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Introduction to the exactly solvable models
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Research object: one-dimensional systems.
Correlation effect: many-body effect induced by the short-range Coulomb repulsion

between electrons.
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The correlation effects in low dimensional systems are more prominent.

Many interesting phenomena such as fractional elementary excitations, various
phases of quantum liquids, nonlinear effects, collective modes, critical behaviors are

induced by the strong correlation.
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Methods for many-body systems:
Numerical: Exact diagonalization, DMRG, Monte Carlo, Tensor network, Machine
learning, DFT, MD

Analytical: Mean field, Perturbation, Exact solution

e Due to the strong correlation, many traditional methods such as mean field and

Perturbation are invalid.

e No universal quantum many body theory. Exact solution is a good method.

Actual physical problems = Exactly solvable models = Quantitative results

) I

Physical mechanism < Experiments < Universal class theory
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e Exact solution can provide the benchmark for many new phenomena and physical
concepts, and check the correction of numerical methods and numerical results.

Examples: 2D Ising model (thermodynamic phase transition), 1D Hubbard model
(Mott insulator), Heisenberg model (spinon, fractional charge), Hydrogen atom

(quantum mechanics).

e |t is an important branch of condensed matter physics, statistical physics,

theoretical and mathematical physics.
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Exact solvable model: Quantum spin chain
1921, Stern Grach

e Spin singlet and triplet states, exchanging interactions
a1 - 02
e Heisenberg model
H= JZ ) - Oj+1
j=1

quantum magnetism, anisotropy, quantum phase transition, spinon,

Bethe ansatz
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e Boundary conditions
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e Ising model
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e J; — J, model
H= ZJIEJ . 5j+1 + kG - Gy

Jj=1

e Dzyloshinsky-Moriya interaction

H:ZB(O—"J X5j+1)
Jj=1

e Chiral three spins interaction
H=> 65 (5j1 X Fjs2)
j=t
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e Gaudin model

o Haldane-Shastry model

dgj-
H: J J
Z:(i—J)2
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e New model: integrable quantum spin chain with competing interactions
H = Hpuk + HL + Hr

Bulk and periodic

2N—-1
Houre = ) {Jlf?J < Gjr1thd) - Giva + J3(—1) G - (G5 x 5j+2)}

j=1
Open boundary
He = ———[poi — a’0fo3 — iapD - (51 x 2)]

42> — 1

Hr = 2212 g [q

(€on + o5n) — a°(Ea3n_1 + oBn_1)(Eon + o5n)

—iaq(¢Dsy + Diy) - (Gan X Gan-1)]
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e New model: integrable cold atomic models

Particles with d-function interaction: boson; fermion; mixture

o
H=-— 82+c25(xj—x1)

j=1 % i<I

Bosons
E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963);
E. H. Lieb, Phys. Rev. 130, 1616 (1963);

Y. Q. Li, S. J. Gu, Z. J. Ying, U. Eckern, Europhys. Lett. 61, 368 (2003).

Fermions

M. Gaudin, Phys. Lett. A 24, 55 (1967);

C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967); Yang-Baxter equation

C. N. Yang, Phys. Rev. 168, 1920 (1968); factorizableof scattering matrix

B. Sutherland, Phys. Rev. Lett. 20, 98 (1968).

Bose-fermi mixtures
C. K. Lai, C. N. Yang, Phys. Rev. A 3, 393 (1971);

C. K. Lai, J. Math. Phys. 15, 954 (1974).

J. Cao (IOP) Integrable models 12 / 49



Bose - Einstein Condensation; theory: 1924-1925; experiment: 1995

Fermions Bosons
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low-dimensional cold atomic systems

Optical lattices & magnetic traps

BEC atoms
By
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array of 1D tubes

Tunable: component, interaction, dimension, lattice constant
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Phase transition & pairing

One-dimensional
gas tube

® Wwinstats| @ ) y (]
@ 12) spin state ImiA)
@ 13) spin state

Fully paired Partially polarized
wing core
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Cold atomic systems in experiments

F=1 23Na, 3K, Rb

F=2 8Rb

F=3 133Cs

F=3/2 132Cs, Be, 13Ba, 137Ba
F=5/2 173Yb rare-earth

&/ &/ N/ \¢

New integrable model with both contact and spin-exchanging interactions
82
H=— +Z[c0+qs 516(xi — x;)

Jj=1 1 i#]
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Atoms with arbitrary spin-s

N 5 N 2s
HZ—Zﬁ—‘rZ[CoPUO-—FCQ Z P,T](S(X,—XJ)
=t 7 i< m=0,2,4,--

Projector operator

m_ 17 (S8 —I(+1)
Pr=11 m(m+1) — (I +1)

1=0,#m

e Spin-1:
o =0, SU(3) symmetry

¢ = & = ¢, SU(2) symmetry, new states of paired Bosons

° Spin-%:
c2 =0, SU(4) symmetry
¢ =5 and c2 = 72—;, S50(5) symmetry, new elemental excitations such as the

heavy spinons carrying spin 0, % and 1
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+  Hamiltonian 7 = _Ztla.
(pseudo-)spin interaction
0 (boson) 8,=¢
V5 (fermion) g,=c¢
Y5 (boson) g, =c

3

symmetry
U
SU(2)
SU(2)

Y (boson) 81.1=0.81=6,.8,=0. U(l)

1 (boson) 8,=¢.8,=c¢
1 (boson) 8,=—°¢,8,=2c.

SU3)
SU(2)

1 (boson) 800=¢:8,1=0.8,=0, U(@)
822768207682, =€

1 (fermion) g, =c
3/2 (fermion) g =c.g, =c.
3/2 (fermion) g, =3c. g, =c.

SU(3)
SU(4)
Sp(4)

3/2 (fermion) (g0 =0.8,2=¢1,825 =5 U(1)
8:-1=0.8,0=0.8,_,=0,

Integer s (boson) @ =—(5—1/2)c.g,, . =c.SO(2s+1) Jiang, er.al. JPA44.345001(2011)

Half-odd s (fermion) €, = (5+3/2)c.g,,.. =c. Sp(2s+1) Jiang, er.al. JPA44.345001(2011)
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+Z<i«f}zlrngllnpzj ()(A, .\j),

Lieb, et al.. PR130.1605(1963)
Yang, PRL19.1312(1967)
Li, EPL 61. 368 (2003)

Zhou, JPA 21.2391; 2399 (1988)
Cao. et.al. EPL79.30005(2007)

Sutherland. PRL.20.98(1968)
Sutherland. PR1.20.98(1968)
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Exactly solvable models:

1. interacting particles with 6 -function

2. spin chain and spin ladder

3. Hubbard, supersymmetry t-J, Kondo

]
—tP Z € oCit1o + He )P+ J(8;8;41 — —111,,lz,+|)}
o=+1

I\
i M/

4. 1, Chiral Potts, vertex model

N/2 8 N/2-1 8
Hp ==Y > Q= Y Y RIRYY
=1 k=1 =1 k=1
5. long range interaction ; . 25052
Py S
H, =29S: + mgn ; F——
Gaudin model (1/r) ) N
Hew 7Zi+ Z A= AP
o - 92 . 0 )2
Calogero-Sutherland model (1/r2,continue case) e A ey N C )
N
Haldane-Shastry model (1/r2, lattice case) Hys = Z ; s
I sin® Z(j - n’
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Bethe ansatz

e Hamiltonian
J N
H= > E G- Gj+1 + Mot + hnvoy

Jj=1

Generating functional (quantum inverse scattering)

t(u) = K () To(u) Ky (u) To(w)}
B N N S O O N

To(u) = Ro,n(u — On)Ron—1(u — On—1) - - - Ro,1(u — 61)
?—o(u) = Ro1(u+ 601)Ro2(u+62) - Ron(u+ On)

1 N
R(),j(u)—u—&—Po,j—u-F(1+O’o-0'j)_(

u+ 3(1+07) o
2 )

+ 11 - g%
o; u+5(1—o0j

Ko(u)(eru pu) K(;r(”)(q+u+1 qu1>
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Yang-Baxter equation

S, (123) s.. Time
> L> space
(213) (132)
S, ] S —
(231 (312) -
N - &
$x Gay S 2 =
Reflection equation

Y/ (a2)B ‘\[\
Siy 2

Time
L» Space
2nB (12)B
£ |5
1B @nB
5|

I
a2)B @nB 1
\ 12)B / 2

[t(u), t(v)] =0

10 Int(u
H:c217au( )‘

u=0,{0;3=0 _ 0
J. Cao (IOP)
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e Coordinate Bethe ansatz

1. Reference state

0)=[Th®1e® - Tn
H|0) = E|0)

2. One spin flipped state

k) = ZN:w(X)SX‘I0>~
Acting H on the state |k), we obz;iln:
i) When x # 1, N,
Jp(x +1) +1h(x = 1) = 29(x)] + Eoth(x) = E(x). (1)

Assume

Y(x) =A™+ A_e™ ™. 2)
Substituting (2) into (1), we have

E(k) = 2J(cosk — 1) + Eq. (3)

The values of quasi-momentum k are determined by the boundary, conditions.

J. Cao (IOP) Integrable models 22 /49



i) When x = 1, the eigen-equation becomes
J[(2) = ()] + (Eo — 2m)y(1) = Ev(1).
Substituting (2) into above equation, we obtain the relation between Ay as

Ay 1—(1—2h/J))e

AT T 1 (1—2m/))ex (#)
iii) When x = N, the eigen-equation is
JW(N = 1) = p(N)] + (Eo — 2hn)(N) = Ep(N).
Similarly, we obtain
Al omke ™ —(1—2hy/J)
AT (1 —2m/d) (®)

From Egs.(4) and (5), we obtain the Bethe ansatz equation

2Nk _ 1—(1-2m/))e* e * —(1—-2hn/J)
T1-(1-2m/)e* ek —(1—2hy/J)

J. Cao (IOP) Integrable models 23 /49



3. M spins flipped state
koo k) = Y p0ase e m) Sy - Se,l0).

Assume the wave-function is

iSM. rp kp.xq.
Plx, o oxm) = DY Acpe T UG (xg, < - < xq,,)-
P,Q ri=t
Using the similar idea as M = 1, we obtain the energy spectrum as

Y
E:—Z)\2 1-i-Eo7

where the Bethe roots should satisfy the Bethe ansatz equation

i\ 2N i i M . .
/\j*E_ :)‘j*gﬂl/\j*gHN AN =N =i AN+N—
Ait g N g A+ san o N — NN AT

e =N—-1/N+1L)m=1-J/h and py =1—J/hy.
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1. The Bethe ansatz equations can be solved
e numerically: finite system-size
e analytically: thermodynamic limit N — oo

= physical quantities

2. Why is it called exactly solvable?
2N % 2N matrix (exponential wall problem)

= N algebraic equations
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e Algebraic Bethe ansatz

Transfer matrix
t(A) = tro{Ks (1) To(u)Ky () To(u)} = tro{Ks (\)To(N)},
where Tg()\) is the double raw monodromy matrix

To(A) = (1= XV Tg (= A)Ks (\) To(A) = ( o) A )

1A 6N

The transfer matrix can also be written as

() = (@+A+1)al) +(g—Ar—1)5(\)
- %S(AH(%MHH)Q(A),

where 5(\) = (2X + 1)6(A) — a()).

J. Cao (IOP) Integrable models
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Reference state:

0) =11 M.

Direct calculation gives

YN0y = o,
aN)0) = (p+NA+1)*"|0),
S0y = 2(p—x—1)A*""0),
a(N)[0) # o

Assume the eigenstate of transfer matrix t()) is
| Avs-e - Am) = B(A1) - - B(Am)|0).
Acting the transfer matrix t(A) on the assumed state

t(A) [ Ar, - dm) = [@6(X) + @a(N)]B(M) - B(Am)]0).

J. Cao (IOP) Integrable models
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Reflection equation
Riz(A = ) Ti(A) Rz (A + ) Ta (1) = T2(p) Riz(A + ) Ti(A) Rz (A — p),

Commutation relations among the matrix elements of monodromy matrix

5000 = O DO 1D 5500 - 25D 50000
e (1;& -13:1 77PNl
a3 = G 000 — (s a1y )
e Wal).

[B(A), B(w)] = 0.




Finial resluts
t(A) | A1y Am) = AN | A,y - - Am) + unwanted terms.

Eigenvalues

M

_(9a=A-t 2N A+A “A— ) —1)
A()\)_( T +q+)\+1)(p+/\)>\+1 g A )
q A 2N+1 A )\J+1 )\+)\+2)
21 2 “(p—
* 2,\+1( H "N+ D)

Bethe ansatz equation

(9+ )P+ N) ( )NH O+ M)y — A — 1)
(N +1-q)(N+1-p) NN+ +NF2)

Eigen-energy is

i d/\()\; PYRRE >\M)
4pq dA

A=0
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Off-diagonal Bethe ansatz: eigenvalues

When the boundary magnetic fields are unparallel,

h
1/ + 4 4 LF’V
/1 9) 3 N—14\/

the general Hamiltonian is
N
H = ZEJ <01+ hiof + hyon + hiyon
Jj=1

In this case

1 S o
Ro,j(u)=u+§(1+00'ffj)y

Ko(u)=<”+“ ) KJ(u)=<"+““ o )
p—u fu+l) g-u-—1

The spin of quasi-particle could be changed after the boundary reflections. Thus the
particle number of fixed spin is not conserved.

The system is still integrable.

J. Cao (IOP) Integrable models 30 /49



Quantum integrable models without U(1) symmetry
e Anti-periodic boundaries

e XYZ spin chain, eight vertex model

e Lacking the reference state
Due to the U(1) symmetry-broken, there is no obvious reference state. Traditional
Bethe ansatz does not work. Although the model has been proved to be integrable, the

exact solutions are difficult to be obtained.

e Polynomial analysis

t(u) is a operator polynomial of u with the degree 2N + 2

t(u) = Ooni2t® ™ + Oona ™ 4+ -+ O1u+ Oo

Nu) = Oonsot®™ 4 Oy t®" 4+ 4+ O1u+ 0o

which can be determined by its values at 2N + 3 points.

We need 2N + 3 constraints to determine the values of the coefficients.
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Fusion and operator product identities
t(0;)t(0; —1) = a(6)d(6; — 1), j=1,--- N
In the homogeneous limit {0; = 0}

[t(u)t(u— 1)]"]uzo = [a(u)d(u — 1)]|ys0, n=1,--- N

crossing symmetry : t(u) = t(—u — 1)

degree : 2N +2 — N+ 1

constraints : N + 2

2N+2

asymptotic behavior : t(u)|u—+oo = 2u +--
N
t(0)=2pq[J(1-0)(1+6))
j=1
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e Inhomogeneous T — Q relation with {6; = 0}

Q(u+ 1) N 2[1 _ (1 +£2)%]U2N+l(u+ 1)2N+1

Mo = ato) X5 4 () 2t )

Q(v)
Bethe roots

N

Q(u) = [Jw=A)(u+x+1)

j=t

Bethe ansatz equations

a(M) QN — 1) + d(A) QN + 1) = —2[1 — (1 + )TNV + 1)V,

j:17"'7N

J. Cao (IOP) Integrable models
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Eigenstates and separation of variables

Construct the complete bases of the Hilbert space by using the N inhomogeneous

parameters {0;} as

Ops, -+ 0p,) = A0p) - A(0p,)|Q)e,  1<p<pp<--<p<N, (6)

(=0q1,- -+ —0q,| =¢ (QD(=0¢,)---D(—0g,), 1<q<---<g<N. (7)
Here the reference is
Q) = @Li[1);, Q=&
where

V1I+E&+1

1), = o+ —

261+ 2(/1+¢
@ = &t —(V1+E+1)n =1 N

These states are also orthogonal

|¢>ﬂ7 n:17"'7Na

<a|jb>k:52,b6',k7 aab:1727 Jvk:]-avN
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The orthogonal and complete bases are obtain based on
t(A) = Ki(A)AQ) + K5 (V) C(A) + KL (A) B(A) + Kz2(A) D(A)
= Ki(A\) AN + K5H(AN) D).

According to the possible choices of p, in the right state (6) and the choices of g, in
the left state (7), we obtain

Z (N — n)|n| =2",

which is exactly the number of the dimension of the Hilbert space of the system. Thus
both the right state (6) and the left state (7) are complete.

For the arbitrary inhomogeneous parameters {6;}, the right and left states are

orthogonal
<_0q1a Ty _eqmw;m t ’0Pn> = f,,(@,,l, t ’0Pn)6m+”vN6{qu'” Jdm}i{pL, P}
where f,(0p,, -+ ,0p,) is the normalized coefficient,

1 if{q17--~,qm7p1,~~~7pn}:{1,~~~,N},

Ofqr e sambilpr pa} =
0 otherwise,
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Assume the eigenstate of the system is (W

, which can be expanded by the complete

bases {|0p,, - ,0p,)} o {{—=0p,,- -+, —0p,|}. The expansion coefficients are

F"(9P17"' 79Pn):<w|0P17"' 79Pn>7
n=0,---,N, 1<pi<p<---<pa<N.

In order to calculate the values of coefficients, we consider the physical quantity

<w‘t(9Pn+1)|9P17 e 709n>'
Acting the transfer matrix t(6,,,,) to the left and to the right, we obtain

E _ . (20, + n)A(65) P
Fn(9P17--- 79p,,) - {H (20Pj +n)Rﬂ(9PJ)+nR£(0pj)} F07 (8)

where Fo = (W|Q)¢ is a scalar factor. Therefore, we have retrieved the eigenstates by

using the obtained eigenvalues.
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Now, we construct the traditional Bethe state. Define

oo N N C(A)
g{\1, , AN = {E )NK21 N)d(\)d(— /\j—Ti)}7 ©)
where

Ol =k

Expand the Bethe states by the complete bases, and the coefficients are
AL AN|Opys - 5 0p,)

- 6, —
= {E(—l)fv(epj + p) a(0p;)d(—0p, — W)W} 0|9,

n:07"'7N7 1§P1<P2<<Pn§N

Comparing these coefficients with (8), we find that the only difference is a scalar
factor. Therefore, the Bethe state (9) is indeed the eigenstate of the transfer matrix and

Hamiltonian, where the Bethe roots {)\;} should satisfy the Bethe ansatz equations.
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Exact physical quantities in the thermodynamic limit

Ground state energy density, elementary excitations, surface energy, free energy at

finite temperature

e Degenerate points, at which the inhomogeneous term in the T — @Q relations is

Zero

o t — W scheme
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t — W scheme and zero-roots

Main ides of fusion
The R-matrix

u+1
Rio(u) =u+ P = ,
u+1
Properties
regularity : Ri2(0) = Pia,
unitarity :  Rup(u)Ra(—u) = p1(u) xid, pi(u) = —(v—1)(u+1),

crossing — unitarity :  RL(u)R:(—u —2) = pa(u) x id, pa(u) = —u(u +2),
Fusion conditions : Rp(—1) = —2P§;), Ri2(1) = 2Pg).

J. Cao (IOP) Integrable models 39 /49



Here Pf;) is a one-dimensional projector with the base
1
R) = Z5(12) - 21)).

PS) is a three-dimensional projector with the bases
1
V2

The properties of projection operators give

lg1) = [11), |g2) =
[PLF = PG, PP =PY).

The the bases (10) and (11) are complete and orthogonal

PD P =1, PR = PRS0

J. Cao (IOP) Integrable models
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If u= =1, then Ri2(£1) = :|:2P1(§':). From the Yang-Baxter equation, we obtain

P Rys(u)Ris(u £ 1)PS) = Riagys(u) = Ris(u).

1) The operator PS[)Rzg(u)ng(u + 1)Pf§t) defined in the tensor space Vi ® Vo ® V3
can be projected into the subspace V(15y ® V3, where V(15y = Vj is the projected space of
Vi® V.

2) The fused R-matrix Ri3(u) also satisfies the Yang-Baxter equation, which means

that the fusion does not break the integrability.
3) Fusion is used to obtain the high-dimensional representation of certain algebras.

4) If we take the fusion both in auxiliary and in quantum (physical) spaces, from the

resulted R-matrix R(12) 34y () we can construct some new interesting integrable models.

Fusion of the Hubbard model?

J. Cao (IOP) Integrable models 41 / 49



By using fusion, we obtain
t(u)t(u—1)

= [p2(2u — 1)] T tro{ [P, K3 (u — 1)Ria(—2u — 1)K; ()P, ]
< [PS) Ta () To(u — 1)P5)
X [PSKL ()R (20 — 1)K; (u—1)PG]
[P Ta(u) To(u — 1)PL]}
+Hpa(2u — 1)) tro{ [P K (1 — 1) Rio(—2u — 1)K (u) P3)]
< [PG Ti(u) To(u — 1)P)]
X [P (u)Roa(2u — 1)K; (u — 1) P
<[P Ti(u) To(u — 1)PT}

= ti(u) + t2(u).

(12)
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The first term is the fusion by the one-dimensional projectors, and the results is the

quantum determinant

ti(u) = t’12{K<J;2>(—)(”) T 12y~ (“)K (12)(~ () 7—<12>(7>(“)}

= [p2(2u = 1)] " ha(u — 1)y (u)
N
< [Ju—=0;+1)(u—0—1)(u+0;+1)(u+06—1).
j=1
The second term is the fusion by the three-dimensional projectors. Detailed

calculation gives

(1) = [p2(2u — )]} (=20%) [ J(w = 6;)(u + 6))

j=t

1 1, _ 1,2 1
xtria{ Ky (u = ) Tz (U= S)K 0 (U = 5) Ty (v = 5)}-
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From Yang-Baxter relations and reflection equations one can prove that the transfer

matrices t(u), ti(v) and t,(u) commutate with each other,

[t(v), ()] = [t(u), 2(u)] = [6(v), 22(u)] = O.

Therefore, they have common eigenstates and can be diagonalized simultaneously.
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t — W relation
From Eq.(12), we have the following t — W relation

t(u)t(u — 1) = Ag(u) x id + d(u)W(u), (13)

where Ag(u) is the quantum determinant.
The transfer matrix t(u) is an operator-valued degree 2N + 2 polynomial of u. The
operator W(u) is an operator-valued degree 2V + 2 polynomial of u.

As we have shown that t(uv) and W(u) commutate with each other,
[W(u), t(u)] = 0.

Therefore, they have common eigenstates.

Acting (13) on a common eigenstate |W) we have
Nu)A(u = 1) = Aq(u) + d(u)W(u), (14)

where W(u) is the eigenvalue of W(u).
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Because A(u) is a polynomial of u with degree 2N + 2 and satisfies the crossing

symmetry A(u) = A(—u — 1), we parameterize A(u) as

N4 1 1 _
Ao =R [ == s =3). o2

Thus A(u) has 2N + 2 roots, zj + 3 and —z + 3. Here we have put all the

inhomogeneous parameters in zero, {#;} = 0.

W (u) is a polynomial of u with degree 2N + 2, and we put

2N+2
W)= Wo [[(u—w), Wo=3-¢.

1=1
An important fact is that (14) is a degree 4N + 4 polynomial equation and thus

gives 4N + 5 independent equations for the coefficients to determine the N + 1 z and
2N + 2 w; completely.
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Let u =z + 3 in (14), we obtain

1. 1 B 2N+2 1
E(Zj—i—i)d(zj-—a):—d(zj- (3 %) Hsmh —W/+§)7 j=1,--- N+1. (15)

Let u = —z + 3 in (14), we obtain

- 1,.- 1 - 1
35+ 5)d(-z - 5) = —d(-5+ )
2N+2
x(3=&) [] sinh(—z — wi + > ) j=1,- ,N+1 (16)
I=1
Let u = w; in (14) we obtain
N+1 1 1
4E(WI—ZJ—§)(W/+ZJ 5w — )(W/+ZJ 5)
=3w)d(w —1), I=1,-- 2N +2. (17)

Eqgs.(15)-(17) are the Bethe ansatz equations. There are 3N + 3 equations and 3N + 3

unknowns.
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e Distribution of zero-roots with finite system-size

e Thermodynamic limit

e Density of zero-roots

e Ground state energy density

e Surface energy

e Free energy at finite temperature
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Summary

e Universal method to exactly solve the quantum integrable systems

e Anisotropic interactions and strongly correlated electronic systems

e Arbitrary integrable boundary conditions

e High spin and high rank (A, Bn, Gy, Dy)

e Non-Hermite physics and integrability (non-Hermite integrable models with

interaction)

YopengWang-Wen-LiYang
Junpeng Go- Kangje Sh

0ff-Diagonal
Bethe Ansatz

for Exactly
Solvable
Models

Thank you for your attention!
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