v_4 = s_{45}, v_5 = s_{15}$

Symbol: Goncharov, Spradlin, Vergu and Volovich

 $W_k(s_{ij})$) $\tilde{I}(s_{ij};\epsilon)$

symbol letters

$$\begin{split} W_{21} &= v_3 + v_4 - v_1 - v_2 \,, \quad W_{26} = \frac{v_1 v_2 - v_2 v_3 + v_3 v_4 - v_1 v_5 - v_4 v_5 - \sqrt{\Delta}}{v_1 v_2 - v_2 v_3 + v_3 v_4 - v_1 v_5 - v_4 v_5 + \sqrt{\Delta}} \,, \\ W_{22} &= v_4 + v_5 - v_2 - v_3 \,, \quad W_{27} = \frac{-v_1 v_2 + v_2 v_3 - v_3 v_4 - v_1 v_5 + v_4 v_5 - \sqrt{\Delta}}{-v_1 v_2 + v_2 v_3 - v_3 v_4 - v_1 v_5 + v_4 v_5 + \sqrt{\Delta}} \,, \\ W_{23} &= v_5 + v_1 - v_3 - v_4 \,, \quad W_{28} = \frac{-v_1 v_2 - v_2 v_3 + v_3 v_4 + v_1 v_5 - v_4 v_5 - \sqrt{\Delta}}{-v_1 v_2 - v_2 v_3 + v_3 v_4 + v_1 v_5 - v_4 v_5 + \sqrt{\Delta}} \,, \\ W_{24} &= v_1 + v_2 - v_4 - v_5 \,, \quad W_{29} = \frac{v_1 v_2 - v_2 v_3 - v_3 v_4 - v_1 v_5 + v_4 v_5 - \sqrt{\Delta}}{v_1 v_2 - v_2 v_3 - v_3 v_4 - v_1 v_5 + v_4 v_5 + \sqrt{\Delta}} \,, \\ W_{25} &= v_2 + v_3 - v_5 - v_1 \,, \quad W_{30} = \frac{-v_1 v_2 + v_2 v_3 - v_3 v_4 + v_1 v_5 - v_4 v_5 - \sqrt{\Delta}}{-v_1 v_2 + v_2 v_3 - v_3 v_4 + v_1 v_5 - v_4 v_5 + \sqrt{\Delta}} \,, \end{split}$$

$$W_{31} = \sqrt{\Delta}$$
 .

Solving canonical differential equation

$$\tilde{I}(s_{ij},\epsilon) = \epsilon^{-4} \sum_{m}^{\infty} \epsilon^{m} \tilde{I}^{(m)}(s_{ij})$$

$$\epsilon^{4}\tilde{I}(s_{ij},\epsilon) = B^{(0)} + \epsilon \left(B^{(1)} + \int_{\gamma} dA(s_{ij})B^{(0)}\right) + \epsilon^{2} \left(B^{(2)} + \int_{\gamma} dA(s_{ij})\left(B^{(1)} + \int_{\gamma'} dA(s_{ij})B^{(0)}\right)\right) + \dots$$
boundary value
$$\epsilon^{4}\tilde{I}(s_{ij},\epsilon) = \sum_{k=1}^{\infty} \epsilon^{m} B^{(m)}$$

 $\epsilon^{-}I(e_{ij},\epsilon) = \sum_{m=0} \epsilon^{m}B^{(m)}$ boundary point

_{ij}) leading terms are rational numbers

we choose the boundary point for a physical region

$$\{e_{12}, e_{23}, e_{34}, e_{45}, e_{15}\} = \{3, -1, 1, 1, -1\}$$

Boundary value

Many integrals (from sub-diagrams) are known analytically

These two conditions usually determine a boundary value analytically.

All 2-loop 5-point massless integrals are analytically evaluated Goncharov polylogarithms

$$G(\underbrace{0,\ldots,0}_{k};z) = \frac{1}{k!} (\log z)^{k}, \qquad G(a_{1},\ldots,a_{k};z) = \int_{0}^{z} \frac{dt}{t-a_{1}} G(a_{2},\ldots,a_{k};t)$$

implemented in **Ginac**

Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia, Phys.Rev.Lett. 123 (2019), no. 4 041603

Why analytic integrals?

numeric evaluation with **pySecDec**

• Must be evaluated in 6-2 ϵ dim, then converted back to 4-2 ϵ dim by IBPs • GPU is necessary

NVIDIA Tesla V100 GPUs

Analytic with our result

~ minutes with one CPU to get 50 digits, for one point

 $\times 8$

1 week to get one numeric point error estimated to be ${\sim}0.5\%$

Assembly of Amplitudes

IBP with algebraic geometry Finite field reconstruction

Integral reduction

$$\int \frac{d^D l_1}{i\pi^{D/2}} \dots \int \frac{d^D l_L}{i\pi^{D/2}} \frac{\partial}{\partial l_i^{\mu}} \frac{v_i^{\mu}}{D_1^{\alpha_1} \dots D_k^{\alpha_k}} = 0$$

Integration-by-Parts (IBP) reduction

Laporta

FIRE (Smirnov) η exReduze2 (von Manteuffel, Studerus)InteLiteRed (Lee)Kira (Maierhofer, Usovitsch, Uwer)

IBP with algebraic geometry

syzygy (Gluza,Kajda, Kosower 2010) module intersection (Larsen, YZ 2016) Chetyrkin, Tkachov 1981 Laporta 2001

Non-derivative approach

 η expansion for Feynman integrals, Liu Ma 2018 Intersection theory, Mastrolia et al. 2018

Module Intersection

IBPs in Baikov Rep.

$$0 = \left(\prod_{i=1}^{k} \int dz_i\right) \sum_{j=1}^{k} \frac{\partial}{\partial z_j} \left(a_j(z) \det(S)^{\frac{D-L-E-1}{2}} \frac{1}{z_1 \dots z_m}\right)$$

Polynomials!

Require

- 1. no shifted exponent:
- 2. no doubled propagator:

$$\sum_{j=1}^{k} a_j(z) \frac{\partial F}{\partial z_j} + \beta(z)F = 0$$

$$a_i(z) \in \langle z_i \rangle, \quad 1 \leq i \leq m$$

$$M_1 \cap M_2$$

Solvable by **Singular** with the localization trick Dramatically reduce the number of IBP relations

module intersection (Larsen, YZ 2016)

These $(a_1(z), \ldots a_k(z))$ form a module $M_1 \subset \mathbb{R}^k$.

These $(a_1(z), \ldots a_k(z))$ form a module $M_2 \subset \mathbb{R}^k$.

Intersection of two modules

Module Intersection IBP

Boehm, Schoenemann, Georgoudis, Larsen, YZ JHEP 1809 (2018) 024

could not be done with FIRE or Kira

Module Intersection + Petri Net

Petri Net: a graphic rep. of discrete event dynamic system (Carl Adam Petri)

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, YZ 2019

Color structure for five-gluon amplitudes

$$\mathcal{A}_{5}^{(1)} = \sum_{\lambda=1}^{12} N_{c} A_{\lambda}^{(1,0)} T_{\lambda} + \sum_{\lambda=13}^{22} A_{\lambda}^{(1,1)} T_{\lambda}$$
$$\mathcal{A}_{5}^{(2)} = \sum_{\lambda=1}^{12} \left(N_{c}^{2} A_{\lambda}^{(2,0)} + A_{\lambda}^{(2,2)} \right) T_{\lambda} + \sum_{\lambda=13}^{22} N_{c} A_{\lambda}^{(2,1)} T_{\lambda}$$

and

$$T_{13} = \text{Tr}(12) \left[\text{Tr}(345) - \text{Tr}(543)\right], \qquad T_{13}$$

$$T_{14} = \text{Tr}(23) \left[\text{Tr}(451) - \text{Tr}(154)\right], \qquad T_{14}$$

$$T_{15} = \text{Tr}(34) \left[\text{Tr}(512) - \text{Tr}(215)\right], \qquad T_{24}$$

$$T_{16} = \text{Tr}(45) \left[\text{Tr}(123) - \text{Tr}(321)\right], \qquad T_{24}$$

$$T_{17} = \text{Tr}(51) \left[\text{Tr}(234) - \text{Tr}(432)\right], \qquad T_{24}$$

,

$T_{18} = \text{Tr}(13) \left[\text{Tr}(245) - \text{Tr}(542)\right],$

- $T_{19} = \text{Tr}(24) \left[\text{Tr}(351) \text{Tr}(153)\right],$
- $T_{20} = \text{Tr}(35) \left[\text{Tr}(412) \text{Tr}(214)\right],$
- $T_{21} = \text{Tr}(41) \left[\text{Tr}(523) \text{Tr}(325) \right],$
- $T_{22} = \text{Tr}(52) \left[\text{Tr}(134) \text{Tr}(431) \right],$

Edison, Naculich, 2012

Nonplanar N=4 amplitude (symbols)

Integrand: Carrasco-Johansson, 2011

Park-Taylor factor $A_{\lambda}^{(2,k)} = \frac{1}{\epsilon^4} \sum_{i=1}^{4} \epsilon^w \sum_{i=1}^{6} \operatorname{PT}_i f_{w,i}^{(k,\lambda)} + \mathcal{O}(\epsilon) ,$

"Most" terms in this amplitude are determined by the infrared structure (Catani's formula), only the weight-4 double trace term is non-trivial.

hard function =
$$\sum_{S_5} PT_1 T_{13} g_{seed}$$
 only 5

weight-w function

500 KB

PhysRevLett.122.121602 Gehrmann, Henn, Chicherin Wasser, YZ, Zoia

Nonplanar N=8 Supergravity amplitude (symbol)

Bern-Carrasco-Johansson relation 2008

After infrared subtraction

Carrasco-Johansson, 2011

$$(N_i^{\rm sYM})^2 = N_i^{\rm Sugra}$$

$$\sum_{w=0}^{2} \epsilon^{w} g_{j}^{(w)} + \mathcal{O}(\epsilon) \,,$$

key formula inspired by my Ph.D. thesis supervised by Henry Tye

,

$$r_{\text{seed}} = s_{12}s_{23}s_{34}s_{45}\text{PT}(12345)\text{PT}(21435)$$

2-loop 5-point +++++ pure-YM amplitude

$$\Delta_{431} = \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = -\frac{s_{12}s_{23}s_{45}F_1}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \mathrm{tr}_5} \left(\mathrm{tr}_+ (1345)(\ell_1 + p_5)^2 + s_{15}s_{34}s_{45} \right), \\ \Delta_{332} = \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \frac{s_{12}s_{45}F_1}{4 \langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \mathrm{tr}_5} \\ \times \left(s_{23}\mathrm{tr}_+ (1345)(2s_{12} - 4\ell_1 \cdot (p_5 - p_4) + 2(\ell_1 - \ell_2) \cdot p_3) \\ - s_{34}\mathrm{tr}_+ (1235)(2s_{45} - 4\ell_2 \cdot (p_1 - p_2) - 2(\ell_1 - \ell_2) \cdot p_3) \\ - 4s_{23}s_{34}s_{15}(\ell_1 - \ell_2) \cdot p_3 \end{pmatrix}, \qquad \Delta_{330}$$

$$\Delta_{422} = \Delta \left(\underbrace{5 - \underbrace{5}_{4} \underbrace{5}_{3}^{1}}_{3} \right) = -\frac{s_{12} s_{23} s_{45} F_1}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \mathrm{tr}_5} \times \left(\mathrm{tr}_+ (1345) \left(\ell_1 \cdot (p_5 - p_4) - \frac{s_{45}}{2} \right) + s_{15} s_{34} s_{45} \right).$$

$$\begin{split} & \times \left(s_{2s1} t_{+} (1345) (2s_{12} - 4\ell_{1} \cdot (p_{5} - p_{4}) + 2(\ell_{1} - \ell_{2}) \cdot p_{3} \right) \\ & - s_{31} t_{+} (1235) (2s_{15} - 4\ell_{2} \cdot (p_{1} - p_{2}) - 2(\ell_{1} - \ell_{2}) \cdot p_{3} \right) \\ & - 4s_{2s3} s_{4s4} s_{15}(\ell_{1} - \ell_{2}) \cdot p_{3} \right) \\ & - 4s_{2s3} s_{4s4} s_{15}(\ell_{1} - \ell_{2}) \cdot p_{3} \right) \\ & \Delta_{422} = \Delta \left(\sum_{i=1}^{6} \sum_{j=1}^{6} \sum_{j=1}^$$

Badger, Frellesvig, YZ, 2013 Badger, Mogull, Ochirov, O'Connell 2015

2-loop 5-point ++++ pure-YM amplitude

numerator degree-5 IBP needed (impossible by current analytic IBP method) indirect finite-field fitting for the amplitude (after IBP) is applicable

All weight-3, weight-4 part of the amplitude cancels out

$$\mathcal{H}^{(2)} = \sum_{S_5/S_{T_1}} T_1 \,\mathcal{H}_1^{(2)} + \sum_{S_5/S_{T_{13}}} T_{13} \,\mathcal{H}_{13}^{(2)}$$

$$\begin{aligned} \mathcal{H}_{1}^{(2,0)} &= \sum_{S\tau_{1}} \left\{ -\kappa \frac{[45]^{2}}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} I_{123;45} + \kappa^{2} \frac{1}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} \left[5 \, s_{12} s_{23} + s_{12} s_{34} + \frac{\mathrm{tr}_{+}^{2} (1245)}{s_{12} s_{45}} \right] \right\}, \\ \mathcal{H}_{13}^{(2,1)} &= \sum_{S\tau_{13}} \left\{ \kappa \frac{[15]^{2}}{\langle 23 \rangle \langle 34 \rangle \langle 42 \rangle} \left[I_{234;15} + I_{243;15} - I_{324;15} - 4 \, I_{345;12} - 4 \, I_{354;12} - 4 \, I_{435;12} \right] \right. \\ &\left. - 6 \, \kappa^{2} \left[\frac{s_{23} \, \mathrm{tr}_{-} (1345)}{s_{34} \langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} - \frac{3}{2} \frac{[12]^{2}}{\langle 34 \rangle \langle 45 \rangle \langle 53 \rangle} \right] \right\}, \end{aligned}$$

 $I_{123;45} = \operatorname{Li}_2(1 - \frac{s_{12}}{s_{45}}) + \operatorname{Li}_2(1 - \frac{s_{23}}{s_{45}}) + \log^2(\frac{s_{12}}{s_{23}}) + \frac{\pi^2}{6}.$

Summary

• Systematic way of finding UT basis • Novel approach of determining integral boundary condition • Novel practical IBP reduction methods • New amplitudes calculated 2-loop 5-point N=4 Super-Yang-Mills amplitude 2-loop 5-point N=8 Supergravity amplitude 2-loop 5-point ++++ YM amplitude

> Towards a revolution of 2-loop, 2 to 3 scattering amplitude computation

Infrared structure

$$A(s_{ij},\epsilon) = \mathbf{Z}(s_{ij},\epsilon)A^{f}(s_{ij},\epsilon) \qquad \qquad \mathbf{Z}(s_{ij},\epsilon) = \exp g^{2} \left(\frac{\mathbf{D}_{0}}{2\epsilon^{2}} - \frac{\mathbf{D}}{2\epsilon}\right)$$

$$\mathbf{D}_0 = \sum_{i \neq j} \vec{\mathbf{T}}_i \cdot \vec{\mathbf{T}}_j, \ \mathbf{D} = \sum_{i \neq j} \vec{\mathbf{T}}_i \cdot \vec{\mathbf{T}}_j \log\left(-\frac{s_{ij}}{\mu^2}\right),$$

 \mathbf{T}_i is the adjoint action of $su(N_c)$ Lie algebra.

(Catani's dipole formula 98)

More references

<u>UT integral search</u>

Henn 1412.2296 Chicherin, Gehrmann, Henn, Wasser, YZ and Zoia, 1812.11160

<u>Boundary value</u>

Gehrmann, Henn, Lo Presti, 1807.09812 Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser, 1809.06240

<u>Conformal anomaly</u> <u>for Feynman integrals</u>

Chicherin, Henn, Sokatchev 1804.03571

Gluza, Kajda, Kosower, 1009.0472 Larsen, YZ, 1511.01071 Boehm, Schoenemann, Georgoudis Larsen, YZ, 1805.01873

IBP with algebraic geometry